
PHY–396 K. Problem set #11. Due Tuesday, November 20, 2024.

⋆ This homework set has 4 problems (including one reading assignment). The first 3 prob-

lems concern QED (or QED with an extra neutral scalar). But the last problem concerns

a very different subject — the spontaneous breakdown of an approximate symmetry and

the resulting pseudo-Goldstone bosons.

1. Let’s start with the elastic scattering e−e+ → e−e+ of ultra-relativistic electrons and

positrons. This process is called the Bhabha scattering after Homi Bhabha who has calcu-

lated its cross-section back in 1935. His calculation was the leading order in perturbation

theory; in modern terms, it corresponds to the three-level of QED. Today, the Bhabha

cross-section is known to very high precision, so the observed rate of Bhabha scatterings

at electron-positron colliders is used to monitor the collider’s luminosity.

At the tree level of QED, there are two diagrams contributing to the Bhabha scattering,

namely

e−

e−′

e+

e+′

⊕

e−

e−′

e+

e+′

(1)

(a) Evaluate the two diagrams and write down the amplitude M = M1+M2. Mind the

sign rules for the fermions.

Now comes the real work: calculating the un-polarized partial cross-section

(

dσ

dΩ

)

c.m.

=
|M|2
64π2s

(2)

where |M|2 stands for |M|2 summed over final particle spins and averaged over the spins

of the initial particles. Note the two diagrams (1) must be added together before squaring

the amplitude, because

|M1 +M2|2 = |M1|2 + |M2|2 + 2Re
(

M∗
1M2

)

6= |M1|2 + |M2|2. (3)

For simplicity, assume E ≫ me and neglect the electron’s mass throughout your calcula-

tion. You may find it convenient to express products of momenta in terms of Mandelstam’s

1



variables s, t, and u. In the me ≈ 0 approximation, p21 = p22 = p′21 = p′22 = m2
e ≈ 0 while

(p1p2) = (p′1p
′
2) ≈ 1

2
s, (p1p

′
1) = (p2p

′
2) ≈ −1

2
t, (p1p

′
2) = (p2p

′
1) ≈ −1

2
u. (4)

(b) Start with the second diagram’s amplitude M2. Sum / average the |M2|2 over all

spins and show that

1

4

∑

all spins

|M2|2 = 2e4 × t2 + u2

s2
. (5)

(c) Similarly, show that for the first diagram

1

4

∑

all spins

|M1|2 = 2e4 × s2 + u2

t2
. (6)

(d) Now consider the interference M∗
1 ×M2 between the two diagrams. Show that

1

4

∑

all spins

M∗
1 ×M2 = 2e4 × u2

st
. (7)

(e) Finally assemble all the terms together and show that for the Bhabha scattering

(

dσ

dΩ

)

c.m.

=
α2

2s
× s4 + t4 + u4

s2 × t2
=

α2

4s
×
(

3 + cos2 θ

1− cos θ

)2

. (8)

2. Next, a reading assignment: my notes on annihilation and Compton scattering. Although

I explained this subject in class, it would help you to carefully re-read the notes and pay

attention to the algebra. Make sure you understand and can follow all the calculations.

In particular, make sure you understand: (1) how the Ward identity works for the two-

diagram amplitude; (2) how you sum/average over all spins and polarizations and get to

the 3 traces in eqs. (20–23); (3) the techniques used for calculating these traces; (4) the

crossing symmetry between the annihilation and the Compton scattering; (5) the lab-frame

kinematics for the Compton scattering.
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3. Suppose there exists a heavy neutral scalar particle with a Yukawa coupling to the electron.

We have not discovered it yet, but a future electron-positron collider would be able to

create it, or rather co-create it with a pnoton through the annihilation-like process e− +

e+ → scalar + γ.

To see how this might work, consider the QED-like theory comprised of the EM field

Aµ(x), the electron field Ψ(x), and a real scalar field ϕ(x). The ϕ field is neutral but it

has Yukawa coupling g to the electron field Ψ(x) — which also couples to the EM field

Aµ(x) according to the usual QED rules. Altogether,

L = −1
4
FµνF

µν + Ψ(i 6D −me)Ψ +
[

1
2
∂µϕ∂µϕ − 1

2
M2

sϕ
2
]

+ gϕ×ΨΨ. (9)

The scalar particles S are much heavier than electrons or positrons, Ms ≫ me. However,

relativistic electron and positron colliding with each other at CM energy Ec.m. > Ms may

annihilate into one photon and one scalar particle, e− + e+ → γ + S.

(a) Draw tree diagrams for the e− + e+ → γ + S process and write down the tree-level

matrix element 〈γ + S|M
∣

∣e− + e+
〉

.

(b) Verify the Ward identity for the photon. Note: the Ward identity does not have to

work for individual diagrams, but it must work for the net tree amplitude.

(c) Sum |M|2 over the photon’s polarizations and average over the fermion’s spins. Show

that

|M|2 ≡ 1

4

∑

s
−
,s+

∑

λ

|M|2 = e2g2
(

A11

(t−m2
e)

2
+

A22

(u−m2
e)

2
+

2ReA12

(t−m2
e)(u−m2

e)

)

(10)

where

A11 = −1
4
Tr
(

(6p+ −me)(6q +me)γ
µ(6p− +me)γµ(6q +me)

)

,

A22 = −1
4
Tr
(

(6p+ −me)γ
µ(6 q̃ +me)(6p− +me)(6 q̃ +me)γµ

)

,

A12 = −1
4
Tr
(

(6p+ −me)(6q +me)γ
µ(6p− +me)(6 q̃ +me)γµ

)

.

(11)

Since Ms ≫ me, the initial electron and positron must be ultra-relativistic. So let’s

simplify our calculation by neglecting the electron’s mass both in the traces (11) and in

the denominators in eq. (10).
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(d) Evaluate the Dirac traces (11) in the me ≈ 0 approximation and express them in

terms of the Mandelstam variables s, t, u. Show that

for me ≈ 0, A11 ≈ A22 ≈ tu, A12 ≈ (t−M2
s )(u−M2

s ). (12)

Note: because of the scalar’s mass, the kinematic relations between various momentum

products such as (kγp∓) and between the Mandelstam’s s, t, and u are different from

the e+e− → γγ annihilation.

(e) Finally, assemble the net |M|2 (in the me ≈ 0 approximation), work out the kine-

matics in the CM frame, and calculate the partial cross-section

dσ(e−e+ → γS)

dΩc.m.
.

4. Finally, let’s change the subject from QED (or QED+scalar theory) to the spontaneous

symmetry breaking.

When an exact symmetry of a quantum field theory is spontaneously broken down, it

gives rise to an exactly massless Goldstone bosons. But when the spontaneously broken

symmetry was only approximate to begin with, the would-be Goldstone boson is no longer

exactly massless but only relatively light. The best-known examples of such pseudo-

Goldstone bosons are the pi-mesons π± and π0, which are indeed much lighter then other

hadrons. The Quantum ChromoDynamics theory (QCD) of strong interactions has an

approximate chiral isospin symmetry SU(2)L×SU(2)R ∼= Spin(4). This symmetry would

be exact if the two lightest quark flavors u and d were massless; in real life, the masses mu

and md are small but non quite zero, and the symmetry is only approximate. Somehow

(and people are still arguing how), the chiral isospin symmetry is spontaneously broken

down to the ordinary isospin symmetry SU(2)V ∼= Spin(3), and the 3 generators of the

broken Spin(4)/Spin(3) give rise to 3 (pseudo) Goldstone bosons π± and π0.

As a toy model of approximate SO(N + 1) symmetry spontaneously broken down to

SO(N), consider the linear sigma model of N + 1 scalar fields φi with the Lagrangian

L =
∑

i

1
2
(∂µφi)

2 − λ

8

(

∑

i
φ2i − f2

)2

+ βλf2 × φN+1 . (13)

For β = 0 this Lagrangian has exact O(N + 1) symmetry, which would be spontaneously
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broken down to O(N) by non-zero vacuum expectation values of the scalar fields. For a

non-zero β, the last term in the Lagrangian (13) explicitly breaks the O(N +1) symmetry,

but for β ≪ f we may treat the O(N + 1) as approximate symmetry.

(a) Assume β > 0 and β ≪ f . Show that the scalar potential of the linear sigma model

has a unique minimum at

〈φ1〉 = · · · 〈φN 〉 = 0,
〈

φN+1

〉

= f + β + O(β2/f). (14)

(b) Re-express the Lagrangian (13) in terms of the shifted fields

σ(x) = φN+1(x) −
〈

φN+1

〉

, πi(x) = φi(x) for i = 1, . . . , N. (15)

and show that the πi fields are massive but much lighter than the σ field. Specifically,

M2
π ≈ λf × β while M2

σ ≈ λf(f + 3β) ≈ λf2 ≫ M2
π .

In QCD terms, N = 3, the three π1,2,3 fields (or rather the π0 = π3 and the π± =

(π1 ± iπ2)/
√
2) correspond to the three pi-mesons of rather small mass mπ ≈ 140 MeV,

and the σ corresponds to the very broad sigma resonance at about 500 MeV.

(c) Spell out the cubic and the quartic couplings of the σ and πi fields to each other and

show that

(cubic coupling)2 = (quartic coupling)×
(

M2
σ −M2

π). (16)

For β = 0 and hence M2
π = 0, these couplings are precisely as in problem 4 of homework

set#9 (eq. (HW9.3)). Therefore — as we saw in that homework — for low-energy pions

with E ≪ Mσ, the scattering amplitudes M(πj + πk → πℓ + πm) become small as

O(λE2
cm/M

2
σ) or smaller.

For small β 6= 0 and hence small but non-zero pion mass, the coupling relation (16) is

slightly different from what we had in homework#9, so the several tree diagrams con-

tributing to the scattering of low-energy pions do not quite cancel each other.

(d) Recalculate the pion scattering amplitudes to allow for eq. (16) for M2
π > 0. Basically,

go over solutions to homework#9, parts 4(c–d), and correct a few formulae.
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In particular, show that to the leading order in β, for s, t, u ≪ Mσ,

M(πj + πk → πℓ + πm) ≈ 1

f2

(

(s−m2
π)× δjkδℓm + (t−m2

π)× δjℓδkm

+ (u−m2
π)× δjmδkℓ

)

, (17)

which does not vanish when any of the pion’s momenta becomes small. Instead, for

slow pions with |p| ≪ mπ, this amplitude becomes

M(πj+πk → πℓ+πm) ≈
(

3δjkδℓm − δjℓδkm − δjmδkℓ
)

×
(

m2
π

f2
≈ λβ

f

)

6= 0. (18)
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