
PHY–396 K. Problem set #16. Due February 12, 2025.

1. [Based on Peskin and Schroeder problem 10.2(b).] Continuing problem 2 from the

previous homework#15, consider the Yukawa theory of a Dirac field Ψ(x) and a real

pseudoscalar field Φ(x), with the physical Lagrangian

Lph = 1
2(∂µΦ)2 − 1

2m
2Φ2 + Ψ(i 6∂ −M)Ψ − igΦ×Ψγ5Ψ − 1

24λΦ4. (1)

In the previous homework, you should have argued that all the UV divergences of

the theory can be canceled by just 6 counterterms with order-by-order adjustable

coefficients δφZ , δφm, δψZ , δψm, δg, and δλ. In the present problem, your task is to calculate

the divergent parts of all these counterterm coefficients to the one-loop order. For

simplicity, do not worry about the finite parts of these counterterm coefficients.

Hint: the infinite part of the four-scalar amplitude V (k1, . . . , k4) does not depend on

the scalar’s momenta, so you may calculate it for any particular k1, . . . , k4 you like,

on-shell of off-shell. I suggest you take k1 = k2 = k3 = k4 = 0, so in any one-loop

diagram all the propagators in the loop have the same momentum q — which makes

evaluating such a diagram much simpler.

Likewise, the infinite part of the one-scalar-two-fermions amplitude Γ5(p′, p) does not

depend on the momenta p, p′, or k = p′ − p, so you may calculate it for any p and

p′ you like, on-shell or off shell. Again, letting p = p′ = 0 makes for a much simpler

calculation of the one-loop diagram(s).

Alas, this trick does not work for the two-scalar or the two-fermion amplitudes Σφ(k2)

or Σψ(6p): The divergent parts of these amplitudes do depend on the momentum, and

you do need to know the momentum-dependence of these divergent parts to calculate

the δφZ and δψZ counterterms.

PS: Note that in the λph → 0 (but gph 6= 0) limit, the δλ counterterm does not vanish,

so the bare Lagrangian has a non-zero 4-pseudoscalar coupling λbare 6= 0. On the

other hand, in the gph → 0 (but λph 6= 0) limit, the δg counterterm — and hence the

bare Yukawa coupling gbare — do vanish along with the gph. This is an example of a
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general rule: barring fine tuning of the coupling parameters, a renormalizable quantum

field theory has all the renormalizable couplings consistent with the theorys symmetries.

Hence, when some physical coupling happens to vanish, the corresponding bare coupling

would also vanish only if in is absence the theory would have some extra symmetry.

For example, for g = 0 the Yukawa theory gets an extra symmetry Φ→ −Φ (without

space reflection), Ψ → Ψ, so for gph → 0 we also have δg → 0 and hence gbare → 0.

On the other hand, there are no extra symmetries for λ = 0 (but g 6= 0), so taking

λph → 0 would be a fine-tuning while δλ and hence λbare would not vanish along with

the physical coupling.

2. And now a reading assignment: Study the two-loop example of a nested divergence in

§10.5 of the Peskin and Schroeder textbook. This is a very hard calculation, so please

read it very carefully and pay attention to details. In particular, pay attention to how

the integral over the Feynman parameters gives rise to the second-order pole 1/ε2 and

to the momentum-dependent coefficient of the simple pole 1/ε.
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