
PHY–396 K. Problem set #10. Due November 13, 2024.

1. First, a reading assignment: §4.7 of the Peskin&Schroeder textbook about the Feynman

rules of the Yukawa theory. Find out where the sign rules for the fermionic lines come

from. Also find out the origin of the Yukawa potential V (r) ∝ e−mr/r. (There is also

a much shorter explanation of the Yukawa theory and the Yukawa potential on the last

three pages of my notes on QED Feynman rules.

2. Second, a simple QED problem: pair production of muons in electron-positron collisions,

e−e+ → µ−µ+. As I explained in class, there is only one tree diagram for this process,

e− e+

µ− µ+

p1 p2

p′1 p′2

q

which yields the amplitude

〈

µ−, µ+
∣

∣M
∣

∣e−, e+
〉

=
e2

s
× ū(µ−)γνv(µ+)× v̄(e+)γνu(e

−).

(1)

In class I have focused on the un-polarized pair-production cross-section — see my notes

on the subject, — but in this exercise you should focus on the polarized amplitudes for

definite helicities of all 4 particles involved.

For simplicity, let us assume that all the particles are ultra-relativistic so that their Dirac

spinors u(e−), v(e+), u(µ−), v(µ+) all have definite chiralities,

uL ≈
√
2E

(

ξL

0

)

, uR ≈
√
2E

(

0

ξR

)

,

vL ≈ −
√
2E

(

0

ηL

)

, vR ≈
√
2E

(

ηR

0

)

.

(2)

cf. homework set#7, eq. (31).
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(a) Show that in the approximation (2),

v̄(e+L )γνu(e
−
L ) = v̄(e+R)γνu(e

−
R) = 0, (3)

which means there is no muon pairs production unless the initial electron and positron

have opposite helicities.

This fact is of great practical importance for the electron-positron colliders. Any kind

of particle production which proceeds through a virtual vector particle — a photon, or

Z0, or even something not yet discovered — would have the v̄(e+)γνu(e
−) factor in the

amplitude, so the electron and the positron must have have opposite helicities, or they

would not annihilate each other and make pairs.

Now suppose we have a longitudinally polarized electron beam — say λ = +1
2
only — but

the positron beam is un-polarized. Because of eq. (5), only the left-handed positrons would

collide with the right-handed electrons and produce pairs, while the left-handed positrons

would do something else. Likewise, if the electron beam has the λ = −1
2
polarization,

then only the right-handed positrons would collide with our left-handed electrons and

make pairs, while the left-handed positrons would do something else. Thus, as far as

the pair-production is concerned, the positron beam could just as well be longitudinally

polarized with λ(e+) = −λ(e−).

In other words, if we want to study polarization effects in fermion pair production, it’s

enough to longitudinally polarize just the electron beam. We do not need to polarize

the positron beam — which is much harder to do — because the electrons of a definite

helicity would automatically select positrons of the opposite helicity.

(b) Show that the µ− and the µ+ produced in electron-positron collision must also have

opposite helicities because otherwise

ū(µ−L )γ
νv(µ+L) = ū(µ−R)γ

νv(µ+R) = 0. (4)

(c) Let’s work in the center-of-mass frame where the initial e− and e+ collide along the

z axis, pν1 = (E, 0, 0,+E), pν2 = (E, 0, 0,−E). Calculate the 4–vector v̄(e+)γνu(e−)
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in this frame and show that

v̄(e+L )γνu(e
−
R) = 2E × (0,−i,+1, 0)ν , v̄(e+R)γνu(e

−
L) = 2E × (0,+i,+1, 0)ν .

(5)

(d) In the center-of-mass frame, the muons fly away in opposite directions at some angle

θ to the electron / positron directions. Without loss of generality we may assume

the muons’ momenta being in the xz plane, thus

p′ν1 = (E,+E sin θ, 0,+E cos θ), p′ν1 = (E,−E sin θ, 0,−E cos θ) (6)

Calculate the 4–vector ū(µ−)γνv(µ
+) for the muons and show that

ū(µ−R)γ
νv(µ+L) = 2E × (0,−i cos θ,−1,+i sin θ),

ū(µ−L)γ
νv(µ+R) = 2E × (0,+i cos θ,−1,−i sin θ).

(7)

(e) Now calculate the amplitudes (1) for all possible combinations of particles’ helicities,

calculate the partial cross-sections, and show that

dσ(e−L + e+R → µ−L + µ+R)

dΩc.m.
=

dσ(e−R + e+L → µ−R + µ+L )

dΩc.m.
=

α2

4s
× (1 + cos θ)2,

dσ(e−L + e+R → µ−R + µ+L)

dΩc.m.
=

dσ(e−R + e+L → µ−L + µ+R)

dΩc.m.
=

α2

4s
× (1− cos θ)2,

dσ(e−L + e+L → µ−any + µ+any)

dΩc.m.
=

dσ(e−R + e+R → µ−any + µ+any)

dΩc.m.
= 0,

dσ(e−any + e+any → µ−L + µ+L)

dΩc.m.
=

dσ(e−any + e+any → µ−R + µ+R)

dΩc.m.
= 0.

(8)

(f) Finally, sum / average over the helicities and calculate the un-polarized cross-section

for the muon pair production.
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3. Third, another simple QED problem: Mott scattering of a relativistic electron off a heavy

nucleus of charge +Ze and mass MN ≫ me. As long as the electron’s energy Ee is no

larger than a few tens of MeV, we may treat the nucleus as a point source of the electric

field, and we may also neglect its recoil. Hence, in the CM frame — which is essentially

the nucleus’s frame — we may approximate the nucleus-nucleus-photon vertex as

µ ≈ −iZe×
{

2MN for µ = 0,

0 for µ = 1, 2, 3.
(9)

To be precise, this formula includes the vertex and the external leg factors for the incoming

and outgoing nucleus, but it does not include the photon’s propagator.

In QED, there is only one tree diagram for the Mott scattering, namely

e

e′

N

N ′

(10)

(a) Evaluate this diagram and write down the amplitude M in terms of q = p′ − p and

ū(p′, s′)γ0u(p, s).

(b) Assume the initial electron beam is un-polarized (i.e., both values of spin s are equally

likely) and the detector for the scattered electron does not measure its spin s′ but

only momentum p
′. Show that for such an experiment,

dσ

dΩ
=

(Zα)2

(q2)2
× 1

2

∑

s,s′

∣

∣ū(p′, s′)γ0u(p, s)
∣

∣

2
(11)

where α = e2/4π (or in conventional units, α = e2/h̄c; anyhow, α ≈ 1/137.)
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(c) Sum over the electron spins and show that

1

2

∑

s,s′

∣

∣ū(p′, s′)γ0u(p, s)
∣

∣

2
= 2

(

m2
e + EE′ + p · p′

)

. (12)

(d) Finally, assemble all the factors together and derive Mott formula

(

dσ

dΩ

)

Mott

=

(

dσ

dΩ

)

Rutherford

× 1− β2 sin2(θ/2)

γ2
(13)

where β is the electron’s speed (in c = 1 units), γ = E/me, and

(

dσ

dΩ

)

Rutherford

=
(Zα)2

4m2
eβ

4 sin4(θ/2)
(14)

is the classical Rutherford scattering cross-section (translated into h̄ = c = 1 units).

4. Finally, a harder problem on spin averaging and also on 3-body phase space. It involves

weak interactions rather than QED, but uses the same techniques.

Consider the muon decay into an electron, an electron-flavored antineutrino, and a muon-

flavored neutrino, µ− → e−ν̄eνµ. At the tree level of the Standard model, this decay

proceeds through a single Feynman diagram

W− →

µ−

νµ

ν̄e

e−

(15)

Since I have not yet explained the Standard Model in class — although I plan to do it

after the Thanksgiving break, — let me simply spell out the Feynman rules relevant to

this diagram.
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• The vertices and the external fermionic legs attached to them are

µ−

νµ

= ū(νµ)

(−ig2√
2
γκ

1− γ5

2

)

u(µ−),

ν̄e

e−

= ū(e−)

(−ig2√
2
γλ

1− γ5

2

)

v(ν̄e),

(16)

where g2 is the SU(2)W gauge coupling.

• W− is a massive vector particle, so its propagator is

=
−i

q2 −M2
W

(

gκλ −
kκkλ
M2

W

)

−−−−−→
|q|≪MW

igκλ
M2

W

. (17)

The approximation here corresponds to the effective Fermi theory of weak interac-

tions. It is valid for all nuclear beta decays as well as weak decays of all particles

much lighter than MW ≈ 80 GeV. In particular, it is valid for the muon decay in

question.

(a) Assemble the muon decay amplitude (in the Fermi theory approximation) to

M = −GF√
2
×
[

ū(νµ)γ
λ(1− γ5)u(µ−)

]

×
[

ū(e−)γλ(1− γ5)v(ν̄e)
]

(18)

where

GF =
g22

4
√
2M2

W

≈ 1.17 · 10−5GeV−2 (19)

is the Fermi constant of low-energy weak interactions.

(b) Sum the absolute square of the amplitude (18) over the final particle spins, average

over the initial muon’s spin, and write the result as a product of two Dirac traces,

|M|2 def
=

1

2

∑

all
spins

|M|2 =
G2

F

4
× tr(matrix product #1)× tr(matrix product #2),

(20)

Since the neutrino, the antineutrino, and even the electron are much lighter than the

initial muon, you may neglect their masses.
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Both matrix products in eq. (20) carry 2 Lorentz indices, eventually to be summed over.

But its more convenient to do that summation after we evaluated the traces of these

matrix poroducts.

(c) Evaluate the traces in eq. (20).

(d) Sum the product of two traces over the Lorentz indices, and show that altogether

|M|2 = 64G2
F (pµ · pν̄) (pe · pν). (21)

The following lemma is very useful for three-body decays like µ− → e− + νµ + ν̄e:

For a decay of initial particle of mass M0 into three final particles of respective masses

m1, m2, and m3, the partial decay rate in the rest frame of the original particle is

dΓ =
1

2M0
× |M|2 × d3Ω

256π5
× dE1 dE2 dE3 δ(E1 + E2 + E3 −M0), (22)

where d3Ω comprises three angular variables parametrizing the directions of the three

final-state particles relative to some external frame, but not affecting the angles between

the three momenta. For example, one may use two angles to describe the orientation of

the decay plane (the three momenta are coplanar, p1 + p2 + p3 = 0) and one more angle

to fix the direction of e.g., p1 in that plane. Altogether,
∫

d3Ω = 4π × 2π = 8π2.

(e) Prove this lemma.

The electron and the neutrinos are so much lighter then the muon that in most decay

events all three final-state particles are ultra-relativistic. This allows us to approximate

me ≈ mν ≈ mν̄ ≈ 0, which gives us rather simple limits for the final particles’ energies.

(f) Show that when m1 = m2 = m3 = 0, the kinematically allowed range of the final

particles’ energies is given by

0 ≤ E1, E2, E3 ≤ 1
2
M0 while E1 + E2 + E3 = M0. (23)

Note however that for non-zero masses m1,2,3, the allowed energy range becomes

much more complicated.
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Experimentally, the neutrinos and the antineutrinos are hard to detect. But it is easy to

measure the muon’s net decay rate Γ = 1/τµ and the energy distribution dΓ/dEe of the

electrons produced by decaying muons.

(g) Integrate the muon’s partial decay rate over the final particle energies and derive first

the dΓ/dEe and then the total decay rate.
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