
PHY–396 K. Problem set #6. Due October 9, 2024.

This homework has 4 problems. Problems 1 and 2 are about non-abelian gauge theories.

Problems 3 and 4 are about the Lorentz symmetry and its generators. Altogether, it’s a

pretty large homework set, so start working early.

1. In class, I have focused on the fundamental multiplet of the local SU(N) symmetry, i.e., a

set of N fields (complex scalars or Dirac fermions) which transform as a complex N–vector,

Ψ′(x) = U(x)Ψ(x) i. e. Ψ′i(x) =
∑
j

U ij(x)Ψj(x), i, j = 1, 2, . . . , N (1)

where U(x) is an x–dependent unitary N ×N matrix, detU(x) ≡ 1. Now consider N2 − 1

real fields Φa(x) forming an adjoint multiplet: In matrix form

Φ(x) =
∑
a

Φa(x)× λa

2
(2)

is a traceless hermitian N × N matrix which transforms under the local SU(N) symmetry

as

Φ′(x) = U(x)Φ(x)U †(x). (3)

Note that this transformation law preserves the Φ† = Φ and the tr(Φ) = 0 conditions.

The covariant derivatives Dµ act on an adjoint multiplet according to

DµΦ(x) = ∂µΦ(x) + i[Aµ(x),Φ(x)] ≡ ∂µΦ(x) + iAµ(x)Φ(x) − iΦ(x)Aµ(x), (4)

or in components

DµΦa(x) = ∂µΦa(x) − fabcAbµ(x)Φc(x). (5)

(a) Verify that these derivatives are indeed covariant under the finite gauge transforms (3).
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(b) Verify the Leibniz rule for the covariant derivatives of matrix products. Let Φ(x) and

Ξ(x) be two adjoint multiplets while Ψ(x) is a fundamental multiplet and Ψ†(x) is its

hermitian conjugate (row vector of Ψ∗i ). Show that

Dµ(ΦΞ) = (DµΦ)Ξ + Φ(DµΞ),

Dµ(ΦΨ) = (DµΦ)Ψ + Φ(DµΨ),

Dµ(Ψ†Ξ) = (DµΨ†)Ξ + Ψ†(DµΞ).

(6)

(c) Show that for an adjoint multiplet Φ(x),

[Dµ, Dν ]Φ(x) = i[Fµν(x),Φ(x)] = ig[Fµν(x),Φ(x)] (7)

or in components [Dµ, Dν ]Φa(x) = −gfabcF bµν(x)Φc(x).

• In my notations Aµ and Fµν are the canonically normalized potential and tension fields,

while Aµ = gAµ is the connection in the covariant derivative and Fµν = gFµν is the

curvature of that connection.

In class, I have argued (using covariant derivatives) that the tension fields Fµν(x) themselves

transform according to eq. (3). In other words, the Faµν(x) form an adjoint multiplet of the

SU(N) symmetry group.

(d) Verify the F ′µν(x) = U(x)Fµν(x)U †(x) transformation law directly from the definition

Fµν
def
= ∂µAν − ∂νAµ + i[Aµ,Aν ] and the non-abelian gauge transform of the Aµ fields.

(e) Verify the covariant differential identity for the non-abelian tension fields Fµν(x):

DλFµν + DµFνλ + DνFλµ = 0. (8)

Note the covariant derivatives (4) in this equation.

Finally, consider the SU(N) Yang–Mills theory — the non-abelian gauge theory that does

not have any fields except Aa(x) and Fa(x); its Lagrangian is

LYM = − 1

2g2
tr
(
FµνFµν

)
= −1

4

∑
a

F aµνF
aµν . (9)

(f) Show that the Euler–Lagrange field equations for the Yang–Mills theory can be written

in covariant form as DµFµν = 0.
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Hint: first show that for an infinitesimal variation δAµ(x) of the non-abelian gauge

fields, the tension fields vary according to δFµν(x) = DµδAν(x)−DνδAµ(x).

2. Continuing the previous problem, consider an SU(N) gauge theory in which N2 − 1 vector

fields Aaµ(x) interact with some “matter” fields φα(x),

L = − 1

2g2
tr
(
FµνFµν

)
+ Lmat(φ,Dµφ). (10)

For the moment, let me keep the matter fields completely generic — they can be scalars,

or vectors, or spinors, or whatever, and form any kind of a multiplet of the local SU(N)

symmetry as long as such multiplet is complete and non-trivial. All we need to know right

now is that there are well-defined covariant derivatives Dµφ that depend on the gauge fields

Aaµ, which give rise to the currents

Jaµ = −∂Lmat

∂Aaµ
= −

∑
φ

∂Lmat

∂(Dµφ)
× igT̂ aφ. (11)

Collectively, these N2 − 1 currents should form an adjoint multiplet of the local SU(N)

symmetry, meaning

Jµ(x)
def
=
∑
a

Jaµ(x)
λa

2
transforms to J ′µ(x) = U(x)Jµ(x)U †(x). (12)

(a) Show that in this theory the equation of motion for the Aaµ fields are DµF
aµν = Jaν and

that consistency of these equations requires the currents to be covariantly conserved,

DµJ
µ = ∂µJ

µ + i[Aµ, Jµ] = 0, (13)

or in components, ∂µJ
aµ − fabcAbµJcµ = 0.
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Note: a covariantly conserved current does not lead to a conserved charge,

d

dt

∫
d3x Ja0(x, t) 6= 0. (14)

Now consider a simple example of matter fields — a fundamental multiplet Ψ(x) of N scalar

fields Ψi(x), with a Lagrangian

Lmat = DµΨ†DµΨ − m2Ψ†Ψ − λ

4

(
Ψ†Ψ)2, Lnet = Lmat −

1

2g2
tr
(
FµνFµν

)
, (15)

and hence the SU(N) currents are

Jaµ = −g Im
(

Ψ†λaDµΨ
)

= −ig
2

(
DµΨ†)λaΨ +

ig

2
Ψ†λaDµΨ. (16)

(b) Derive these SU(N) currents. Then use the matrix identity

∑
a

(
λa
)i
j

(
λa
)k
`

= 2δi`δ
k
j −

2

N
δijδ

k
` (17)

to show that in the matrix form

Jµ
def
=
∑
a

Jaµ × 1
2λ

a =
ig

2

(
(DµΨ)⊗Ψ† − Ψ⊗DµΨ†

)
− ig

2N

(
Ψ†DµΨ − (DµΨ†)Ψ

)
× 1N×N

(18)

where (DµΨ)⊗Ψ† denotes N ×N matrix with elements (DµΨ)i ×Ψ∗j , and likewise for

the Ψ⊗DµΨ†.

(c) Verify that under the SU(N) gauge transforms, the currents (16) transform into each

other as members of the adjoint multiplet, i.e., the matrix (18) transforms according to

eq. (12).

(d) Finally, verify the covariant conservation DµJ
aµ of these currents when the scalar fields

Ψi(x) and Ψ†i (x) obey their equations of motion.
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3. Now consider a different subject, namely the continuous Lorentz group SO+(3, 1) and its

generators Ĵµν = −Ĵνµ. In 3D terms, the six independent Ĵµν generators comprise the 3

components of the angular momentum Ĵ i = 1
2ε
ijkĴjk — which generate the rotations of

space — plus 3 generators K̂i = Ĵ0i = −Ĵ i0 of the Lorentz boosts.

(a) In 4D terms, the commutation relations of the Lorentz generators are

[
Ĵαβ, Ĵµν

]
= igβµĴαν − igαµĴβν − igβν Ĵαµ + igαν Ĵβµ. (19)

Show that in 3D terms, these relations become

[
Ĵ i, Ĵj

]
= iεijkĴk,

[
Ĵ i, K̂j

]
= iεijkK̂k,

[
K̂i, K̂j

]
= −iεijkĴk. (20)

The Lorentz symmetry dictates the commutation relations of the Ĵµν with any operators

comprising a Lorentz multiplet. In particular, for any Lorentz vector V̂ µ

[
V̂ λ, Ĵµν

]
= igλµV̂ ν − igλν V̂ µ. (21)

(b) Spell out these commutation relations in 3D terms, then use them to show that the

Lorentz boost generators K̂ do not commute with the Hamiltonian Ĥ.

(c) Show that even in the non-relativistic limit, the Galilean boosts t′ = t, x′ = x + vt

and their generators K̂G do not commute with the Hamiltonian operator of a QFT or

a quantum system of several particles.

Note: Only the time-independent symmetries commute with the Hamiltonian. But

when the action of a symmetry is manifestly time dependent — like a Galilean boost

x′ = x + vt, or a Lorentz boost — the symmetry operators do not commute with the

time evolution and hence with the Hamiltonian.

5



4. Next, consider the little group G(p) of Lorentz symmetries preserving some momentum 4–

vector pµ. For the moment, allow the pµ to be time-like, light-like, or even space-like —

anything goes as long as p 6= 0.

(a) Show that the little group G(p) is generated by the 3 components of the vector

R̂ = p0Ĵ + p× K̂ (22)

after a suitable component-by-component rescaling.

Suppose the momentum pµ belongs to a massive particle, thus pµpµ = m2 > 0. For simplicity,

assume the particle moves in z direction with velocity β, thus pµ = (E, 0, 0, p) for E = γm

and p = βγm. In this case, the properly normalized generators of the little group G(p) are

the

J̃x =
1

m
R̂x = γĴx − βγK̂y,

J̃y =
1

m
R̂y = γĴy + βγK̂x,

J̃z =
1

γm
R̂z = Ĵz, the helicity.

(23)

(b) Show that these generators have angular-momentum-like commutators with each other,

[J̃ i, J̃j ] = iεijkJ̃k. Consequently, the little group G(p) is isomorphic to the rotation

group SO(3).

Now suppose the momentum pµ belongs to a massless particle, pµpµ = 0. Again, assume

for simplicity that the particle moves in the z direction, thus pµ = (E, 0, 0, E). In this case,

we cannot normalize the generators of the little group as in eq. (23); instead, let’s normalize

them according to

Î =
1

E
R̂ = Ĵ + ~β × K̂, (24)

or in components,

Îx = Ĵx − K̂y, Îy = Ĵy + K̂x, Îz = Ĵz. (25)

(c) Show that these generators obey similar commutation relations to the p̂x, p̂y, and Ĵz
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operators, namely

[Ĵz, Îx] = +iÎy, [Ĵz, Îy] = −iÎx, [Îx, Îy] = 0. (26)

Consequently, the little group G(p) is isomorphic to the ISO(2) group of rotations and

translations in the xy plane.

(d) Finally, show that for a tachyonic momentum with pµpµ < 0, the properly normalized

generators of the little group have similar commutation relations to the K̂x, K̂y, and

Ĵz operators. Consequently, the little group G(p) is isomorphic to the SO+(2, 1), the

continuous Lorentz group in 2 + 1 spacetime dimensions.
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