PHY-396 K. Problem set #5. Due October 2, 2024.

This homework has 3 problems. Problems 1 and 2 are about the stress-energy tensor of the
electromagnetic fields, while problem 3 is about the dyons — particles with both magnetic
and electric charges. Or rather, problem 3 is about QM of a charged spinless particle orbiting

a dyon. Altogether, it’s a pretty large homework set, so start working early.

1. According to the Noether theorem, a translationally invariant system of classical fields ¢, (x)

has a conserved stress-energy tensor
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For the scalar fields, real or complex, this Noether stress-energy tensor is properly symmetric,
TR iher = Txb - But for the vector, tensor, spinor, etc., fields, the Noether stress-
energy tensor (1) comes out asymmetric, so to make it properly symmetric one adds a

total-divergence term of the form

v 174 A
™ = TNoether + 8/\’C /“/’ (2>
where KM = —KHFAY i some 3-index Lorentz tensor antisymmetric in its first two indices.

To illustrate the problem, consider the free electromagnetic fields described by the Lagrangian

L(Au, 0,A,) = —F F,F"™ (3)

where A, is a real vector field and F),, dof oAy, — 0, A,.

(a) Write down T§. ., .. for the free electromagnetic fields and show that it is neither sym-

metric nor gauge invariant.



(b) The properly symmetric — and also gauge invariant — stress-energy tensor for the free

electromagnetism is

Thy = —FMFY + L g FoF™. (4)

Show that this expression indeed has form (2) for

KA = —FMAY = M (5)

(c) Write down the components of the stress-energy tensor (4) in non-relativistic notations
and make sure you have the familiar electromagnetic energy density, momentum density,

and stress.

Next, consider the electromagnetic fields coupled to the electric current J# of some charged
“matter” fields. Because of this coupling, only the net energy-momentum of the whole field
system should be conserved, but not the separate PgM and P! .. Consequently, we should

have

9T =0  for TM = T 4+ T (6)

net net mat

but generally aMngd # 0 and 9,Th", # 0.

mat

(d) Use Maxwell’s equations to show that
OuTgay = —F"y (7)

(in ¢ = 1 units), and therefore any system of charged matter fields should have its

stress-energy tensor related to the electric current Jy according to

0T = +F"AJ,. (8)

mat

(e) Rewrite eq. (7) in non-relativistic notations and explain its physical meaning in terms

of the electromagnetic energy, momentum, work, and forces.



2. Continuing problem 1, consider the EM fields coupled to a specific model of charged matter,
namely a complex scalar field ®(z) # ®*(x) of electric charge ¢ # 0. Altogether, the net
Lagrangian for the A*, ®, and ®* fields is

Lpet = DFO*D,® — m?®*® — 1FME,, (9)

where

D,® = (3, + igA,)® and D,®* = (9, — igA,)d" (10)

are the covariant derivatives.

(a) Write down the equation of motion for all fields in a covariant from. Also, write down
the electric current

o def oL 11
o (1)

in a manifestly gauge-invariant form and verify its conservation, d,J* = 0 (as long as

the scalar fields satisfy their equations of motion).

(b) Write down the Noether stress-energy tensor for the whole system and show that

Tllllevt = T]éll\y/[ + Trﬁl;t = Tltltgether + a/\IC)\wj? (12)

where Thy; is exactly as in eq. (4) for the free EM fields, the improvement tensor KMV =
— KM\ is also exactly as in eq. (5), and

T4y = D'®*D'® + D'®* DFD — g"(Dy®* D*® — m?®*®).  (13)

Note: although the improvement tensor K*¥ for the EM +matter system is the same as

for the free EM fields, in presence of an electric current J# its derivative Oy M ¥ contains

an extra JFAY term. Pay attention to this term — it is important for obtaining the

gauge-invariant stress-energy tensor (13) for the scalar field.



(c) Use the scalar fields’ equations of motion and the non-commutativity of covariant deriva-

tives

[DM,DV]CD = iqF,9, [DM,DV@* = —inM,,CID* (14)
to show that
O, T = +F"AJ, (15)

exactly as in eq. (8), and therefore the net stress-energy tensor (12) is conserved, cf.

problem 1(d).

3. Some unified theories of fundamental interactions predict the existence of dyons — magnetic
monopoles that also have electric charges. Dyons are usually very heavy compared to ordi-
nary particles, so when an ordinary charged particle orbits a dyon, the latter can be treated

as a static source of the electric and the magnetic fields: In Gauss units,
_ @ _
E(x) = —n, B(x) = —n. (16)

In this problem, we consider the motion of a spinless non-relativistic particle of mass m and
electric charge ¢ in these static fields. Let’s start with the classical motion of the particle in

question. The net angular momentum of the dyon+particle system is
J =Lyeeh + JEM = X XT — —n (17)

where 7 = mv is the kinematic momentum of the particle (rather that its canonical mo-
mentum p), while Jgy is the angular momentum of the EM fields in the dyon-+particle

system.

(a) Verify that it is this net angular momentum (17) that is conserved by the classical

motion of the particle, dJ/dt = 0.



In quantum mechanics, we have a similar formula for the net angular momentum,

J
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(19)
In light of eq. (19), the (equal time) commutation relations for the position and kinematic
momentum operators are

[T, 7t5] = thdyj, (20)
but
.. iqh . 1gMh
[71'7;,7'("7'] = q?EZ]kBk(X) q

Ty,

=3 (21)

in the dyon ﬁeldi
(b) Use these commutation relation to show that the components of the angular momentum

€ijk
c Y

operator (18) indeed commute with each other — and with the other vectors — as
legitimate angular momentum operators. Specifically,

[, Jj) = ihegn o, (22)
75, Jj) = ilein 7k (23)
[Ai, Aj] == ihGijk jk:

(24)
(¢) Show that the operators J; are conserved, i.e., that they commute with the particle’s
Hamiltonian

(25)
The vector potential due to the magnetic charge of the dyon can be written in spherical
coordinates as

+1 — cos6
A 0 = M . 26
N,S(ﬂ 7¢> rsin® €, ( )
where ey is the unit vector in the ¢ direction while the two signs correspond to the two

different gauge choices for the Dirac monopole: ‘+’ for the Ay potential on the Northern



side of the dyon (0 < 6 < m — ¢€), and ‘=’ for the Ag potential on the Southern side
(e< 0 <m).

(d) Show that for these gauge choices, the J, operator acts in the spherical coordinate basis

as

A L0 qM

Note that thanks to the Dirac’s charge quantization rule, the F(¢M/c) factor in the

second term here is always an integer or half-integer multiple of .

(e) Likewise, show that the other two components of the angular momentum have form

. . R , 0 , 0 gM 1 =F cosf
— = het? |+= tx — — — "7
Jy Jp + 1y e [-I—a@ + tcot 6 x 96 w0 } o
. . . » 0 , 0 qgM 1 =F cosf
J_ Jp — iy he { 5 + icotf x 99 b ind ],

Now let’s look for the simultaneous eigenstates |n, 7, m) of the J2 and J, operators. By the
usual rules of the angular momenta, for each given n and j, m runs from —j to +j by 1.

However, in presence of the dyon, the spectrum of j is different from the spectrum of ¢ for

the ordinary orbital angular momentum: Instead of £ =0,1,2,3,..., we now have
: S . : qM
J = JminsJmin T L, Jmin + 2,...  where jppn = % . (29)

In particular, for a half-integral ¢M /he, we have j running over half-integral rather than

integral values.

(f) Use egs. (27) and (28) to obtain this spectrum of allowed values of j.
Hint: use Jo |j,m = j) = 0 to argue that the wavefunction of this state is non-singular

at both poles # = 0 and 0 = 7 if and only if 7 — jin iS a non-negative integer.

Finally, let’s diagonalize the Hamiltonian (25). As a first step, let’s separate the radial and

-2
the angular directions of the operator 7 .



(g) Use the commutation relations (20) through (24) to show that

-2 1 [ =2 M2
i :7%72,+72—2<J—(q7>> (30)

where

1 0 1
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T 2 {nz’ ﬂ-l} coordinate basis ‘ (87‘ + 7‘) (3 )

(h) Now write down the radial Schrédinger equation for a given j and show that for ¢Q < 0

the bound state energies are

_meQ)? 1

E(n,, j) = 32
(nT ]) 2h2 (nr + )\)2 ( )
where n, is a positive integer 1,2,3, ..., while X is the positive root of
AA+1) = j(G+1) — (¢M/he)®. (33)
By comparison, in the absence of the magnetic charge jis £ =0,1,2,3,..., hence A =/,

and n, + A\ = n, + /£ is the principle quantum number N.



