PHY-396 L. Problem set #24a. Due April 23, 2025.

1. Let’s start with a few reading assignments:

(a) §19.1 of Peskin € Schroeder. Read about the Hamiltonian picture of the axial

anomaly in 1 + 1 dimensions.

(b) §19.2 of Peskin & Schroeder, first two subsections. Read how to evaluate the triangle
diagrams using different UV regulators from what I had used in class, namely point-

splitting (subsection 1) and dimensional regularization (subsection 2).

(c) §19.2 of Peskin & Schroeder, third subsection, and §22.2-3 of Weinberg. Read about
formal analysis of the axial anomaly stemming from the measure of the fermionic
functional integral. Both Peskin € Schroeder and Weinberg explain regulating the
Jacobian of the axial variable transform along the lines I used in class, but pay

particular attention too the issue I did not explain, namely why the UV regulator

should be a function of the — 02 operator, G = G(—P%/A?).

2. Following up on Weinberg’s analysis of the axial anomaly of the fermionic functional inte-
gral’s measure in d = 4 dimensions, let’s generalize it to other even spacetime dimensions
d = 2n. In any such dimension there a matrix I' which acts as the 7% in 4D — I'? = +1
while I'v# = —~+#T" for all p = 1,2,...d. Consequently, a massless Dirac fermion in

d = 2n dimensions has a classical axial symmetry
U(z) — exp(ifl)¥(x), U(z) — U(z)exp(ifl), (1)
which leads to a classically conserved current
Jh = U, OuJYy = classically = 0. (2)

But when the fermion ¥ is coupled to a gauge field — or a multiplet of such fermions
is coupled to a non-abelian gauge field — the axial symmetry is broken by the anomaly,

thus
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Your task is to derive this formula from the UV-regulated Jacobian of the fermionic path

integral.



3.

For your information, in any even Euclidean dimension d = 2n,

{47} = #2617, [Y*,4Y] = +2i0", (4)

L = "2y — T2 = 41, Th" = —4"T'Vu=1,...,2n, (5)
for any d = 2n Dirac matrices y,... v : tr(nya’y/B ) = (—20)"e  (6)
for any n spin matrices 0®?,... o%% tr(Fao‘ﬁ e wa) = Qnofdw, (7)

This problem exists in two versions, 3A and 3B. If you are familiar with the differential
form language, please solve problem 3A; otherwise, please solve problem 3B. The two
versions are physically equivalent to each other, but the math is written in a different

language.

In the differential form language, egs. (3) become

dxu::—3<ig tr(FAFAANF) oo (8)

n! \ 47
The 2n-forms on the RHS of these formulae are exact:

def

Q(Q”) = tI‘(.F NF NN ‘F)ntimes - dQ(Qn_l) (9)

where (25, _1) — constructed as traces of appropriated products of the A = gA gauge

fields (1 forms) and F = gF tensions fields (2 forms) — are the Chern—-Simons forms.

Specifically,
Quy = tr(A) [abelian A only], (10.a)
Qs = tr(AAF — SAN AN A), (10.b)

Qp) = tr(ANFAF — SANANANF — GANANANANA),  (10.0)

(a) Verify eq. (9) for 2n = 2,4,6 and (5,1 as in egs. (10).



The Chern—Simons forms allow us define a conserved axial current as

2 (—1\"
wJac = xJa + — (E) Qon-1y, dxJac = 0. (11)

Howover, the price of this conservation is the loss of gauge invariance: Alas, the Chern—
Simons forms are non guage invariant.

Nevertheless, the gauge variations of the Chern—Simons forms are closed, d(6€(2,—1)) = 0.

Moverover, for the infinitesimal gauge transforms
0A = —DA = —dA — iAN + iAA, 0F = —iFN + iAF (12)

(for infinitesimal A(z)), the first variations of the Chern—Simons forms are not only closed

but exact,

op—1) = —dH g, 9 (13)

where Hy,,_9) is a (2n—2)-form constructed as a trace of a product of A and a polynomial

of the A and F forms. In particular,

Hiy = tr(A) labelian A only], (14)

H(Q) = tr
H(4) = tr

(AdA) = tr(A(F — iANA)), (15)
(Ad(ANdA + LANANA)) (16)
=t% f%fﬂ—ﬂfAAAA+AAFAA+AAAA}j—%AAAAAAAD.

Verify these formulae for 2n = 2,4, 6.
Note: eq. (14) is trivial, while eq. (15) should be similar to problem 2 of the
[midferm exan]. But eq. (16) needs to be verified from scratch.

PS: Besides the axial anomaly in d = 2n dimensions, the 2n-forms @)(s,), the Chern-
Simons forms (2o, 1), and the H(, o) forms are also useful in other spacetime dimen-

sions. In particular, the Chern—Simons 3-form can be used in 3D to give the gauge bosons

a topological mass term, as we saw during the [Fall 2024 midferm exani.
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(3B)

Towards the end of the Spring semester, we shall see that the H(y) form — reduced from
6 spacetime dimensions down to 4 — governs the non-abelian gauge anomaly. In terms

of the anomalous variation of the effective action of the gauge field,

1
AgaugeS%H[Au(x)] = _@ / H(4)7 (17)

4d space

where the trace in eq. (16) is taken over the species of LH Weyl fermions minus a similar
trace over the RH Weyl fermion species. Likewise, the non-abelian gauge anomalies in

other even spacetime dimensions are also related to the H(y, oy forms for 2n = d + 2.

In any even dimension d = 2n, the right hand side of the anomaly equation (3) is always

a total derivative,

ealﬁlmanﬂn tr (‘Falﬁl e F@nﬁn) = aﬂgénfl) (18)
where Q?Zn—l) is some polynomial in gauge fields A” = gAY and F*? = gF*?, for example

ind=2, bel) = 2¢"tr(A,) [abelian A, only],

ind= 4, Q’é)) = 2e"P tr (Ayfpa - % AVApAU) ) (19)

ind =06, Q= 277 tr (A, FpeFop — 1Ay ApAsFas — 2 A ApAoAads)

etc., etc. The Q?Zn—l)

tensors called the Chern—-Simons forms, and those forms play many important roles in

w
(2n

vectors are equivalent to (2n — 1)—index totally antisymmetric
gauge theory and string theory. In particular, we may use the {2 1) to define a conserved

axial current

_ 1 /=1\"
Jh = Iy = T 4+ — (—) xQ’én_l). (20)

n! T

(Its conservation follows from egs. (3) and (18).) However, the price of this current con-
servation is the loss of gauge invariance: the original axial current J ﬁ is gauge invariant,

but the JZC is not.

(a) You task is to verify egs. (18) for d = 2,4, 6.



The Chern—-Simons vectors (19) are not gauge invariant, but their variations under the

infinitesimal gauge transforms are total derivatives of antisymmetric tensors,

5Q8

(n-1) = —20:Hy, Hiyp gy = —Hp, (21)

(2n—2)’ (2n—2) (2n—2)"
Specifically, for d = 2n = 2,4, 6:

ind=2, Héf)y) = " tr(A) [abelian A, only],

ind=d, Hiy = 2" tr(A x 9pAy), (22)

ind=6, Hy = 4¢P tr (A x 9, (As0aAs + §A5AxAR)) .

(b) Verify eqs. (21) for these H tensors.

Note: for d = 2 eq. (21) is trivial, while for d = 4 it’s very similar to problem 2(b) of

the [Fall_ 2024 midferm exan]. But for d = 6 you have to work it out from scratch.
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