
PHY–396 K. Problem set #14. Due January 31, 2023.

1. First, read about the optical theorem in §7.3 of Peskin and Schroeder, and also in §3.6 of

Weinberg. In Peskin and Schroeder, pay particular attention to the optical theorem for

the Feynman diagrams and the Cutkosky’s cutting rules, but don’t skip the other subjects

such as the optical theorem for particle decays. In Weinberg, note the relation between the

S-matrix unitarity SS† = 1 and the Boltzmann’s H theorem.

2. Next, consider the Yukawa theory of a Dirac fermion field Ψ coupled to a real scalar field

Φ according to

L = Ψ(i 6∂ −mf )Ψ + 1
2
(∂µΦ)

2 − 1
2
m2

sΦ
2 + gΦΨΨ. (1)

For Ms > 2Mf , the scalar particle becomes unstable: it decays into a fermion and an

antifermion, S → f + f̄ .

(a) Calculate the tree-level decay rate Γ(S → f + f̄).

(b) In class, we have calculated

Σ1 loop
Φ (p2) =

12g2

16π2

1
∫

0

dξ∆(ξ)×

[

1

ǫ
− γE +

1

3
+ log

4πµ2

∆(ξ)

]

(2)

for ∆(ξ) = m2
f − ξ(1− ξ)p2. (3)

Show that for p2 > 4m2
f , this ΣΦ(p

2) has an imaginary part and calculate it for

p2 = M2
s + iǫ.

Note: at this level, you may neglect the difference between mbare
f and Mphysical

f .

(c) Verify that

ImΣ1 loop
Φ (p2 = M2

s + iǫ) = −MsΓ
tree(S → f + f̄) (4)

and explain this relation in terms of the optical theorem.
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3. And now, a harder exercise about the scalar λφ4 theory. As discussed in class, in this

theory the field strength renormalization begins at the two-loop level. Specifically, the

leading contribution to the dΣ(p2)/dp2 — and hence to the Z − 1 — comes from the

two-loop 1PI diagram

(5)

Your task is to evaluate this contribution.

(a) First, write the Σ(p2) from the diagram (5) as an integral over two independent loop

momenta, say qµ1 and qµ2 , then use the Feynman’s parameter trick — cf. eq. (F.d) of

the homework set#13 — to write the product of three propagators as

∫∫∫

dξ dη dζ δ(ξ + η + ζ − 1)
2

(D)3
(6)

whereD is a quadratic polynomial of the momenta q1, q2, p, and massm with Feynman-

parameter dependent coefficients.

Warning: Do not set p2 = m2 but keep p an independent variable.

(b) Next, change the independent loop momentum variables from q1 and q2 to k1 = q1 +

something× q2+ something× p and k2 = q2+ something× p to give D a simpler form

D = α× k21 + β × k22 + γ × p2 − m2 + i0 (7)

for some (ξ, η, ζ)–dependent coefficients α, β, γ, for example

α = (ξ + ζ), β =
ξη + ξζ + ηζ

ξ + ζ
, γ =

ξηζ

ξη + ξζ + ηζ
. (8)

Make sure the momentum shift has unit Jacobian ∂(q1, q2)/∂(k1, k2) = 1.

(c) Express the derivative dΣ(p2)/dp2 in terms of

∫∫

d4k1 d
4k2

1

D4
. (9)

Note that although this momentum integral diverges as k1,2 → ∞, the divergence is

logarithmic rather than quadratic.
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(d) To evaluate the momentum integral (9), Wick-rotate the momenta k1 and k2 to the

Euclidean space, and then use the dimensional regularization. Here are some useful

formulæ for this calculation:

6

A4
=

∞
∫

0

dt t3 e−At, (10)

∫

dDk

(2π)D
e−ctk2

=
(

4πct
)−D/2

, (11)

Γ(2ǫ)Xǫ =
1

2ǫ
− γE + 1

2
logX + O(ǫ). (12)

(e) Assemble your results as

dΣ(p2)

dp2
= −

λ2

12(4π)4

∫∫∫

ξ,η,ζ≥0

dξdηdζ δ(ξ + η + ζ − 1)×
ξηζ

(ξη + ξζ + ηζ)3
×

×

(

1

ǫ
− 2γE + 2 log

4πµ2

m2
+ log

(ξη + ξζ + ηζ)3

(ξη + ξζ + ηζ − ξηζ(p2/m2))2

)

.

(13)

(f) Before you evaluate the Feynman parameter integral (13) — which looks like a frightful

mess — make sure it does not introduce its own divergences. That is, without actually

calculating the integrals

∫∫∫

ξ,η,ζ≥0

dξdηdζ δ(ξ + η + ζ − 1)×
ξηζ

(ξη + ξζ + ηζ)3
, (14)

∫∫∫

ξ,η,ζ≥0

dξdηdζ δ(ξ + η + ζ − 1)×
ξηζ

(ξη + ξζ + ηζ)3
× log

(ξη + ξζ + ηζ)3

(ξη + ξζ + ηζ − ξηζ(p2/m2))2
,

make sure that they converge. Pay attentions to the boundaries of the parameter space

and especially to the corners where ξ, η → 0 while ζ → 1 (or ξ, ζ → 0, or η, ζ → 0).

• This calculation shows that

dΣ

dp2
=

constant

ǫ
+ a finite function(p2) (15)
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and hence

Σ(p2) = (a divergent constant) + (another divergent constant)× p2

+ a finite function(p2)
(16)

up to the two-loop order. In fact, this behavior persists to all loops, so all the diver-

gences of Σ(p2) may be canceled with just two counterterms, δm and δZ × p2.

For the purposes of calculating the field strength renormalization factor

Z =

[

1 −
dΣ

dp2

]−1

(17)

we need to evaluate the derivative dΣ/dp2 at p2 = M2
ph — the physical mass2 of the

scalar particle. However, to the leading non-trivial order in λ we may approximate M2
ph ≈

m2
bare and set p2 = m2 in the Feynman-parameter integral (13). Consequently, the second

integral (14) becomes a little simpler, although it is still a frightful mess.

⋆ Optional exercise: Evaluate the integrals (14) for p2 = m2 and show that

∫∫∫

ξ,η,ζ≥0

dξdηdζ δ(ξ + η + ζ − 1)×
ξηζ

(ξη + ξζ + ηζ)3
=

1

2
, (18)

∫∫∫

ξ,η,ζ≥0

dξdηdζ δ(ξ + η + ζ − 1)×
ξηζ

(ξη + ξζ + ηζ)3
× log

(ξη + ξζ + ηζ)3

(ξη + ξζ + ηζ − ξηζ)2
= −

3

4
.

Do not try to do this calculation by hand — it would take way too much time. Instead,

use Mathematica or equivalent software. To help it along, replace the (ξ, η, ζ) variables

with (x, w) according to

ξ = w × x, η = w × (1− x), ζ = 1− w,

∫∫∫

dξdηdζ δ(ξ + η + ζ − 1) =

1
∫

0

dx

1
∫

0

dww,
(19)

then integrate over w first and over x second.
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Alternatively, you may evaluate the integrals like this numerically. In this case, don’t

bother changing variables, just use a simple 2D grid spanning a triangle defined by

ξ + η + ζ = 1, ξ, η, ζ ≥ 0; modern computers can sum up a billion grid points in less

than a minute. But watch out for singularities at the corners of the triangle.

(g) Finally, assemble your results and calculate the field strength renormalization factor

Z to the two-loop order.
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