
PHY–396 K. Problem set #4. Due September 25, 2024.

The first problem of this set continues the story of the massive vector field. The other two

problems (2) and (3) are about the SO(N) symmetry of the quantum theory of N scalar

fields.

1. Consider the massive vector field Âµ(x) from all the previous homework sets 1–3. In

particular, in problem 1 from the last homework#3 you (should have) expanded the free

vector field into creation and annihilation operators multiplied by the plane-waves according

to

Âµ(x) =

∫
d3k

(2π)3
1

2ωk

∑
λ

(
e−ikx × fµk,λ × âk,λ + e+ikx × f∗µk,λ × â

†
k,λ

)k0=+ωk

. (1)

The λ here labels the independent polarizations of a vector particle (for example, the

helicities λ = −1, 0,+1), while fµk,λ are the polarization vectors obeying kµf
µ(k, λ) = 0.

Specifically, in the helicity basis

for λ = ±1 : f0k,λ = 0, fk,λ = eλ(k),

for λ = 0 : f0k,λ =
|k|
m
, fk,λ =

ωk
m

k

|k|
.

(2)

In this problem, we are going to calculate the Feynman propagator for the massive vector

field (1).

(a) First, a lemma about the polarization 4-vectors (2). Show that these 4-vectors obtain

obtain by Lorentz boosting of the purely-spatial vectors (0, eλ(k)) into the frame of

the wave moving with the velocity v = k/ωk,

fµk,λ = Bµ
ν(v)(0, eλ(k))ν . (3)

Also, verify that the fµk,λ are normalized to

〈〈 for the same k 〉〉 : gµνf
µ
k,λf

∗ν
k,λ′ = −δλ,λ′ . (4)
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(b) Next, another lemma: show that

∑
λ

fµk,λf
∗ν
k,λ = −gµν +

kµkν

m2
. (5)

(c) Now use these lemmas to calculate the “vacuum sandwich” of two vector fields (1) and

show that

〈0| Âµ(x)Âν(y) |0〉 =

∫
d3k

(2π)3
1

2ωk

[(
−gµν +

kµkν

m2

)
e−ik(x−y)

]
k0=+ωk

=

(
−gµν − ∂µ∂ν

m2

)
D(x− y)

(6)

where

D(x− y)
def
=

∫
d3k

(2π)3
1

2ωk

[
e−ik(x−y)

]k0=+ωk

. (7)

Please note: no time ordering in the “vacuum sandwich” (6).

(d) Next, consider a free scalar field (of the same mass m as the vector field) and its

Feynman propagator Gscalar
F (x− y). Show that

(
−gµν − ∂µ∂ν

m2

)
Gscalar
F (x− y) = 〈0|TÂµ(x)Âν(y) |0〉 +

i

m2
δµ0δν0δ(4)(x− y). (8)

To avoid the δ–function singularity in formulae like (8), the time-ordered product of the

vector fields (or rather, just of their Â0 components) is modified
?

according to

T∗Âµ(x)Âν(y) = TÂµ(x)Âν(y) +
i

m2
δµ0δν0δ(4)(x− y). (9)

Consequently, the Feynman propagator for the massive vector field is defined using the

? See Quantum Field Theory by Claude Itzykson and Jean–Bernard Zuber.
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modified time-ordered product of the two fields,

GµνF (x− y)
def
= 〈0|T∗Âµ(x)Âν(y) |0〉 (10)

(e) Show that this propagator obtains as

GµνF (x− y) =

∫
d4k

(2π)4

(
−gµν +

kµkν

m2

)
× ie−ik(x−y)

k2 −m2 + i0
. (11)

The classical action for the free vector field can be written as

S = 1
2

∫
d4xAµ(x)DµνAν(x) (12)

where Dµν is a differential operator

Dµν def
= (∂2 +m2)gµν − ∂µ∂ν . (13)

(f) Check that the action (12) is correct, then show that the Feynman propagator (11) is

a Green’s function of the operator (13),

Dµνx GFνλ(x− y) = +iδµλδ
(4)(x− y). (14)

2. Now let’s change the subject and consider N interacting real scalar fields Φ1, . . . ,ΦN with

the O(N) symmetric Lagrangian

L =
1

2

N∑
a=1

(
∂µΦa

)2 − m2

2

N∑
a=1

Φ2
a −

λ

24

(
N∑
a=1

Φ2
a

)2

. (15)

Next week, we shall learn the Noether theorem — here is the link for the impatient, —

according to which the continuous SO(N) subgroup of the O(N) symmetry gives rise to

1
2N(N − 1) conserved currents

Jµab(x) = −Jµba(x) = Φa(x) ∂µΦb(x)− Φb(x) ∂µΦa(x). (16)

(a) Verify that all these currents are conserved, ∂µJ
µ
ab = 0, when the fields Φc(x) obey

their classical equations of motion.
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In the quantum field theory, the currents (16) become operators

Ĵab(x, t) = −Ĵba(x, t) = −Φ̂a(x, t)∇Φ̂b(x, t) + Φ̂b(x, t)∇Φ̂a(x, t),

Ĵ0
ab(x, t) = −Ĵ0

ba(x, t) = Φ̂a(x, t)Π̂b(x, t) − Φ̂b(x, t)Π̂a(x, t),
(17)

and the rest of this problem is about the net charge operators

Q̂ab(t) = −Q̂ba(t) =

∫
d3x Ĵ0

ab(x, t) =

∫
d3x

(
Φ̂a(x, t)Π̂b(x, t) − Φ̂b(x, t)Π̂a(x, t)

)
.

(18)

(b) Write down the equal-time commutation relations for the quantum Φ̂a and Π̂a fields.

Also, write down the Hamiltonian operator for the interacting fields.

(c) Show that [
Q̂ab(t), Φ̂c(x, same t)

]
= −iδbcΦ̂a(x, t) + iδacΦ̂b(x, t),[

Q̂ab(t), Π̂c(x, same t)
]

= −iδbcΠ̂a(x, t) + iδacΠ̂b(x, t),
(19)

(d) Show that the all the Q̂ab commute with the Hamiltonian operator Ĥ. In the Heisen-

berg picture, this makes all the charge operators Q̂ab time independent.

(e) Verify that the Q̂ab obey commutation relations of the SO(N) generators,[
Q̂ab, Q̂cd

]
= −iδ[c[bQ̂a]d] ≡ −iδbcQ̂ad + iδacQ̂bd + iδbdQ̂ac − iδadQ̂bc . (20)

3. Continuing the previous problem, let’s turn off the interactions (i.e., take λ = 0) and focus

on the free fields.

(a) Expand all the fields into linear combinations of the creation and annihilation oper-

ators â†p,a and âp,a (a = 1, . . . , N), then show that in terms of these operators the

charges (18) become

Q̂ab =

∫
d3p

(2π)32Ep

(
−iâ†p,aâp,b + iâ†p,bâp,a

)
. (21)

For N = 2, the two real scalar fields combine into one complex field Φ = (Φ1 + iΦ2)/
√

2

and its conjugate Φ∗ = (Φ1− iΦ2)/
√

2, while the SO(2) symmetry becomes the U(1) phase
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symmetry

Φ(x) → e−iθΦ(x), Φ∗(x) → e+iθΦ∗(x). (22)

In the Fock space, the corresponding quantum fields Φ̂(x) and Φ̂†(x) give rise to particles

and anti-particles of opposite charges; the creation and annihilation operators for such

particles and antiparticles are

âp =
âp,1 + iâp,2√

2
are particle annihilation operators,

b̂p =
âp,1 − iâp,2√

2
are antiparticle annihilation operators,

â†p =
â†p,1 − iâ

†
p,2√

2
are particle creation operators,

b̂†p =
â†p,1 + iâ†p,2√

2
are antiparticle creation operators.

(23)

(b) Show that in terms of the operators (23),

Q̂21 = −Q̂12 = N̂particles − N̂antiparticles =

∫
d3p

(2π)32Ep

(
â†pâp − b̂†pb̂p

)
. (24)

(c) In terms of Φ̂ and Φ̂†, the commutation relations (19) become

[Q̂21, Φ̂(x)] = −Φ̂(x), [Q̂21, Φ̂
†(x)] = +Φ̂†(x). (25)

Verify these commutators, then use the Campbell identity

eÂB̂e−Â =
∞∑
n=0

1

n!
[Â, . . . , [Â, B̂] · · ·]n times

= B + [Â, B̂] + 1
2 [Â, [Â, B̂]] + 1

6 [Â, [Â, [Â, B̂]]] + · · ·

(26)

to show that the charge Q̂21 generates the phase symmetry (22) according to

exp(+iθQ̂21)Φ̂(x) exp(−iθQ̂21) = e−iθΦ̂(x),

exp(+iθQ̂21)Φ̂
†(x) exp(−iθQ̂21) = e+iθΦ̂†(x).

(27)

Now let’s go back to N > 2 and show that the charges Q̂ab generate the SO(N) symmetry of

the quantum fields. Any SO(N) rotation matrix R can be written as a matrix exponential
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of an antisymmetric matrix, R = exp(A) for A> = −A. For this matrix A, let’s define a

unitary operator in the Fock space

Û = exp

(
− i

2

∑
ab

AabQ̂ab

)
. (28)

(d) Verify that this operator is indeed unitary for any real antisymmetric matrix A.

Hint: check and use the hermiticity of the generators Q̂ab.

(e) Show that Û implements the SO(N) rotation R in the scalar field space,

ÛΦ̂a(x)Û † =
∑
b

RabΦ̂b . (29)

Hint: use the commutation relations (19) and the Campbell identity (26).

(f) Argue that [Q̂ab, Ĥ] = 0 and eq. (29) for the action of the Û symmetries on the

quantum fields together imply similar transformation laws for the creation and the

annihilation operators

Û âp,aÛ
† =

∑
b

Rabâp,b and Û â†p,aÛ
† =

∑
b

Rabâ
†
p,b . (30)

(g) Finally, show that when Û acts on a multi-particle state, it rotates the species index

of each particle by R,

Û |n : (p1, a1), . . . , (pn, an)〉 =
∑

b1,...,bn

Ra1,b1 · · ·Ran,bn |n : (p1, b1), . . . , (pn, bn)〉 .

(31)

Note: for simplicity assume that all particles have different momenta, p1 6= p2, etc.,

then use part (f).
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