
PHY–396 K. Problem set #5. Due October 2, 2024.

This homework has 3 problems. Problems 1 and 2 are about the stress-energy tensor of the

electromagnetic fields, while problem 3 is about the dyons — particles with both magnetic

and electric charges. Or rather, problem 3 is about QM of a charged spinless particle orbiting

a dyon. Altogether, it’s a pretty large homework set, so start working early.

1. According to the Noether theorem, a translationally invariant system of classical fields φa(x)

has a conserved stress-energy tensor

TµνNoether =
∑
a

∂L
∂(∂µφa)

∂νφa − gµν L. (1)

For the scalar fields, real or complex, this Noether stress-energy tensor is properly symmetric,

TµνNoether = T νµNoether. But for the vector, tensor, spinor, etc., fields, the Noether stress-

energy tensor (1) comes out asymmetric, so to make it properly symmetric one adds a

total-divergence term of the form

Tµν = TµνNoether + ∂λKλµ ν , (2)

where Kλµ ν ≡ −Kµλ ν is some 3–index Lorentz tensor antisymmetric in its first two indices.

To illustrate the problem, consider the free electromagnetic fields described by the Lagrangian

L(Aµ, ∂νAµ) = −1
4 FµνF

µν (3)

where Aµ is a real vector field and Fµν
def
= ∂µAν − ∂νAµ.

(a) Write down TµνNoether for the free electromagnetic fields and show that it is neither sym-

metric nor gauge invariant.
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(b) The properly symmetric — and also gauge invariant — stress-energy tensor for the free

electromagnetism is

TµνEM = −FµλF νλ + 1
4 g

µν FκλF
κλ. (4)

Show that this expression indeed has form (2) for

Kλµ,ν = −F λµAν = −Kµλ,ν . (5)

(c) Write down the components of the stress-energy tensor (4) in non-relativistic notations

and make sure you have the familiar electromagnetic energy density, momentum density,

and stress.

Next, consider the electromagnetic fields coupled to the electric current Jµ of some charged

“matter” fields. Because of this coupling, only the net energy-momentum of the whole field

system should be conserved, but not the separate PµEM and Pµmat. Consequently, we should

have

∂µT
µν
net = 0 for Tµνnet = TµνEM + Tµνmat (6)

but generally ∂µT
µν
EM 6= 0 and ∂µT

µν
mat 6= 0.

(d) Use Maxwell’s equations to show that

∂µT
µν
EM = −F νλJλ (7)

(in c = 1 units), and therefore any system of charged matter fields should have its

stress-energy tensor related to the electric current Jλ according to

∂µT
µν
mat = +F νλJλ. (8)

(e) Rewrite eq. (7) in non-relativistic notations and explain its physical meaning in terms

of the electromagnetic energy, momentum, work, and forces.
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2. Continuing problem 1, consider the EM fields coupled to a specific model of charged matter,

namely a complex scalar field Φ(x) 6= Φ∗(x) of electric charge q 6= 0. Altogether, the net

Lagrangian for the Aµ, Φ, and Φ∗ fields is

Lnet = DµΦ∗DµΦ − m2Φ∗Φ − 1
4F

µνFµν (9)

where

DµΦ = (∂µ + iqAµ)Φ and DµΦ∗ = (∂µ − iqAµ)Φ∗ (10)

are the covariant derivatives.

(a) Write down the equation of motion for all fields in a covariant from. Also, write down

the electric current

Jµ
def
= − ∂L

∂Aµ
(11)

in a manifestly gauge-invariant form and verify its conservation, ∂µJ
µ = 0 (as long as

the scalar fields satisfy their equations of motion).

(b) Write down the Noether stress-energy tensor for the whole system and show that

Tµνnet ≡ TµνEM + Tµνmat = TµνNoether + ∂λKλµν , (12)

where TµνEM is exactly as in eq. (4) for the free EM fields, the improvement tensor Kλµ ν =

−Kµλ ν is also exactly as in eq. (5), and

Tµνmat = DµΦ∗DνΦ + DνΦ∗DµΦ − gµν
(
DλΦ∗DλΦ − m2Φ∗ Φ

)
. (13)

Note: although the improvement tensor Kλµ ν for the EM+matter system is the same as

for the free EM fields, in presence of an electric current Jµ its derivative ∂λKλµ ν contains

an extra JµAν term. Pay attention to this term — it is important for obtaining the

gauge-invariant stress-energy tensor (13) for the scalar field.
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(c) Use the scalar fields’ equations of motion and the non-commutativity of covariant deriva-

tives

[Dµ, Dν ]Φ = iqFµνΦ, [Dµ, Dν ]Φ∗ = −iqFµνΦ∗ (14)

to show that

∂µT
µν
mat = +F νλJλ (15)

exactly as in eq. (8), and therefore the net stress-energy tensor (12) is conserved, cf.

problem 1(d).

3. Some unified theories of fundamental interactions predict the existence of dyons — magnetic

monopoles that also have electric charges. Dyons are usually very heavy compared to ordi-

nary particles, so when an ordinary charged particle orbits a dyon, the latter can be treated

as a static source of the electric and the magnetic fields: In Gauss units,

E(x) =
Q

r2
n, B(x) =

M

r2
n. (16)

In this problem, we consider the motion of a spinless non-relativistic particle of mass m and

electric charge q in these static fields. Let’s start with the classical motion of the particle in

question. The net angular momentum of the dyon+particle system is

J = Lmech + JEM = x× ~π − qM

c
n (17)

where ~π = mv is the kinematic momentum of the particle (rather that its canonical mo-

mentum p), while JEM is the angular momentum of the EM fields in the dyon+particle

system.

(a) Verify that it is this net angular momentum (17) that is conserved by the classical

motion of the particle, dJ/dt = 0.
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In quantum mechanics, we have a similar formula for the net angular momentum,

Ĵ = x̂× ~̂π − qM

c

x̂

r̂
(18)

where

~̂π = p̂ − q

c
A(x̂). (19)

In light of eq. (19), the (equal time) commutation relations for the position and kinematic

momentum operators are

[x̂i, x̂j ] = 0, [x̂i, π̂j ] = ih̄δij , (20)

but

[π̂i, π̂j ] =
iqh̄

c
εijkBk(x̂) −−−−−−−−→

in the dyon field

iqMh̄

c
εijk

x̂k
r̂3
. (21)

(b) Use these commutation relation to show that the components of the angular momentum

operator (18) indeed commute with each other — and with the other vectors — as

legitimate angular momentum operators. Specifically,

[x̂i, Ĵj ] = ih̄εijk x̂k , (22)

[π̂i, Ĵj ] = ih̄εijk π̂k , (23)

[Ĵi, Ĵj ] = ih̄εijk Ĵk . (24)

(c) Show that the operators Ĵi are conserved, i.e., that they commute with the particle’s

Hamiltonian

Ĥ =
~̂π

2

2m
+

Qq

r̂
. (25)

The vector potential due to the magnetic charge of the dyon can be written in spherical

coordinates as

AN,S(r, θ, φ) = M
±1− cos θ

r sin θ
· eφ , (26)

where eφ is the unit vector in the φ direction while the two signs correspond to the two

different gauge choices for the Dirac monopole: ‘+’ for the AN potential on the Northern
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side of the dyon (0 ≤ θ < π − ε), and ‘−’ for the AS potential on the Southern side

(ε < θ ≤ π).

(d) Show that for these gauge choices, the Ĵz operator acts in the spherical coordinate basis

as

Ĵz = −ih̄ ∂
∂φ
∓ qM

c
ψ. (27)

Note that thanks to the Dirac’s charge quantization rule, the ∓(qM/c) factor in the

second term here is always an integer or half-integer multiple of h̄.

(e) Likewise, show that the other two components of the angular momentum have form

Ĵ+ = Ĵx + iĴy = h̄e+iφ

[
+
∂

∂θ
+ i cot θ × ∂

∂φ
− qM

h̄c

1∓ cos θ

sin θ

]
,

Ĵ− = Ĵx − iĴy = h̄e−iφ
[
− ∂

∂θ
+ i cot θ × ∂

∂φ
− qM

h̄c

1∓ cos θ

sin θ

]
,

(28)

Now let’s look for the simultaneous eigenstates |n, j,m〉 of the Ĵ2 and Ĵz operators. By the

usual rules of the angular momenta, for each given n and j, m runs from −j to +j by 1.

However, in presence of the dyon, the spectrum of j is different from the spectrum of ` for

the ordinary orbital angular momentum: Instead of ` = 0, 1, 2, 3, . . ., we now have

j = jmin, jmin + 1, jmin + 2, . . . where jmin =
|qM |
h̄c

. (29)

In particular, for a half-integral qM/h̄c, we have j running over half-integral rather than

integral values.

(f) Use eqs. (27) and (28) to obtain this spectrum of allowed values of j.

Hint: use Ĵ+ |j,m = j〉 = 0 to argue that the wavefunction of this state is non-singular

at both poles θ = 0 and θ = π if and only if j − jmin is a non-negative integer.

Finally, let’s diagonalize the Hamiltonian (25). As a first step, let’s separate the radial and

the angular directions of the operator ~̂π
2
.
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(g) Use the commutation relations (20) through (24) to show that

~̂π
2

= π̂2
r +

1

r̂2

(
~̂
J

2

−
(
qM

c

)2
)

(30)

where

π̂r =
1

2
{n̂i, π̂i} −−−−−−−−−→

coordinate basis
−ih̄

(
∂

∂r
+

1

r

)
. (31)

(h) Now write down the radial Schrödinger equation for a given j and show that for qQ < 0

the bound state energies are

E(nr, j) = −m(qQ)2

2h̄2 × 1

(nr + λ)2
(32)

where nr is a positive integer 1, 2, 3, . . ., while λ is the positive root of

λ(λ+ 1) = j(j + 1) − (qM/h̄c)2. (33)

By comparison, in the absence of the magnetic charge j is ` = 0, 1, 2, 3, . . ., hence λ = `,

and nr + λ = nr + ` is the principle quantum number N .
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