
PHY–396 K. Problem set #7. Due October 16, 2024.

1. In the previous homework — set#6, problem#4(c) — we saw that the little group of

Lorentz symmetries preserving the lightlike momentum pµ or a massless particle is gener-

ated by the 3 components of the vector

Î = Ĵ + v × K̂. (1)

In particular, the component in the direction of the particle’s velocity

Î‖ = v · Î = v · Ĵ = λ̂ (2)

is the helicity operator. As I explained in class, the finite unitary representations of this

little group are singlets of definite helicity, specifically the states |p, λ〉 obeying

Î‖ |p, λ〉 = λ |p, λ〉 and Î⊥ |p, λ〉 = 0. (3)

(a) Show that in 4D terms, the conditions (3) amount to

1
2εµαβγ Ĵ

αβP̂ γ |p, λ〉 = λP̂µ |p, λ〉 . (4)

(b) Use eq. (4) to show that the continuous Lorentz transforms do not change helicities of

massless particles,

∀L ∈ SO+(3, 1), D̂(L) |p, λ〉 = |Lp, sameλ〉 × eiphase. (5)
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2. The Spin(3, 1) group — the double cover of the continuous Lorentz group SO+(3, 1) — is

isomorphic to SL(2,C), the group of complex (but not necessarily unitary) 2× 2 matrices

of unit determinant. The relations between such matrices and the Lorentz symmetries are

explained in my notes on Lorentz representations for the fields, but some technical details

were left out as exercises for the students. This problem collects these exercises.

(a) Show that the components of the two 3–vectors

Ĵ+ = 1
2

(
Ĵ + iK̂

)
and Ĵ− = 1

2

(
Ĵ − iK̂

)
= Ĵ†+. (6)

obey commutation relations

[
Ĵ i+, Ĵ

j
+

]
= iεijkĴk+,

[
Ĵ i−, Ĵ

j
−
]

= iεijkĴk−, but
[
Ĵ i+, Ĵ

j
−
]

= 0. (7)

Now consider the 2 (j+ = 1
2 , j− = 0) and the 2 (j+ = 0, j− = 1

2) representations of the

Lorentz or rather Spin(3, 1) group. In the 2 representation J = 1
2
σσ and K = − i

2
σσ while in

the 2 representation J = 1
2
σσ and K = + i

2
σσ, hence for a 3-space rotation R through angle

φ around axis n

M2(R) = M2 = exp
(
− i

2φn · σσ
)

(8)

while for a pure Lorentz boost B of rapidity r in the direction n

M2(B) = exp
(
−1

2rn · σσ
)
, M2(B) = exp

(
+1

2rn · σσ
)
. (9)

(b) The more familiar β and γ parameters of a boost are related to its rapidity r as

β = tanh(r), γ = cosh(r), βγ = sinh(r). (10)

Show that in terms of these parameters, eqs. (9) translate to

M2(B) =
√
γ ×

√
1 − β n · σσ , M2(B) =

√
γ ×

√
1 + β n · σσ . (11)

(c) Let M = M2(L) and M = M2(L) be matrices representing the same continuous

Lorentz symmetry L ∈ SO+(3, 1) in the 2 and the 2 spinor representations. Use
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eqs. (8) and (9) to show that for any such L,

M = σ2M
∗σ2 and M = σ2M

∗
σ2 . (12)

Hint: prove and use σ2σσ∗σ2 = −σσ.

Next, consider the vector representation of the Lorentz symmetry and the equivalent bi-

spinor representation of the SL(2,C). In the matrix form, the (j+ = j− = 1
2) bi-spinor

multiplet of SL(2,C) is a complex 2× 2 matrix V which transforms according to

V 7→ V ′ = M × V ×M † for M ∈ SL(2,C). (13)

Let’s identify this bi-spinor with a Lorentz vector V µ according to

V = V µ σµ = V 0 12×2 + V · σσ, (14)

where I follow the Peskin&Schroeder convention for the 2× 2 matrices σµ and σµ:

σµ = σµ =
(
12×2,+σσ), σµ = σµ =

(
12×2,−σσ). (15)

The bi-spinor transform (13) defines a linear transform

V µ 7→ V ′µ = LµνV
ν (16)

of the vector V µ.

(d) Show that this transform is real (real V ′µ for real V ν) and Lorentzian (preserves

V ′µVµ = V νVν). Hint: show that det(V ) = VµV
µ.

(e) Show that the Lorentz transform (16) is orthochronous.

For extra challenge, show that it is also proper (det(L) = +1) and therefore continuous,

L ∈ SO+(3, 1).

(f) Verify that this SL(2,C) → SO+(3, 1) map respects the group law, Lµν(M2M1) =

Lµλ(M2)L
λ
ν(M1).
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Finally, consider the tensor representations of the Lorentz symmetry.

(g) Show that the (j+ = 1, j− = 1) representation is equivalent to a 2–index symmetric

traceless tensor, Tµν = T νµ, gµνT
µν = 0.

Also, show that the reducible (j+ = 1, j− = 0) + (j+ = 0, j− = 1) representation is

equivalent to a 2-index antisymmetric tensor, Fµν = −F νµ.

Hint: For any kind of angular momentum — Hermitian or not, — the tensor product

of two doublets is a triplet plus a singlet, (j = 1
2)⊗ (j = 1

2) = (j = 1)⊕ (j = 0).

3. Next, an exercise in Dirac matrices γµ. In this problem, you should not assume any explicit

matrices for the γµ but simply use the anticommutation relations

γµγν + γνγµ = 2gµν . (17)

When necessary, you may also assume that the Dirac matrices are 4×4, and the γ0 matrix

is hermitian while the γ1, γ2, γ3 matrices are antihermitian, (γ0)† = +γ0 while (γi)† = −γi

for i = 1, 2, 3.

(a) The original Dirac equation used β = γ0 and αi = γ0γi (for i = 1, 2, 3) instead of

the γµ. Show that eqs. (17) are equivalent to requiring all 4 matrices β and αi to

anticommute with each other and to square to 1.

(b) Show that γαγα = 4, γαγνγα = −2γν , γαγµγνγα = 4gµν ,

and γαγλγµγνγα = −2γνγµγλ.

Hint: use γαγν = 2gνα − γνγα repeatedly.

(c) The electron field in the EM background obeys the covariant Dirac equation(
iγµDµ − m

)
Ψ(x) = 0 where DµΨ = ∂µΨ− ieAµΨ. Show that this equation implies

(
DµD

µ + m2 − eFµνS
µν
)

Ψ(x) = 0. (18)

Besides the 4 Dirac matrices γµ, there is another useful matrix γ5
def
= iγ0γ1γ2γ3.

(d) Show that the γ5 anticommutes with each of the γµ matrices — γ5γµ = −γµγ5 — and

commutes with all the spin matrices, γ5Sµν = +Sµνγ5.
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(e) Show that the γ5 is hermitian and that (γ5)2 = 1.

(f) Show that γ5 = (i/24)εκλµνγ
κγλγµγν and that γ[κγλγµγν] = +24iεκλµν γ5.

(g) Show that γ[λγµγν] = +6iεκλµν γκγ
5.

(h) Show that any 4 × 4 matrix Γ is a unique linear combination of the following 16

matrices: 1, γµ, 1
2γ

[µγν] = −2iSµν , γ5γµ, and γ5.

∗ My conventions here are: ε0123 = −1, ε0123 = +1, γ[µγν] = γµγν − γνγµ,

γ[λγµγν] = γλγµγν − γλγνγµ + γµγνγλ − γµγλγν + γνγλγµ − γνγµγλ, etc.

4. Since all the spin matrices Sµν commute with the γ5, for all continuous Lorentz symmetries

Lµν their Dirac-spinor representations MD(L) = exp
(
− i

2ΘαβS
αβ
)

are block-diagonal in

the eigenbasis of the γ5. This makes the Dirac spinor Ψ a reducible multiplet of the

continuous Lorentz group SO+(3, 1) — it comprises two different irreducible 2-component

spinor multiplets, called the left-handed Weyl spinor ψL and the right-handed Weyl spinor

ψR.

This decomposition becomes clear in the Weyl convention for the Dirac matrices where in

2× 2 block notations

γµ =

(
0 σµ

σµ 0

)
(19)

and σµ and σµ as in the Peskin & Schroeder convention (15).

(a) Show that in the Weyl convention (19), the γ5 matrix is diagonal, specifically

γ5
def
= iγ0γ1γ2γ3 =

(
−1 0

0 +1

)
. (20)

(b) Write down explicitly matrices for the Sµν matrices in the Weyl convention and show

that

Sµν =

(
SµνL 0

0 SµνR

)
(21)

where SµνL = Sµν2 and SµνR = Sµν
2

are respectively the 2 and 2 representations of the

Lorentz generators.
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In light of eqs. (21), the Dirac spinor is a reducible 2+2 multiplet of the Spin(3, 1) Lorentz

group, and for any continuous Lorentz transform L we have

MD(L) =

(
ML(L) 0

0 MR(L)

)
for ML(L) = M2(L) and MR(L) = M2(L). (22)

Consequently, in the Weyl convention the 4-components Dirac spinor field Ψ(x) splits into

two 2-component Weyl spinor fields — the left-handed Weyl spinor field ψL(x) and the

right-handed Weyl spinor field ψR(x) — which transform independently (from each other)

under the continuous Lorentz symmetries,

ΨDirac(x) =

(
ψL(x),

ψR(x)

)
where

ψ′L(x′) = ML(L)ψL(x),

ψ′R(x′) = MR(L)ψR(x).
(23)

(c) Use eqs. (12) to show that the hermitian conjugate of each Weyl spinor transforms

equivalently to the other spinor. Specifically, the σ2 × ψ∗L(x) transforms under con-

tinuous Lorentz symmetries like the ψR(x), while the σ2 × ψ∗R(x) transforms like the

ψL(x).

Note: the ∗ superscript on a multi-component quantum field means hermitian conju-

gation of each component field but without transposing the components, thus

ψL =

(
ψL1

ψL2

)
, ψ∗L =

(
ψ†L1

ψ†L2

)
, while ψ†L = (ψ†L1 ψ†L2 ) , (24)

and likewise for the ψR and its conjugates.

Next, consider the Dirac Lagrangian L = Ψ(iγµ∂µ − m)Ψ.

(d) Express this Lagrangian in terms of the Weyl spinor fields ψL(x) and ψR(x) (and their

conjugates ψ†L(x) and ψ†R(x)).

(e) Show that for m = 0 — and only for m = 0 — the two Weyl spinor fields become

independent from each other.
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5. Finally, consider the plane-wave solutions of the Dirac equation, Ψα(x) = uα × e−ipx and

Ψα(x) = vα × e+ipx for some x-independent Dirac spinors uα(p, s) and vα(p, s).

(a) Check that these waves indeed solve the Dirac equation, provided p2 = m2 while

(6p−m)u(p, s) = 0, (6p+m)v(p, s) = 0 (25)

where 6p is the Dirac slash notation for the γµpµ. Likewise, for any Lorentz vector aµ,

we may write 6a to denote γµaµ.

By convention, we always take E = p0 = +
√
p2 +m2 — that’s why we have separate

positive-frequency waves e−ipxuα and negative-frequency waves e+ipxvα — while the spinor

coefficients u(p, s) and v(p, s) are normalized to

u†(p, s)u(p, s′) = v†(p, s)v(p, s′) = 2Eδs,s′ . (26)

In this problem we shall write down explicit formulae for these spinors in the Weyl con-

vention for the γµ matrices.

(b) Show that for p = 0,

u(p = 0, s) =

(√
mξs
√
mξs

)
(27)

where ξs is a two-component SO(3) spinor encoding the electron’s spin state. The ξs

are normalized to ξ†sξs′ = δs,s′ .

(c) For other momenta, u(p, s) = MD(boost)× u(p = 0, s) for the boost that turns (m,~0)

into pµ. Use eq. (11) from problem 2 to show that

u(p, s) =

(√
E − p · σσ ξs
√
E + p · σσ ξs

)
=

(√
pµσµ ξs√
pµσµ ξs

)
. (28)

(d) Use similar arguments to show that

v(p, s) =

(
+
√
E − p · σσ ηs

−
√
E + p · σσ ηs

)
=

(
+
√
pµσµ ηs

−
√
pµσµ ηs

)
(29)

where ηs are two-component SO(3) spinors normalized to η†sηs′ = δs,s′ .
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Physically, the ηs should have opposite spins from the ξs — the holes in the Dirac sea have

opposite spins (as well as pµ) from the missing negative-energy particles. Mathematically,

this requires η†sSηs = −ξ†sSξs; we may solve this condition by letting ηs = σ2ξ
∗
s = ±iξ∗−s.

(e) Check that ηs = σ2ξ
∗
s = ±iξ∗−s indeed provides for the η†sSηs = −ξ†sSξs, then show

that this leads to

v(p, s) = γ2u∗(p, s) and u(p, s) = γ2v∗(p, s). (30)

(f) Show that for the ultra-relativistic electrons or positrons of definite helicity λ = ±1
2 ,

the Dirac plane waves become chiral — i.e., dominated by one of the two irreducible

Weyl spinor components ψL(x) or ψR(x) of the Dirac spinor Ψ(x), while the other

component becomes negligible. Specifically,

u(p,−1
2) ≈

√
2E

(
ξL

0

)
, u(p,+1

2) ≈
√

2E

(
0

ξR

)
,

v(p,−1
2) ≈ −

√
2E

(
0

ηL

)
, v(p,+1

2) ≈
√

2E

(
ηR

0

)
.

(31)

Note that for the electron waves the helicity agrees with the chirality — they are

both left or both right, — but for the positron waves the chirality is opposite from the

helicity.

In the previous problem we saw that for m = 0, the LH and the RH Weyl spinor fields

decouple from each other. Now this exercise shows us which particle modes comprise

each Weyl spinor: The ψL(x) and its hermitian conjugate ψ†L(x) contain the left-handed

fermions and the right-handed antifermions, while the ψR(x) and the ψ†R(x) contain the

right-handed fermions and the left-handed antifermions.
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