
PHY–396 L. Problem set #24a. Due April 23, 2025.

1. Let’s start with a few reading assignments:

(a) §19.1 of Peskin & Schroeder. Read about the Hamiltonian picture of the axial

anomaly in 1 + 1 dimensions.

(b) §19.2 of Peskin & Schroeder, first two subsections. Read how to evaluate the triangle

diagrams using different UV regulators from what I had used in class, namely point-

splitting (subsection 1) and dimensional regularization (subsection 2).

(c) §19.2 of Peskin & Schroeder, third subsection, and §22.2–3 of Weinberg. Read about

formal analysis of the axial anomaly stemming from the measure of the fermionic

functional integral. Both Peskin & Schroeder and Weinberg explain regulating the

Jacobian of the axial variable transform along the lines I used in class, but pay

particular attention too the issue I did not explain, namely why the UV regulator

should be a function of the −6D2 operator, Ĝ = G(−6D2/Λ2).

2. Following up on Weinberg’s analysis of the axial anomaly of the fermionic functional inte-

gral’s measure in d = 4 dimensions, let’s generalize it to other even spacetime dimensions

d = 2n. In any such dimension there a matrix Γ which acts as the γ5 in 4D — Γ2 = +1

while Γγµ = −γµΓ for all µ = 1, 2, . . . d. Consequently, a massless Dirac fermion in

d = 2n dimensions has a classical axial symmetry

Ψ(x) → exp(iθΓ)Ψ(x), Ψ(x) → Ψ(x) exp(iθΓ), (1)

which leads to a classically conserved current

JµA = ΨγµΓΨ, ∂µJ
µ
A = classically = 0. (2)

But when the fermion Ψ is coupled to a gauge field — or a multiplet of such fermions

is coupled to a non-abelian gauge field — the axial symmetry is broken by the anomaly,

thus

∂µJ
µ
A = − 2

n!

(
−1

4π

)n
εα1β1α2β2···αnβn tr

(
Fα1β1Fα2β2 · · · Fαnβn

)
. (3)

Your task is to derive this formula from the UV-regulated Jacobian of the fermionic path

integral.
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For your information, in any even Euclidean dimension d = 2n,

{γµ, γν} = +2δµν , [γµ, γν ] = +2iσµν , (4)

Γ = inγ1γ2 · · · γ2n =⇒ Γ2 = +1, Γγµ = −γµΓ ∀µ = 1, . . . , 2n, (5)

for any d = 2n Dirac matrices γα, . . . , γω : tr
(
Γγαγβ · · · γω

)
= (−2i)nεαβ···ω, (6)

for any n spin matrices σαβ, . . . , σψω : tr
(
Γσαβ · · · σψω

)
= 2n εαβ···ψω. (7)

3. This problem exists in two versions, 3A and 3B. If you are familiar with the differential

form language, please solve problem 3A; otherwise, please solve problem 3B. The two

versions are physically equivalent to each other, but the math is written in a different

language.

(3A) In the differential form language, eqs. (3) become

d ∗ JA = − 2

n!

(
−1

4π

)n
tr
(
F ∧ F ∧ · · · ∧ F

)
n times

. (8)

The 2n-forms on the RHS of these formulae are exact:

Q(2n)
def
= tr

(
F ∧ F ∧ · · · ∧ F

)
n times

= dΩ(2n−1) (9)

where Ω(2n−1) — constructed as traces of appropriated products of the A = gA gauge

fields (1 forms) and F = gF tensions fields (2 forms) — are the Chern–Simons forms.

Specifically,

Ω(1) = tr(A) [abelian A only], (10.a)

Ω(3) = tr
(
A ∧ F − i

3A ∧A ∧A
)
, (10.b)

Ω(5) = tr
(
A ∧ F ∧ F − i

2A ∧A ∧A ∧ F −
1
10A ∧A ∧A ∧A ∧A

)
, (10.c)

etc.

(a) Verify eq. (9) for 2n = 2, 4, 6 and Ω(2n−1) as in eqs. (10).

2



The Chern–Simons forms allow us define a conserved axial current as

∗JAC = ∗JA +
2

n!

(
−1

4π

)n
Ω(2n−1) , d ∗ JAC = 0. (11)

Howover, the price of this conservation is the loss of gauge invariance: Alas, the Chern–

Simons forms are non guage invariant.

Nevertheless, the gauge variations of the Chern–Simons forms are closed, d(δΩ(2n−1)) = 0.

Moverover, for the infinitesimal gauge transforms

δA = −DΛ = −dΛ − iAΛ + iΛA, δF = −iFΛ + iΛF (12)

(for infinitesimal Λ(x)), the first variations of the Chern–Simons forms are not only closed

but exact,

δΩ(2n−1) = −dH(2n−2) (13)

where H(2n−2) is a (2n−2)-form constructed as a trace of a product of Λ and a polynomial

of the A and F forms. In particular,

H(0) = tr(Λ) [abelian A only], (14)

H(2) = tr
(
Λ dA

)
= tr

(
Λ(F − iA ∧A)

)
, (15)

H(4) = tr
(
Λ d(A ∧ dA + i

2A ∧A ∧A)
)

(16)

= tr
(

Λ
(
F ∧ F − i

2(F ∧A ∧A+A ∧ F ∧A+ A ∧A ∧ F) − 1
2A ∧A ∧A ∧A

))
.

Verify these formulae for 2n = 2, 4, 6.

Note: eq. (14) is trivial, while eq. (15) should be similar to problem 2 of the Fall 2024

midterm exam. But eq. (16) needs to be verified from scratch.

PS: Besides the axial anomaly in d = 2n dimensions, the 2n-forms Q(2n), the Chern–

Simons forms Ω(2n−1), and the H(2n−2) forms are also useful in other spacetime dimen-

sions. In particular, the Chern–Simons 3-form can be used in 3D to give the gauge bosons

a topological mass term, as we saw during the Fall 2024 midterm exam.
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Towards the end of the Spring semester, we shall see that the H(4) form — reduced from

6 spacetime dimensions down to 4 — governs the non-abelian gauge anomaly. In terms

of the anomalous variation of the effective action of the gauge field,

∆gaugeS
eff
E [Aµ(x)] = − 1

16π2

∫
4d space

H(4) , (17)

where the trace in eq. (16) is taken over the species of LH Weyl fermions minus a similar

trace over the RH Weyl fermion species. Likewise, the non-abelian gauge anomalies in

other even spacetime dimensions are also related to the H(2n−2) forms for 2n = d+ 2.

(3B) In any even dimension d = 2n, the right hand side of the anomaly equation (3) is always

a total derivative,

εα1β1···αnβn tr
(
Fα1β1 · · · Fαnβn

)
= ∂µΩµ

(2n−1)
(18)

where Ωµ
(2n−1)

is some polynomial in gauge fields Aν = gAν and Fρσ = gF ρσ, for example

in d = 2, Ωµ
(1)

= 2εµν tr(Aν) [abelian Aν only],

in d = 4, Ωµ
(3)

= 2εµνρσ tr
(
AνFρσ − 2i

3 AνAρAσ
)
,

in d = 6, Ωµ
(5)

= 2εµνρσαβ tr
(
AνFρσFαβ − iAνAρAσFαβ − 2

5 AνAρAσAαAβ
)
,

(19)

etc., etc. The Ωµ
(2n−1)

vectors are equivalent to (2n − 1)–index totally antisymmetric

tensors called the Chern–Simons forms, and those forms play many important roles in

gauge theory and string theory. In particular, we may use the Ωµ
(2n−1)

to define a conserved

axial current

JµA → JµAC = ΨγµΓΨ +
1

n!

(
−1

4π

)n
× Ωµ

(2n−1)
. (20)

(Its conservation follows from eqs. (3) and (18).) However, the price of this current con-

servation is the loss of gauge invariance: the original axial current JµA is gauge invariant,

but the JµAC is not.

(a) You task is to verify eqs. (18) for d = 2, 4, 6.
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The Chern–Simons vectors (19) are not gauge invariant, but their variations under the

infinitesimal gauge transforms are total derivatives of antisymmetric tensors,

δΩµ
(2n−1)

= −2∂νH
µν
(2n−2)

, Hµν
(2n−2)

= −Hνµ
(2n−2)

. (21)

Specifically, for d = 2n = 2, 4, 6:

in d = 2, Hµν
(0)

= εµν tr(Λ) [abelian Aν only],

in d = 4, Hµν
(2)

= 2εµνρσ tr
(
Λ× ∂ρAσ

)
,

in d = 6, Hµν
(4)

= 4εµνρσαβ tr
(
Λ× ∂ρ

(
Aσ∂αAβ + i

2AσAαAβ
))
.

(22)

(b) Verify eqs. (21) for these H tensors.

Note: for d = 2 eq. (21) is trivial, while for d = 4 it’s very similar to problem 2(b) of

the Fall˜2024 midterm exam. But for d = 6 you have to work it out from scratch.
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