
PHY–396 L. Problem set #22. Due April 9, 2025.

1. In class we have focused on QCD and QCD-like theories of non-abelian gauge fields

coupled to Dirac fermions in some multiplet(s) of the gauge group G, cf. my notes on

QCD Feynman rules and Ward identities. This problem is about the scalar QCD, or more

generally a non-abelian gauge theory with some gauge group G and complex scalar fields

Φi(x) in some multiplet (r) of G.

(a) Write down the physical Lagrangian of this theory, the complete bare Lagrangian of

the quantum theory in the Feynman gauge, and the Feynman rules.

Now consider the annihilation process Φ + Φ∗ → 2 gauge bosons. At the tree level, there

are four Feynman diagrams contributing to this process.

(b) Draw the diagrams and write down the tree-level annihilation amplitude.

As discussed in class, amplitudes involving the non-abelian gauge fields satisfy a weak

form of the Ward identity: On-shell Amplitudes involving a longitudinally polarized gauge

bosons vanish, provided all the other gauge bosons are transversely polarized. In other

words,

M ≡ eµ1

1 e
µ2

2 · · · e
µn
n Mµ1µ2···µn(momenta) = 0

when eµ1 ∝ kµ1 but eν2k2ν = · · · = eνnknν = 0.

(c) Verify this identity for the scalar annihilation amplitude: Show that IF eν2k2ν = 0

THEN k1µMµνe2ν = 0.

Similar to what we had in class for the quark-antiquark annihilation, there are non-zero

amplitudes for the scalar ‘quark’ and ‘antiquark’ annihilating into a pair of longitudinal

gluons or a ghost-antighost pair, but the cross-sections for these two unphysical processes

cancel each other.

(d) Take both final-state gluons to be longitudinally polarized; specifically, in the center-

of-mass frame let eµ1 = (1,+n1)/
√

2 for the first gluon and eν2 = (1,−n2)/
√

2 for the

second gluon.

Calculate the tree-level annihilation amplitude Φ + Φ∗ → gL + gL for these polariza-

tions.
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(e) Next, calculate the tree amplitude for the Φ + Φ∗ → gh + gh. There is only one tree

graph for this process, so evaluating it should not be hard.

(f) Compare the two un-physical amplitudes and show that the corresponding partial

cross-sections cancel each other, thus

dσnet
dΩ

=
dσphysical

dΩ
. (1)

2. Now let’s go back to the ordinary QCD and evaluate a few one-loop diagrams. In class,

I have calculated the (infinite parts of the) δ2 and δ1 counterterms for the quarks, cf.

my notes on QCD beta-function. Your task is to calculate the analogous δ
(gh)
2 and δ

(gh)
1

counterterms for the ghosts fields.

(a) Draw one-loop diagrams whose divergences are canceled by the respective countert-

erms δ
(gh)
2 and δ

(gh)
1 , and calculate the group factors for each diagrams.

(b) Calculate the momentum integrals for the diagrams. Focus on the UV divergences

and ignore the finite parts of the integrals.

(c) Assemble your results and show that the difference δ
(gh)
1 − δ

(gh)
2 for the ghosts is

exactly the same as the δ1 − δ2 difference for the quarks.

3. Finally, consider the three gauge couplings of the SU(3)×SU(2)×U(1) Standard Model

and their one-loop beta-functions

β1 loop1 =
b1g

3
1

16π2
, β1 loop2 =

b2g
3
2

16π2
, β1 loop3 =

b3g
3
3

16π2
. (2)

In this exercise, you do not need to calculate these beta-function from scratch by evaluat-

ing the UV divergences of a bunch of loop diagrams. Instead, use eqs. (122) and (124–5)

from my notes on QCD beta-function (pages 25–26).

(a) Calculate the b1, b2, b3 coefficients for the minimal version of the Standard Model:

the SU(3) × SU(2) × U(1) gauge fields, one Higgs doublet, three families of quarks

and leptons, and nothing else.
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? FYI, each family comprises 8 left-handed Weyl fields in the (3,2, y = +1
6) and

(1,2, y = −1
2) multiplets of the gauge symmetry and 7 right-handed Weyl fermions

in the (3,1, y = +2
3), (3,1, y = −1

3), and (1,1, y = −1) multiplets.

(b) Re-calculate the b1, b2, b3 for the MSSM — the Minimal Supersymmetric Standard

Model. FYI, here is complete list of the MSSM fields:

◦ The SU(3)× SU(2)× U(1) gauge fields, same as the non-SUSY SM.

• For each vector field there is a Majorana fermion (a gaugino) with similar SU(3) ×
SU(2)×U(1) quantum numbers. Altogether, there is an adjoint multiplet of gauginos

for each factor of the gauge symmetry.

◦ 3 families of quarks and leptons, same as the non-SUSY SM.

• For each Weyl fermion — left-handed or right-handed — in these three families,

the MSSM also have a complex scalar field (a squark or a slepton) with similar

SU(3)× SU(2)×U(1) quantum numbers. Altogether, this makes 45 complex scalar

fields in similar multiplets to the quarks and leptons.

• The Higgs sector of the MSSM comprises two SU(2) doublets of complex scalars ac-

companied by one SU(2) doublet of Dirac fermions (the higgsinos); all these doublets

have y = 1
2 .

— There are all kinds of Yukawa and φ4 interactions between the MSSM fields, but you

do not need them for the one-loop calculation of the gauge couplings’ beta-functions.

In Grand Unified Theories

α3 = α2 = 5
3α1 = αGUT at the GUT scale. (3)

At lower energy scales E � MGUT the SM couplings are given (lo the leading one-loop

order) by the Georgi–Quinn–Weinberg equations

1

α3(E)
=

1

αGUT
+ b3 ×

1

2π
log

MGUT

E
,

1

α2(E)
=

1

αGUT
+ b2 ×

1

2π
log

MGUT

E
,

1

α1(E)
=

5/3

αGUT
+ b1 ×

1

2π
log

MGUT

E
.

(4)

3



(c) Derive these equations from eqs. (2).

The experimental data are usually interpreted in terms of the MS gauge couplings at the

Z0 mass MZ ≈ 91 GeV; according to the latest particle data group publication

1

α3(MZ)
≈ 8.45±0.12,

1

α2(MZ)
≈ 29.585±0.005,

1

α1(MZ)
≈ 98.369±0.009. (5)

Since the top quark and the Higgs boson are heavier than MZ , let me translate these

data to the MS couplings at E = Mtop ≈ 173 GeV:

1

α3(Mt)
≈ 9.18± 0.12,

1

α2(Mt)
≈ 30.028± 0.005,

1

α1(Mt)
≈ 97.84± 0.01. (6)

(d) Check that these data are not consistent with eq. (4) for the minimal Standard Model.

(e) Now consider the Minimal Supersymmetric Standard Model. For simplicity, assume

that all the super-partners — or rather all particles of the MSSM not present in the

non-supersymmetric minimal SM — have masses M ≈ Mtop ≈ 173 GeV; this has

been ruled out experimentally, but it’s a useful toy model.

Show that for this model — unlike for the minimal non-SUSY Standard Model, —

the experimental gauge couplings (6) are consistent with the Georgi–Quinn–Weinberg

eqs. (4). Also, calculate the GUT scale MGUT for this model.

(f) Finally, consider a more realistic model, namely MSSM in which all the extra particles

have the same mass MS = 2 TeV, just out of LHS’s reach.

To check the consistency of this model, first extrapolate the experimental gauge

couplings (6) from the Mtop scale to the MS scale using the beta-function coefficients

b1,2,3 of the non-SUSY Standard Model. And then check whether the resulting gauge

couplings are consistent with eq. (4) for the MSSM.
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