
PHY–396 K. Problem set #3. Due September 18, 2024.

1. Let’s go back to the massive vector field Âµ(x) from the previous homework set#2 (prob-

lems 2–4). In particular, in problem 4 you (should have) expanded the quantum fields Â(x)

and Ê(x) into the (box-normalized) creation and annihilation operators â†k,λ and âk,λ.

(a) Change the operator normalization to continuum (rather than box) and relativistic,

and show that in this normalization

Â(x) =

∫
d3k

(2π)3 2ωk

∑
λ

√
Ck,λ

(
e+ik·xeλ(k) âk,λ + e−ik·xe∗λ(k) â†k,λ

)
(1)

in the Schrödinger picture, and hence

Â(x, t) =

∫
d3k

(2π)3 2ωk

∑
λ

√
Ck,λ

(
e+ik·xeλ(k) âk,λ(t) + e−ik·xe∗λ(k) â†k,λ(t)

)
(2)

in the Heisenberg picture.

(b) Solve the Heisenberg equations for the creation and annihilation operators, plug the

solutions into eq. (2) and show that it becomes

Â(x) =

∫
d3k

(2π)3 2ωk

∑
λ

√
Ck,λ

(
e−ikxeλ(k) âk,λ(0) + e+ikxe∗λ(k) â†k,λ(0)

)
k0=+ωk

(3)

where kx
def
= kµxµ = k0t− k · x for k0 = +ωk.

(c) Write down similar expansion for the electric field Ê(x, t) and hence for the scalar

potential

Â0(x, t) = − 1

m2
∇ · Ê(x, t)

[
when J0 = 0

]
. (4)

(d) Combine the results of parts (b) and (c) into a relativistic formula for the 4–vector

field Âµ(x),

Âµ(x) =

∫
d3k

(2π)32ωk

∑
λ

(
e−ikxfµ(k, λ) âk,λ(0) + e+ikxf∗µ(k, λ) â†k,λ(0)

)
k0=+ωk

,

(5)

and write down explicit formulae for the polarization 4-vectors fµ(k, λ).
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(e) Check that these polarization vectors obey kµf
µ(k, λ) = 0. Use that to show that the

free quantum vector field (5) obeys the classical equation of motion ∂µÂ
µ(x) = 0. Also,

show that the Âµ(x) obeys the other classical equation of motion, (∂2+m2)Âµ(x) = 0.

2. The ordinary quantum mechanics of a single relativistic particle — or any fixed number

of relativistic particles — violates the relativistic causality by allowing particles to move

faster than light. In this problem, we shall see how this works for the simplest case of a

single free relativistic spinless particle with the Hamiltonian

Ĥ = +

√
m2 + P̂2 (6)

(in the c = h̄ = 1 units). By general rules of quantum mechanics, the amplitude U(x→ y)

for this particle to propagate from point x at time x0 to point y at time y0 obtains from

the Hamiltonian (6) as

U(x→ y) =
〈
y, y0|x, x0

〉Heisenberg

picture
= 〈y| exp

(
−i(y0 − x0)Ĥ

)
|x〉Schroedingerpicture . (7)

(a) Use momentum basis for the Hamiltonian (6) to evaluate the coordinate-basis evolution

kernel (7) as

U(x→ y) =

∫
d3k

(2π)3
exp
(
ik · (y − x)− iω(k)× (y0 − x0)

)
(8)

for ω(k)
def
= +

√
m2 + k2 , (9)

then reduce the 3D momentum integral to the one-dimensional integral

U(x→ y) =
−i

4π2 r

+∞∫
−∞

dk k exp
(
irk − itω(k)

)
(10)

where r = |y − x| and t = y0 − x0.
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We are particularly interested in the asymptotic behavior of the integral (10) in the limit

of r →∞, t→∞, fixed t/r ratio. The best method for obtaining the asymptotic behavior

of such integrals — or more general integrals of the form∫
dx f(x)× exp

(
−Ag(x)

)
, A → ∞ (11)

is the saddle-point method (AKA the mountain-pass method).

(b) If you are not familiar with the saddle-point method, read my notes on it.

Those notes were originally written for a QM class, so they include the Airy function

example and the relation of the Airy functions to the WKB approximation. You do

not need the WKB or the Airy functions for this homework, just the saddle-point

method itself, so focus on the first 6 pages of my notes, the rest is optional.

(c) Now use the saddle point method to evaluate the integral (10) in the limit of r →∞,

t→∞, while the ratio r/t stays fixed. Specifically, let (r/t) < 1 so we stay inside the

future light cone.

Show that in this limit, the evolution kernel (10) becomes

U(x→ y) ≈
(
−iM
2π

)3/2

× t

(t2 − r2)5/4
× exp(−iM

√
t2 − r2). (12)

(d) Finally, take a similar limit but go outside the light cone, thus fixed (r/t) > 1 while

r, t→ +∞. Show that in this limit, the kernel becomes

U(x→ y) ≈ iM3/2

(2π)3/2
× t

(r2 − t2)5/4
× exp(−M

√
r2 − t2). (13)

Hint: for r > t the saddle point is at complex k.

Eq. (13) shows that the propagation amplitude U(x→ y) diminishes exponentially outside

the light cone, but it does not vanish! Thus, given a particle localized at point x at the time

x0, at a later time y0 = x0 + t the wave function is mostly limited to the future light cone

r < t, but there is an exponential tail outside the light cone. In other words, the probability

of superluminal motion is exponentially small but non-zero.

3

http://web2.ph.utexas.edu/~vadim/Classes/2024f-qft/saddle.pdf


Obviously, such superluminal propagation cannot be allowed in a consistently relativistic

theory. And that’s why relativistic quantum mechanics of a single particle is inconsistent.

Likewise, relativistic quantum mechanics of any fixed number of particles does not work,

except as an approximation.

In the quantum field theory, this paradox is resolved by allowing for creation and annihi-

lation of particles. Quantum field operators acting at points x and y outside each others’

future light-cones can either create a particle at x and then annihilate it at y, or else an-

nihilate it at y and then create it at x, and we shall see in class (cf. my notes) that the

two effects precisely cancel each other. Altogether, there is no net propagation outside the

light cone, and that’s how the relativistic QFT is perfectly causal while the relativistic QM

is not.

3. Finally, a reading assignment. To help you understand the relations between the continuous

symmetries, their generators, the multiplets, and the representations of the generators and

of the finite symmetries, read about the rotational symmetry and its generators in chapter 3

of the J. J. Sakurai’s book Modern Quantum Mechanics.
?

Please focus on sections 1, 2,

3, second half of section 5 (representations of the rotation operators), and section 9; the

other sections 4, 6, 7, 8, 10, and 11 are not relevant to the present class material.

PS: If you have already read the Sakurai’s book before but it has been a while, please read

it again.

? The UT Math–Physics–Astronomy library has several hard copies but no electronic copies of the book.
However, you can find several pirate scans of the book (in PDF format) all over the web; Google them up
if you cannot find a legitimate copy.
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