
PHY–396 K. Problem set #15. Due February 5, 2025.

1. As discussed in class, in the λΦ4 theory the field strength renormalization begins at the

two-loop level. Specifically, the leading contribution to the dΣ(p2)/dp2 — and hence to the

Z − 1 — comes from the two-loop 1PI diagram

(1)

Your task is to evaluate this contribution.

(a) First, write the Σ(p2) from the diagram (1) as an integral over two independent loop

momenta, say qµ1 and qµ2 , then use the Feynman’s parameter trick — cf. eq. (F.d) of

the homework set#13 — to write the product of three propagators as

∫∫∫

dξ dη dζ δ(ξ + η + ζ − 1)
2

(D)3
(2)

whereD is a quadratic polynomial of the momenta q1, q2, p, and massm with Feynman-

parameter dependent coefficients.

Warning: Do not set p2 = m2 but keep p an independent variable.

(b) Next, change the independent loop momentum variables from q1 and q2 to k1 = q1 +

something× q2+ something× p and k2 = q2+ something× p to give D a simpler form

D = α× k21 + β × k22 + γ × p2 − m2 + i0 (3)

for some (ξ, η, ζ)–dependent coefficients α, β, γ, for example

α = (ξ + ζ), β =
ξη + ξζ + ηζ

ξ + ζ
, γ =

ξηζ

ξη + ξζ + ηζ
. (4)

Make sure the momentum shift has unit Jacobian ∂(q1, q2)/∂(k1, k2) = 1.
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(c) Express the derivative dΣ(p2)/dp2 in terms of

∫∫

d4k1 d
4k2

1

D4
. (5)

Note that although this momentum integral diverges as k1,2 → ∞, the divergence is

logarithmic rather than quadratic.

(d) To evaluate the momentum integral (5), Wick-rotate the momenta k1 and k2 to the

Euclidean space, and then use the dimensional regularization. Here are some useful

formulæ for this calculation:

6

A4
=

∞
∫

0

dt t3 e−At, (6)

∫

dDk

(2π)D
e−ctk2

=
(

4πct
)−D/2

, (7)

Γ(2ǫ)Xǫ =
1

2ǫ
− γE + 1

2
logX + O(ǫ). (8)

(e) Assemble your results as

dΣ(p2)

dp2
= −

λ2

12(4π)4

∫∫∫

ξ,η,ζ≥0

dξdηdζ δ(ξ + η + ζ − 1)×
ξηζ

(ξη + ξζ + ηζ)3
×

×

(

1

ǫ
− 2γE + 2 log

4πµ2

m2
+ log

(ξη + ξζ + ηζ)3

(ξη + ξζ + ηζ − ξηζ(p2/m2))2

)

.

(9)

(f) Before you evaluate the Feynman parameter integral (9) — which looks like a frightful

mess — make sure it does not introduce its own divergences. That is, without actually

calculating the integrals

∫∫∫

ξ,η,ζ≥0

dξdηdζ δ(ξ + η + ζ − 1)×
ξηζ

(ξη + ξζ + ηζ)3
, (10)

∫∫∫

ξ,η,ζ≥0

dξdηdζ δ(ξ + η + ζ − 1)×
ξηζ

(ξη + ξζ + ηζ)3
× log

(ξη + ξζ + ηζ)3

(ξη + ξζ + ηζ − ξηζ(p2/m2))2
,

make sure that they converge. Pay attentions to the boundaries of the parameter space

and especially to the corners where ξ, η → 0 while ζ → 1 (or ξ, ζ → 0, or η, ζ → 0).
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• This calculation shows that

dΣ

dp2
=

constant

ǫ
+ a finite function(p2) (11)

and hence

Σ(p2) = (a divergent constant) + (another divergent constant)× p2

+ a finite function(p2)
(12)

up to the two-loop order. In fact, this behavior persists to all loops, so all the diver-

gences of Σ(p2) may be canceled with just two counterterms, δm and δZ × p2.

For the purposes of calculating the field strength renormalization factor

Z =

[

1 −
dΣ

dp2

]−1

(13)

we need to evaluate the derivative dΣ/dp2 at p2 = M2
ph — the physical mass2 of the

scalar particle. However, to the leading non-trivial order in λ we may approximate M2
ph ≈

m2
bare and set p2 = m2 in the Feynman-parameter integral (9). Consequently, the second

integral (10) becomes a little simpler, although it is still a frightful mess.

⋆ Optional exercise: Evaluate the integrals (10) for p2 = m2 and show that

∫∫∫

ξ,η,ζ≥0

dξdηdζ δ(ξ + η + ζ − 1)×
ξηζ

(ξη + ξζ + ηζ)3
=

1

2
, (14)

∫∫∫

ξ,η,ζ≥0

dξdηdζ δ(ξ + η + ζ − 1)×
ξηζ

(ξη + ξζ + ηζ)3
× log

(ξη + ξζ + ηζ)3

(ξη + ξζ + ηζ − ξηζ)2
= −

3

4
.

Do not try to do this calculation by hand — it would take way too much time. Instead,

use Mathematica or equivalent software. To help it along, replace the (ξ, η, ζ) variables

with (x, w) according to

ξ = w × x, η = w × (1− x), ζ = 1− w,

∫∫∫

dξdηdζ δ(ξ + η + ζ − 1) =

1
∫

0

dx

1
∫

0

dww,
(15)

then integrate over w first and over x second.
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Alternatively, you may evaluate the integrals like this numerically. In this case, don’t

bother changing variables, just use a simple 2D grid spanning a triangle defined by

ξ + η + ζ = 1, ξ, η, ζ ≥ 0; modern computers can sum up a billion grid points in less

than a minute. But watch out for singularities at the corners of the triangle.

(g) Finally, assemble your results and calculate the field strength renormalization factor

Z to the two-loop order.

2. [Based on Peskin and Schroeder problem 10.2(a).] Consider the Yukawa theory of a Dirac

field Ψ(x) and a real pseudoscalar field Φ(x), with the physical Lagrangian

Lph = 1
2
(∂µΦ)

2 − 1
2
m2Φ2 + Ψ(i 6∂ −M)Ψ − igΦ×Ψγ5Ψ − 1

24
λΦ4. (16)

Note parity symmetry of this theory.

(a) Find all the superficially divergent amplitudes of this theory and the degrees of diver-

gence of these amplitudes.

(b) Write down all the counterterms needed to cancel all the divergent amplitudes, and

spell out the Feynman rules for the counterterm perturbation theory. Also, make sure

that all the counterterms obtain from the bare Lagrangian of the Yukawa theory.

(c) Without actually evaluating any loop diagrams, argue that the δλ counterterm does

not vanish when λ = 0 but g 6= 0. Consequently, the theory must have non-zero bare

λbΦ
4
b coupling even if the physical λph coupling happens to vanish. In other words,

having λph = 0 would be an accident of fine tuning but not a natural value of the

physical coupling.

• The actual calculation of the counterterms (or at least their infinite parts) at the

one-loop level is postponed to the next homework set.
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