
INSTANTONS

Topological Sectors of Yang–Mills Theories

Consider any kind of a quantum field theory. Its Euclidean path integral∫∫∫
D[fields(x)] exp

(
−SE [fields(x)]

)
(1)

explores the entire space of fields’ configurations, or rather the space C of fields’ configurations

that have finite Euclidean actions SE . If that space C happens to be discontinuous, then

the perturbation theory cannot possibly explore all of C, not even as a formal sum of the

perturbative series. Instead, the perturbation theory is limited to the subspace C0 ⊂ C of

configurations continuously connected to the vacuum state. Formally, this subspace comprises

configurations ϕa(x) such that there exists a continuous family ϕa
t (x) for 0 ≤ t ≤ 1 where: (1) for any t, the

action SE [ϕa
t (x)] is finite; (2) for t = 1, ϕa

1(x) = ϕa(x) in question; (3) for t = 0, ϕa
0(x) = 〈vac|ϕa |vac〉.

So IF the (finite action) configuration space C has several disconnected sectors, THEN only

the connected sector C0 is accessible to the perturbative expansion, BUT both connected and

disconnected sectors contribute to the path integral (1) and hence to the partition function

Z[sources] of the theory. Thus, the disconnected sectors of the configuration space give rise

to the non-perturbative effects!

In these notes, we shall see that the non-abelian gauge theories indeed have disconnected

configuration spaces of gauge fields Aaµ(x), and we shall explore some of the non-perturbative

effects due to disconnected sectors of such configuration spaces.

Let’s start with the Yang–Mills theory with some simple gauge group G and the classical

Euclidean action

SE [Aµ(x)] =
1

2g2

∫
d4xe tr

(
FµνFµν

)
. (2)

Theorem 1: if this Euclidean action for some field configuration A(x) is finite, then its

index

I[Aµ(x)]
def
=

1

16π2

∫
d4xe tr

(
F̃µνFµν

)
=

1

32π2

∫
d4xe tr

(
εαβµνFαβFµν

)
(3)

must have an integer value.
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I shall prove this theorem in a moment. But first, please note its immediate consequence:

Since an integer-valued index of cannot change continuously, the space C of finite-action gauge

field configurations is discontinuous, with a separate sector CI for each integer value I of the

index,

C =
+∞⊎
I=−∞

CI . (4)

Consequently, the partition function of the quantum YM theory

Znet =

∫∫∫
whole C

D[Aµ]DFP exp(−SE) (5)

becomes

Znet =
+∞∑
I=−∞

Z(sector I) (6)

where

Z(sector I) =

∫∫∫
sector CI

D[Aµ]DFP exp(−SE). (7)

The perturbation theory — even if we somehow manage to sum up the entire perturbative

series — would yield only Z(sector I = 0) rather than the whole Znet. So contributions

Z(sectors I 6= 0) from the other sectors correspond to the non-perturbative effects in the

Yang–Mills theory.

Proof of the theorem 1: Let’s parametrize the 4D Euclidean space by the radius

r = |~x| and the direction ~n = ~x/r, a unit 4-vector in the direction ~x. A finite Euclidean

action of some configuration Aµ(~x) imposes a restriction on the field behavior at large radii

r →∞. Indeed, if

SE =
1

4g2

∫
d4~xFaµν(~x)Faµν(~x) < ∞, (8)

then the integrand should diminish for r → ∞ faster than r−4−ε (for some ε > 0), which

means that each component Faµν(~x) should decrease faster than r−2−ε. Naively, this calls for
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potential fields Aaµ(~x) to decrease as

|Aaµ(~x)| < O

(
1

r1+ε

)
for r →∞, (9)

but this ignores the gauge symmetry of the YM action. Instead, the potentials Aaµ(~x) must

be gauge equivalent to some A′aµ (~x) which decrease with r →∞ as in eq. (9). Thus,

Aµ(~x) = U(~x)A′µ(~x)U−1(~x) + i∂µU(~x)U−1(~x), (10)

where the first term decreases for r → ∞ faster than r−1−ε, but the second term is under

no such limitation. Now, suppose

U(r, ~n) −−−→
r→∞

U(~n), (11)

with a non-trivial direction dependence of the U(~n) at the 4D space infinity. Then

i∂µU(~x)U−1(~x) = O

(
1

r

)
for r →∞, (12)

hence the second term on the RHS of eq. (10) is much larger than the first term,∣∣i∂µU(~x)U−1(~x)
∣∣ � O

(
1

r1+ε

)
>
∣∣U(~x)A′µ(~x)U−1(~x)

∣∣ , (13)

so at very large radii we may approximate

Aµ(r, ~n) −−−→
r→∞

i∂µU(~n)U−1(~n). (14)

Now let’s relate this formula to the index

I =
1

32π2

∫
d4~x tr

(
εαβµνFαβFµν

)
(3)

of the gauge field configuration Aµ(x). The integrand here happens to be a total derivative:

1

32π2
tr
(
εαβµνFαβFµν

)
= ∂αWα (15)

where

Wα =
1

16π2
εαβµν tr

(
AλFµν − 2i

3AλAµAν
)
. (16)

Verifying these formulae is a part of your next homework set#24a. The 3-form Wλµν =

εαλµνWα dual to this 4-vector is called the Chern–Simons form.
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Anyway, by the 4D analogy of the Gauss Theorem, eq. (15) turns the 4D integral (3) to

a 3D integral over a very large 3-sphere S3 at space infinity r →∞,

I =

∫
S3@(r=∞)

d3vol Wα(~n)nα . (17)

Next, let’s take a closer look at eq. (16) for the Wα. At r →∞, we have

Fµν(r, ~n) < O(r−2−ε) while Aµ(r, ~n) = O(r−1), (18)

hence in eq. (16),

the first term ∼ FA < O(r−3−ε) (19)

is much smaller than

the second term ∼ AAA = O(r−3), (20)

and therefore

Wα(r, ~n) −−−→
r→∞

−i
24π2

εαλµν tr(AλAµAν)

〈〈 in light of eq. (14) 〉〉

=
−1

24π2
εαλµν tr

(
(∂λU)U−1(∂µU)U−1(∂νU)U−1

)
.

(21)

Thus, the index of a finite-action gauge field configuration obtains from the behavior of the

U(~n) at 4-space infinity as

I =
−1

24π2

∫
s3@(r=∞)

d3vol εαλµν nα tr
(

(∂λU)U−1(∂µU)U−1(∂νU)U−1
)
, (22)

or in the differential form language,

I =
−1

24π2

∫
s3@(r=∞)

tr
(

(dU · U−1) ∧ (dU · U−1) ∧ (dU · U−1)
)
. (23)

Note: this integral depends only on the topology of the U(~n) (at space infinity) and would

be unaffected by any continuous variations of the U(~n).
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To see how this works, suppose the gauge group G is SU(2). The group manifold of

SU(2) is the unit 3-sphere S3, so the group-element-valued function U(~n) maps the S3

sphere at 4-space infinity to the S3 group manifold. Moreover, the 3-volume form on the

SU(2) group manifold is

d3V = − 1
12 tr

(
(dU · U−1) ∧ (dU · U−1) ∧ (dU · U−1)

)
(24)

while the volume of the whole 3-sphere is 2π2. Consequently, for G = SU(2), the integral (23)

measure the (oriented) volume of the U -image of the S3 at 4-space infinity in units of the

group manifold’s volume. In other words, the index (23) counts how many times does the

U -image of the S3 at 4-space infinity wraps around the S3 group manifold of the SU(2).

Obviously, this count depends only on the topology of the U -map from S3 to S3. Moreover,

this count always has an integer value (positive, negative, or zero), and that’s why the index

I must have an integer value.

For other types of non-abelian gauge groups G 6= SU(2), the group manifold of G has

dimension > 3, so U(~n) maps the S3 sphere at space infinity to a 3-dimensional sub-manifold

of G rather than onto G itself. Nevertheless, for any simple compact non-abelian group G,

its group manifold always has a topologically unique non-contractible 3-cycle, and one may

count how many times the image of the S3 at space infinity under the U -map wraps around

this 3-cycle. Moreover, the integral (23) is precisely the number of times the U -map image

of the S3 at infinity maps onto that non-contractible 3-cycle, and that’s why that integral

— and hence the index of the gauge field configuration Aµ(x) — must have integer value.

To actually prove the existence of that non-contractible 3-cycle, and that the integral (23)

indeed counts how many times the U -map image of the S3 at space infinity wraps around

that cycle, I would need to work with homologies and cohomologies of group manifolds.

Alas, this mathematical subject is quite beyond the scope of this introductory QFT class, so

I am going to skip it. Instead, I ask you to either take my statements about this 3-cycle for

granted, or to learn some differential topology and find the proof in some math textbook.

So here is the bottom line: For any finite-action configuration of the gauge fields, their

behavior at r →∞ is related to a direction-dependent gauge transform U(~n), while the index

I obtains from the same U(~n) according to eq. (23). The integral (23) depends only on the
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topology of the U(~n), and its values are always integer: I have proved that for G = SU(2)

and referred you to math generalizing the proof to larger gauge groups G. And the integer

values of the topological integral (23) is precisely why the index I of any finite-action gauge

field configurations is always integer, which proves theorem 1.

? ? ?

Theorem 2: For any finite-action configuration of the gauge fields,

SE ≥
8π2

g2
|I| . (25)

Proof: In 4D Euclidean space,

F̃αβ = 1
2εαβµνFµν ,

˜̃Fµν = Fµν . (26)

Let us define

FLµν
def
=

1

2

(
Fµν + F̃µν

)
, FRµν

def
=

1

2

(
Fµν − F̃µν

)
, (27)

then the FLµν fields are self-dual while the FRµν fields are anti-self-dual,

F̃Lµν = +FLµν , F̃Rµν = −FRµν , (28)

or in 3D terms

BL = +EL, BR = −ER (Euclidean),

BL = +iEL, BR = −iER (Minkowski).
(29)

By construction (27) of the (anti) self-dual fields, and using

tr
(
F̃µνF̃µν

)
= tr

(
FµνFµν

)
, (30)

we get

2 tr
(
FLµνFLµν

)
= tr

(
FµνFµν

)
+ tr

(
FµνF̃µν

)
,

2 tr
(
FRµνFRµν

)
= tr

(
FµνFµν

)
− tr

(
FµνF̃µν

)
.

(31)

The LH sides of both of these equations are non-negative, hence on the RH sides we must
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have

tr
(
FµνFµν

)
≥ ± tr

(
FµνF̃µν

)
(32)

for both signs ±. Consequently, integrating both sides of this inequality over the 4D space,

we get

g2

8π2
× SE =

1

16π2

∫
d4xe tr

(
FµνFµν

)
≥ ± 1

16π2

∫
d4xe tr

(
FµνF̃µν

)
= ±I

(33)

for both ±, and therefore

SE ≥
8π2

g2
× |I|. (25)

Quod erat demonstrandum.

Moreover, to saturate the bound, we need to saturate the inequality (32) at all x, for the

same sign ± as in eq. (33), namely + for I > 0 and − for I < 0. Consequently, we need

self-dual Fµν(x) = +F̃µν(x) for I > 0,

anti-self-dual Fµν(x) = −F̃µν(x) for I < 0.
(34)

Either way, we have a first-order differential equation for the matrix-valued gauge potentials

Aµ(x), namely

Fµν
def
= ∂µAν − ∂νAµ + i[Aµ,Aν ] = ±1

2εµναβFαβ. (35)

Note that this (anti) self-duality equation automatically implies the Yang–Mills equations

DµF̃µν = 0 and DµFµν = 0. (36)

? ? ?
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Now let’s go back to the net Yang–Mills partition function

Znet =
+∞∑
I=−∞

Z(sector I) (37)

and consider the partition functions of various sectors. In particular, the I = 0 sector

includes the vacuum configuration Aµ(x) ≡ 0. Moreover, all other configurations in this

sector are continuously connected to the vacuum, so they obtain as finite-action fluctuations

around the vacuum. Consequently, Z(sector I = 0) obtains from the usual perturbation

theory as

logZ(sector I = 0)[sources] = formal sum of all connected Feynman diagrams. (38)

The other sectors for I 6= 0 are more difficult as they do not contain the vacuum state.

Instead, for any such sector we start with a base configuration Abase
µ (x) which has the lowest

action for the sector, Sbase
e = (8π2/g2)|I|. Thus, the base tension fields Fbase

µν (x) are self-

dual (or anti-self-dual) and have the right index = I. Second, we look at the finite-action

fluctuations around the base configuration,

Aµ(x) = Abase
µ (x) + δAµ(x), (39)

calculate their action as

SE [Aµ(x)] =
8π2

g2
× |I| + ∆SE [δAµ(x)], (40)

hence

Z(sector I) = exp

(
−8π2

g2
× |I|

)
×

∫∫∫
shifted CI

D[δAµ(x)] exp(−∆SE)×DFP . (41)

Third, we calculate the post-exponential path integral factor here using the modified per-

turbation theory, much harder than the usual Feynman rules. To do that, we expand the

∆SE functional in powers of the fluctuation δAµ(x), starting with the quadratic term since
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Abase
µ is a minimum of the action. The quadratic part of the ∆SE gives rise to the modified

propagators for the sector I 6= 0, while the cubic, the quartic, etc., parts give rise to the

modified vertices. However, since the fluctuations δAµ(x) propagate in the background of

the base fields Abase
µ (x) that are not translationally invariant, their propagators also lack

translational invariance,

Gmodified
µν (x, y) 6= Gµν(x− y). (42)

Likewise, the modified vertices also lack translational invariance — they depend on the

Abase
µ (x) and hence on the x. Similarly, the ghost propagator and vertices — which obtain

from the expansion of the Faddeev–Popov determinant — also lack translational invariance.

The bottom line is, the post-exponential factor in eq. (41) does obtain from a formal

sum of an infinite series of Feynman diagrams, but the Feynman rules are significantly more

complicated than in the vacuum sector I = 0.

Yang–Mills Instantons

A Yang–Mills instanton is a self-dual gauge field configuration of index I = +1. As we

shall see in a moment, this configuration is compact in all 4 Euclidean dimensions,

Aµ(r, ~n) −−−→
r→∞

0 for any direction ~n. (43)

From the Euclidean time te = x4 point of view, this makes the instanton configuration

transient — it exists only for a brief instant of t3 — hence the name instanton.

From the real (Minkowski) time point of view, a Yang–Mills instanton — like any other

Euclidean configuration of finite SE — is a tunneling event between distinct quantum states

of the theory. To explain these states, I would need to canonically quantize the Yang–Mills

theory, and then consider the topologically non-trivial gauge transforms in the Hilbert space

of the quantum theory. I wish I had time to do it in this class, but I don’t. Instead, let me

refer you to Gerard ’t˜Hooft 1999 lecture notes, chapter 4 about the instantons.

Note: a Yang–Mills instanton is transient event only in 4 + 0 Euclidean dimensions. In

higher spacetime dimensions, a Yang–Mills instanton is a topological defect of co-dimension 4,

which can be a particle or an extended object. Specifically, in 4+1 Minkowski dimensions, a
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YM instanton is a particle; in 5+1 dimensions, it’s a string, etc., etc.; and in 9+1 dimensions

it’s a 5-brane. This is particularly relevant to the 9+1 dimensional superstring theory where

the YM instantons and the D5 branes are continuously connected to each other.

Now let’s take a closer look at the YM instanton fields, starting with the t’ Hooft’s

instanton solution for the SU(2) gauge group:

Aaµ(x) = gAaµ(x) =
2ηaµνxν

x2
e + ρ2

, (44)

where ρ is the instanton’s size — which may have any fixed positive value, — and ηaµν is a

constant array. Specifically,

for i, j = 1, 2, 3 : ηaij = εaij , ηai4 = δai , ηa4j = −δaj , ηa44 = 0. (45)

By this construction, the µ, ν = 1, 2, 3, 4 indices of the ηaµν form a self-dual antisymmetric

tensor,

ηaµν = −ηaνµ = +1
2εµναβη

a
αβ . (46)

Note that the antisymmetric tensors corresponds to the generators of the Euclidean rotation

or spin group, which in 4 dimensions happens to be

Spin(4) = SU(2)L × SU(2)R , (47)

where the self-dual antisymmetric tensors generate the SU(2)L while the anti-self-dual ten-

sors generate the SU(2)R. Thus, between their gauge and Euclidean indices, the ηaµν map

the SU(2)L generators onto the SU(2)gauge generators and vice verse. Consequently, the

’t Hooft’s instanton field configuration (44) has unbroken symmetry

SU(2)L+gauge × SUR . (48)

In the zero-size ρ → 0 limit, the instanton gauge fields (44) become pure gauge, i.e.
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gauge-equivalent to zero,

Aaµ(x)× 1
2τ

a =
τaηaµνxν

x2
e

= i(∂µU(x))U−1(x) (49)

for

U(r, ~n) = n4 − i(n1τ1 + n2τ2 + n3τ3) ∈ SU(2). (50)

But for ρ > 0, the instanton fields are not pure gauge anymore; instead, they have non-zero

tensions

Faµν =
−4ρ2

(r2 + ρ2)2
× ηaµν . (51)

Working out this formula for the tensions is left out as an optional exercise to the intersted

students.

The self-duality of the tension fields (51) follows from that of the ηaµν , while the index

and the action obtain from

FaµνF̃aµν =
16ρ4

(r2 + ρ2)4
× 12, (52)

hence

I =
1

32π2
×
∞∫

0

12× 16ρ4

(r2 + ρ2)4
× 2π2r3 dr = 1 (53)

and

SE =
8π2

g2
× |I| =

8π2

g2
. (54)

More generally, the self-dual SU(2) gauge fields of index I = +1 form an 8-parameter

family of instanton solutions:

Aaµ(x) =
2Rabηbµν(xµ − yµ)

(x− y)2
e + ρ2

(55)

where yµ are the 4 coordinates of the instanton’s center, ρ is the instanton’s size, and Rab is an

SO(3) rotation matrix parametrizing the relative orientation between the SU(2)L ⊂ Spin(4)

and the SU(2)gauge groups.
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For other non-abelian gauge groups G, the gauge fields of an instanton always belong

to an SU(2) subgroup of G. However, identifying a specific SU(2) subgroup of G used by

a particular instanton solution calls for additional parameters. Focusing on the level = 1

subgroups (where the generators of SU(2) ⊂ G have the same normalization as the generators

of G), we find that G = SU(3) has a 4-parameter family of SU(2) subgroups. Likewise, for

larger SU(N) groups, identifying an SU(2) subgroups calls for 4(N − 2) parameters, while

for a different kind of a simple gauge group, the number of parameters is 4C(G) − 8. And

this number is on top of the 8 parameters of the instanton solutions for a specific SU(2),

thus the instanton solutions of the gauge theory with a general simple gauge group G have

4C(G) continuous parameters ; for example, 4N parameters for a SU(N) gauge theory.

Multi-Instanton Solutions

Besides the instantons — the self-dual gauge fields with index = 1 — there are also

self-dual or anti-self-dual gauge fields with other values of the index I 6= 0, 1. For example,

the anti-self-dual solutions with I = −1 — called the anti-instantons — obtain from the

instanton solutions by 3-space reflections. Thus, for G = SU(2), the general anti-instanton

solution has form

Aaµ(x) =
2Rabη̄bµν(xµ − yµ)

(x− y)2
e + ρ2

(56)

where

η̄aij = +εaij , η̄ai4 = −δai , η̄a4j = +δaj , η̄a44 = 0 for i, j = 1, 2, 3, (57)

hence

η̄aµν = −η̄aνµ = −1
2εµναβ η̄

a
αβ . (58)

Similar to the instanton solutions, the anti-instanton solution form a continuous family of 8

parameters for G = SU(2) or 4C(G) parameters for larger gauge groups.

For higher values |I| > 1 of the topological index, there also exist exactly self-dual multi-

instanton solutions (for I > +1) or exactly anti-self-dual multi-anti-instanton solutions (for

I < −1). However, the explicit form of such ADHM construction (named after its authors,

M. F. Atiyah, V. G. Drinfeld, N. J. Hitchin, and Y. I. Manin) is much more complicated
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than the ’t Hooft’s singe-instanton solution, so I am not going to inflict it on the students.

Instead, let me make just a couple of comments:

1. The exactly (anti) self-dual solutions for any given index I 6= 0 form a continuous

family with 8× |I| real parameters for G = SU(2) or 4C(G)× |I| real parameters for

larger gauge groups.

2. The multi-instanton parameter space has a corner where the solution looks like a

superposition of I single instantons located far away from each other. In terms of the

(yµ, ρ, R)i parameters of the individual instantons, we should have

|yi − yj |e � ρi, ρj ∀i, j = 1, . . . , I; i 6= j, (59)

then the multi-instanton solution can be approximated as

Aaµ(x) ≈
I∑
i=1

Aaµ(x)[instanton(y, ρ, R)i] + O

(
ρ

|yi − yj |2e

)
. (60)

Likewise, the multi-anti-instanton solutions for I < 0 have a corner of the parameter

space where they look line |I| well-separated individual anti-instantons.

Cluster Expansion and the Instanton Angle

Let’s go back to the net partition function of the Yang–Mills theory,

Znet =
+∞∑
I=−∞

Z(sector I), (61)

where for each non-perturbative sector with I 6= 0, Z(that sector) obtains from fluctuation

of the fields around an I-instanton or −I-anti-instanton solution. Since the sectors with

different topological indices I are completely disjoint, we may try modifying the net partition

function (61) to

Znet =
+∞∑
I=−∞

CI × Z(sector I) (62)

for some non-trivial coefficients CI . For example, for CI = δI,0 we would get

Znet = Z(sector I = 0) only, (63)

without any non-perturbative contributions.
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So the question is: Are we allowed to modify the net partition function along the lines of

eq. (62)? And the answer is: NO, because it would violate the cluster expansion principle,

which says that whatever happens in one region of space should not affect what happens in

another distant region of space. The quantum field theory is build on this principle, just

like it’s build on quantum mechanics and special relativity, so we should not allow any

modifications which would violate the cluster expansion.

To see how the modifications (62) would ran afoul of the cluster expansion principle,

consider the following configuration of the gauge fields: A small instanton centered at y1,

plus a small anti-instanton centered at a distant point y2,

|y1 − y2|e � ρ1, ρ2, (64)

hence net gauge field

Aaµ(x) ≈ Aµa(x)[instanton(y1, ρ1, R1)] + Aµa(x)[antiinstanton(y2, ρ2, R2)]+ O

(
ρ

|y1 − y2|2

)
.

(65)

This gauge field configuration has net index I = 0 and net action

SE = 2× 8π2

g2
+ small positive correction < ∞. (66)

Consequently, this configuration belongs to the I = 0 sector and we cannot possibly exclude

it or change the overall coefficient C0 of its contribution to the net partition function.

But when the instanton and the anti-instanton are very far away from each other, the

cluster expansion principle requires us to treat them independently of each other. That is, we

should allow or disallow an instanton at y1 regardless of whether we also have or do not have

an antiinstanton at y2, and vice verse. Hence, once we allow the instanton-antiinstanton pairs

like (65), we should also allow the single-instanton configurations without an antiinstanton, or

single antiinstanton configurations without the instanton. Since such configurations belong

to sectors with I = ±1, this means we cannot throw away those sectors by setting C+1 or C−1

to zero. Moreover, to properly count the instanton’s and the anti-instanton’s contributions
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to the net partition function regardless of each other, we need

C+1 × C−1 = C2
0 = 1. (67)

Likewise, we can start with some configuration with index I 6= 0, and then add an instanton

(hence I ′ = I + 1), or an anti-instanton (hence I ′ = I − 1), or both (hence I ′ = I). If

the instanton and the anti-instanton are far away from each other, their existence or non-

existence should not affect each other’s contributions to the partition function, which calls

for

CI ′=I+1 × CI ′=I−1 = C2
I . (68)

Moreover, the coefficients CI must obey these conditions for all I, which allows only one

family of solutions:

CI = exp(iΘ× I) (69)

for some real angle Θ called the instanton angle or the vacuum angle. Thus, the only allowed

modification of the net partition function of the Yang–Mills theory is

Znet =
+∞∑
I=−∞

exp(iΘI)× Z(sector I). (70)

Physically, we may reinterpret the exp(iΘI) factors in this modified partition function

in terms of the modified Lagrangian of the Yang–Mills theory. Indeed, let’s add a constant

term ∆SE(I) to the Euclidean action of some sector, than the partition function of that

sector changes to

Z(sector I) =

∫∫∫
sector CI

D[Aµ(x)] e−SE ×DFP −→ Z(sector I)× exp(−∆SE(I)). (71)

Consequently, we may re-interpret

exp(iΘI) = exp(−∆SE(I)), (72)
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hence

∆SE(I) = −iΘ× I =
−iΘ
16π2

∫
d4xe tr

(
FµνF̃µν

)
(73)

and therefore

∆LE =
−iΘ
16π2

tr
(
F̃µνFµν

)
. (74)

In other words, the net Euclidean Lagrangian of the Yang–Mills theory becomes

LE =
1

2g2
tr
(
FµνFµν

)
− iΘ

16π2
tr
(
FµνF̃µν

)
. (75)

Although the extra term here is imaginary, this is OK because it becomes real in the

Minkowski space,

LM = − 1

2g2
tr
(
FµνFµν

)
+

Θ

32π2
tr
(
εαβµνFαβFµν

)
. (76)

The extra Lagrangian term here happens to be a total derivative,

Θ

32π2
tr
(
εFF

)
= Θ ∂αW

α (77)

for

Wα =
1

16π2
εαλµν tr

(
AλFµν − 2i

3AλAµAν
)
. (16)

Consequently, the Θ term does not affect the Feynman rules of the YM theory, so the

perturbation theory is completely Θ-independent. But the non-perturbative instanton effects

do depend on Θ via the eiΘI factors in the net partition function.

In particular, the Θ term in the Lagrangian has odd parity and odd CP, so we expect

the non-perturbative effects to break the P and CP symmetries of the Θ-less theory. If we

add such Θ term to the Lagrangian of the QCD rather than the pure YM theory, it would

produce non-perturbative CP-violating effects such as non-zero electric dipole moment of

the neutron,

dn = eΘ×
{
O(αQCD × neutron’s radius),

best estimate 4.5 · 10−15 cm.
(78)

But despite diligent experimental attempts to detect and measure this dipole moment, it

turns out to be way too small; the current upper limit is |dn| < e× 1.8 · 10−26 cm. In terms
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of the instanton angle, this limit gives |Θ| < 4 · 10−12, so for all practical purposes Θ = 0

and QCD happens to have perfect CP symmetry. There are many theories as to why ΘQCD

happens to vanish, most likely being some kind of a Peccei–Quinn symmetry, see Roberto

Peccei’s lecture notes for the explanation.

But going beyond the Standard Model, you may have to deal with all kinds of gauge

theories. And unlike QCD, some of these theories may non-zero instanton angles, with all

kinds of interesting consequences thereof.

FERMIONS AND TOPOLOGY

In an earlier class I mentioned that the instantons of the electroweak SU(2)w gauge

symmetry lead to the non-conservation of the baryon and lepton numbers, ∆L = ∆B = 3.

In these notes, I explain how this happens. But for clarity’s sake, I focus on a simpler theory

— QCD with Nf flavors of exactly massless quarks — and the non-conservation of the axial

quark number.

Thus, let JµA be the net axial current of the massless quarks,

JµA =
∑
colors,
flavors

Ψγµγ5Ψ, (79)

with the corresponding global charge being

QA =

∫
d3x J0

A(x). (80)

In terms of numbers of quarks and antiquarks of definite helicity, this axial charge counts

QA = #RHquarks − #LHquarks + #RHantiquarks − #LHantiquarks. (81)

By the axial anomaly of QCD,

∂µJ
µ
A = −

2Nf
16π2

tr
(
FµνF̃µν

)
, (82)

so in a non-trivial background of gauge fields, the net axial charge of the quarks changes by

∆QA =

∫
dt

∫
d3x ∂µJ

µ
A(x, t) = −

2Nf
16π2

∫
d4x tr

(
FµνF̃µν

)
= −2Nf×I[gauge fields]. (83)

Thus, if the gauge field topology has a non-zero index I 6= 0, then somehow Nf × |I| quarks
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and antiquarks must change their helicities: from right-handed to left handed for I > 0, or

from left-handed to right-handed for I < 0. But how the #$%& does this happen?

The Hamiltonian language explanation of this process is explained in detail (albeit for a

2D analogue of the axial anomaly) in the Peskin and Schroeder textbook, §19.1. Basically,

in a slowly time-dependent background of gauge fields, the energy levels for the quarks also

change with time. Some of these energy levels happen to cross zero, which changes the Dirac

sea of the quarks. Consequently, if the energy of an occupied quark state drops below zero,

then this quark becomes a part of the Dirac sea and disappears as a distinct particle. OOH,

if the energy level of an occupied state that used to be negative becomes positive, then the

quark which used to be a part of the Dirac sea becomes a distinct particle. In particular, in

the instanton background, energies of Nf right-handed states drop below zero while energies

of Nf left-handed state rise above zero. Consequently, Nf RH quarks dissolve into the Dirac

sea — the physical vacuum of the quarks — while Nf LH quarks pop out from Dirac sea

and become distinct particles. And that’s how the net effect is Nf quarks changing their

helicities from RH to LH.

But in these notes I focus on the functional quantization language rather than the Hamil-

tonian language. And in this language, changing quark’s helicities and chiralities is related

to the normalizable zero modes of the quark fields in the gauge field background. That is,

normalizable in Euclidean space solutions of the Dirac equation,

6Dψ(x) = 0,

∫
d4xe ψ

†ψ < ∞. (84)

As we shall see momentarily, these zero modes are chiral, γ5ψ = ±ψ, and the numbers

of zero modes for each chirality are related to the topological index I of the gauge field

configuration.

But before we start with the zero modes, consider the operator −6D2 in the Hilbert space

of Dirac spinors in 4 Euclidean dimensions. This operator is Hermitian and non-negative,

so we may diagonalize it. Thus, we get a basis of eigenstates ψλ(x), − 6D2ψλ = C2
λψλ(x),

indexed by some parameter λ. For discrete eigenvalues C2
λ — and only for the discrete

eigenvalues, — the eigenspinors ψλ(x) are normalizable in 4D.
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Furthermore, the operator − 6D2 commutes with the γ5, so we may diagonalize both of

them at the same time, thus

−6D2ψλ(x) = C2
λψλ(x), γ5ψλ(x) = ±λψλ(x). (85)

The operator i 6D is also Hermitian; also, it squares to − 6D2 and (b) anticommutes with the

γ5. Consequently, all the simultaneous eigenstates of − 6D2 and γ5 with Cλ 6= 0 come in

pairs of the same C2
λ but opposite chiralities: Given ψλ(x) obeying eqs. (85), we construct

ψ′(x)
def
=

1

Cλ
i 6Dψλ(x) (86)

which obeys

−6D2ψ′λ(x) = C2
λψ
′
λ(x), γ5ψ′λ(x) = ∓λψ′λ(x), (87)

thus if ψλ is LH then ψ′λ is RH and vice verse. On the other hand, the eigenvalues with

Cλ = 0 do not have to come in pairs; instead, they simply obey i 6Dψλ(x) = 0.

Next, consider the trace (in the Hilbert space of the 4D spinors)

N(t) = Tr
(
γ5 exp(t 6D2)

)
. (88)

Since − 6D2 is a positive operator, for any t > 0 the exponential factor in the trace rapidly

approaches zero for high-momentum states, so the trace is UV-finite. As to a potential IR

divergence, it may be regulated by putting the system in a large but finite box, but let’s not

worry about that issue. Instead, let’s formally evaluate this trace in the common eigenbasis

ψλ of the −6D2 and γ5 operators. In this basis,

γ5 exp(t 6D2)ψλ(x) = ±λ exp(−tC2
λ)ψλ(x), (89)

hence

N(t) =
∑
λ

±λ exp(−tC2
λ). (90)

Moreover, for any C2
λ 6= 0, the eigenvalues come in pairs of opposite chiralities, so their

contributions to the trace (90) cancel each other. Instead, the only un-cancelled contributions
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come from the zero modes: the RH zero modes contribute +1 while the LH zero modes

contribute −1. Consequently, for any t > 0,

N(t) = same N = #

(
right handed

zero modes

)
− #

(
left handed

zero modes

)
. (91)

Note: since only the zero modes do not pair-up by chiralities, they are distinct from all the

C2
λ > 0 eigenstates, so the zero eigenvalue C2

λ = 0 is discrete and the the corresponding eigen-

states are normalizable. Thus, the zero modes counted in eq. (91) — are the normalizable

zero modes.

Atiyah–Singer theorem: For a QCD-like theory,

N = −Nf × I[gauge fields] = −
Nf

16π2

∫
d4xe tr

(
FµνF̃µν

)
. (92)

For a more general gauge theory with some gauge group G and massless Dirac fermions in

some multiplets (m) of G, the theorem becomes

#

(
LH zero modes

of fermions in (m)

)
− #

(
RH zero modes

of fermions in (m)

)
= 2R(m)× I[gauge fields]. (93)

I am not going to prove the Atiyah–Singer theorem in class. Instead, let me simply relate

it to my notes on the anomaly of the fermionic path integral, pages 21–28. Consider the

trace (88) for a small t = 1/Λ2 for some very large energy scale Λ acting as a UV regulator.

In this context,

N = Tr
(
γ5 × exp(6D2/Λ2)

)
(94)

acts as a UV-regulated

N = Trreg(γ5) = Anomaly, (95)

which evaluates to precisely −Nf × Index of the gauge field configuration.

Also, let me give a simple example of the Atiyah–Singer theorem in action. Let the

gauge group be SU(2) and the gauge field configuration is the ’t Hooft’s instanton

Aaµ(x) =
2ηaµνxν

x2
e + ρ2

(96)

of index I = +1. Let’s have a single SU(2) doublet of massless Dirac fermions Ψi(x), or

equivalently a doublet of LH Weyl spinors ψiα(x) plus a doublet of RH Weyl spinors χiα̇(x).
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(In my notations, i = 1, 2 is the gauge index, α = 1, 2 is the LH Weyl spinor index, and

α̇ = 1, 2 is the RH Weyl spinor index.) Then, in the instanton background (96), the LH

Weyl spinors have a unique normalizable zero mode,

ψiα(x) = δiα ×
const

(x2
e + ρ2)3/2

, 6Dψiα = 0. (97)

On the other hand, the RH Weyl spinors have no normalizable zero modes at all. Thus

indeed,

#

(
LH zero

modes

)
− #

(
RH zero

modes

)
= 1 − 0 = +1 = (2R(2) = 1)× (I = +1) = +1. (98)

Effects of Fermionic Zero Modes

Now that we know that in I 6= 0 backgrounds the fermionic fields have normalizable zero

modes, let’s consider the consequences of these zero modes. But as a training exercise, let’s

start with the Gaussian integral over finite numbers of fermionic variables,∫
dN θ̄

∫
dNθ exp

(
−θ̄iAijθj

)
= det(A). (99)

Clearly, if the matrix A has zero eigenvalues, then this integral vanishes. But if A has only

one zero eigenvalue, then the Gaussian+ integral involving an extra θθ̄ pair does not vanish.

Instead,∫
dN θ̄

∫
dNθ exp

(
−θ̄iAijθj

)
× θkθ̄` =

= [minor(A)]k`

= (zero eigenvector∗)k(zero eigenvector)` ×
∏

(nonzero eigenvalues)

6= 0.

(100)

Likewise, if the matrix A has K zero eigenvalues, then the integrals∫
dN θ̄

∫
dNθ exp

(
−θ̄iAijθj

)
× θi1 · · · θiL θ̄j1 · · · θ̄jL (101)

vanish for L < K but not for L ≥ K because K of the θ’s and K of the θ̄’s would soak up
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all the zero modes of the matrix A. In particular, for L = K, the integral amounts to

∏
N−K

(
nonzero

eigenvalues

)
×
∏
K

(
zero eigenvectors∗,

antisymmetrized

)
×
∏
K

(
zero eigenvectors,

antisymmetrized

)
. (102)

Now let’s generalize these formulae to the fermionic functional integrals in the gauge-field

background, namely the fermionic partition function

Ẑ[Aµ] =

∫∫∫
D[Ψ]

∫∫∫
D[Ψ] exp

(
−
∫
d4xe Ψ 6DΨ

)
(103)

and 2L-fermion amplitudes

∫∫∫
D[Ψ]

∫∫∫
D[Ψ] exp

(
−
∫
d4xe Ψ 6DΨ

)
×Ψ1 · · ·ΨL ×Ψ1 · · ·ΨL . (104)

When the 6D operator — which plays the role of matrix A — has K > 0 zero modes,

the fermionic partition function (103) vanishes, but the amplitudes (104) involving L ≥ K

fermionic pairs do not vanish! In particular, for L = K the fermionic integral (104) yields

(coefficient)×
∏
K

(zero modes of Ψ)×
∏
K

(zero modes of Ψ). (105)

For example, consider QCD with Nf massless quark flavors. In the 1-instanton background,

we have one zero mode of the left-handed ΨL,f for each flavor f but no zero modes of the

right-handed ΨR,f . On the Ψ side, the chirality is flipped, so we have one zero mode for each

flavor of ΨR,f but no zero modes of ΨL,f . Consequently, the leading fermionic correlation

function in the one-instanton sector needs 2Nf fermionic fields to soak up all the zero modes,

thus

〈Ω|T
Nf∏
f=1

ΨL,fΨR,f |Ω〉 6= 0. (106)

In particle terms, this correlation function corresponds to a process which creates a LH quark

for each ΨL and annihilates a RH quark for each ΨR. The net effect of this process is to

turn Nf RH quarks into LH quarks thus changing the axial charge by ∆QA = −2Nf .
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Likewise, in the electroweak theory, in the background of a single SU(2)W instanton,

each SU(2) doublet of left-handed leptons or quarks has one zero mode of the corresponding

field. Consequently, the fermionic functional integral gives rise to a 12-fermion amplitude —

1 lepton field for each family, and 1 quark field for each family and each color. Each field

here can create a LH quark or lepton or annihilate a RH quark or lepton, so the net lepton

number changes by ∆L = +3 and the net quark number changes by 3∆B = +9.

Instanton Angle, Axial Symmetries, and Strong CP Violation

Earlier in these notes we have learned about the instanton angle Θ affecting the non-

perturbative effects in a Yang–Mills theory. Obviously, we may include such angle into any

gauge theory, so let’s do it for QCD with a single massless quark flavor,

L = − 1

2g2
tr
(
FµνFµν

)
+

Θ

16π2
tr
(
FµνF̃µν

)
+ iΨ 6DΨ. (107)

Now let’s try a local axial transform of the quark field,

Ψ(x) → exp
(
iφ(x)γ5

)
Ψ(x). (108)

This is not a symmetry of the theory, not even classically. Indeed, such axial transform

changes the Lagrangian (107) by

∆L = −∂µφ×Ψγµγ5Ψ = −∂µφ×
(
axial current Jµ5

)
〈〈 subtracting a total derivative 〉〉
∼= φ× ∂µJ5µ

〈〈 by axial anomaly 〉〉

= φ× −1

8π2
tr
(
FµνF̃µν

)
.

(109)

In particular, for a global axial transform (where φ is the same for all x), we have

∆L = − φ

8π2
tr
(
FµνF̃µν

)
, (110)

which amounts to changing the instanton angle

Θ → Θ − 2φ. (111)

And since a global axial transform of a massless quark field is a valid field redefinition,
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the fact that this transform changes the instanton angle means that in QCD with massless

quarks the instanton angle is ill defined.

Next, consider QCD with a single massive flavor. In the Weyl fermion language for the

quarks,

ΨL,R =
1∓ γ5

2
ΨDirac , (112)

the fermionic part of the QCD Lagrangian becomes

Lψ = iΨL 6DΨL + iΨR 6DΨR − mΨRΨL − m∗ΨLΨR (113)

for a complex mass parameter m. The magnitude |m| of this mass parameter is the physical

mass of the quark, while the phase of m is a matter of convention, which may be changed

by a suitable axial transform of the quark fields. Indeed, in the Weyl fermion language, the

(global) axial transform

ΨDirac(x) → exp(iφγ5)ΨDirac(x) (114)

becomes

ΨL(x) → e−iφΨL(x), ΨR(x) → e+iφΨR(x), (115)

so to keep the classical Lagrangian (113) invariant we should also change the phase of m

according to

m → e+2iφm. (116)

This way, we cal always make m real and non-negative.

However, in the quantum theory a global axial transform of the quark fields changes not

only the phase of m but also the instanton angle Θ. Altogether, we have

m → e2iφm, Θ → Θ − 2φ, (117)

while

Θ
def
= Θ + phase(m) (118)

remains invariant.
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Now let’s generalize our analysis to QCD with several massive quark flavors. In the

Nf ×Nf matrix form, the fermionic part of the Lagrangian is

Lψ = iΨL 6DΨL + iΨR 6DΨR − ΨRMΨL − ΨLM
†ΨR (119)

where M is now a complex Nf × Nf mass matrix. However, this matrix can be made

diagonal, real, and positive (or at least non-negative) by a (global) chiral U(Nf )L×U(Nf )R

transform of the quark fields:

Ψ′L(x) = ULΨL(x), Ψ′R(x) = URΨR(x), (120)

for some independent unitary matrices UL and UR, hence

M ′ = URMU †L (121)

to keep the classical Lagrangian (119) invariant. For any complex matrix M , there always

exist some unitary matrices UL, UR such that the resulting M ′ matrix is diagonal, real, and

non-negative.

In the quantum theory, the chiral transform (120) is anomalous, so it generally changes

the instanton angle Θ. Specifically, it’s the U(1)A part of the U(Nf )L × U(Nf )R symmetry

that is anomalous, so reorganizing the symmetry as SU(Nf )L×SU(Nf )R×U(1)V ×U(1)A,

we have

φA = 1
2 phase det(UR) − 1

2 phase det(UL) (122)

and therefore

Θ′ = Θ − 2φA = Θ − phase det(UR) + phase det(UL). (123)

At the same time,

det(M ′) = det(M)× det(UR)

det(UL)
, (124)

hence

phase det(M ′) = phase det(M) + phase det(UL) − phase det(UL), (125)
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which makes the combined angle

Θ
def
= Θ + phase det(M) (126)

invariant under chiral transforms.

Now consider the possibility of strong CP violation in QCD. Naively, the QCD La-

grangian has two kinds of CP odd terms: the complex mass matrix for the quarks, and the

instanton angle Θ. Indeed, the tr(εFF) terms is C-even but P-odd, so it breaks the CP

symmetry of the gluon sector. As to the quark sector, we saw back in November that in the

Weyl fermion language

CP : ΨL(x, t) → γ2γ0Ψ∗L(−x, t),

ΨR(x, t) → γ2γ0Ψ∗R(−x, t),

hence
(
iΨL 6DΨL + iΨR 6DΨR

)
→

(
iΨL 6DΨL + iΨR 6DΨR

)
but

(
ΨRMΨL + ΨLM

†ΨR

)
→

(
ΨRM

∗ΨL + ΨLM
>ΨR

)
,

(127)

so a complex mass matrix M 6= M∗ seems to break the CP symmetry. However, the CP

action (127) can be modified to act as

Ψ′L(x, t) → γ2γ0Ψ′∗L(−x, t), Ψ′R(x, t) → γ2γ0Ψ′∗R(−x, t) (128)

on the chirally transformed quark fields

Ψ′L(x) = ULΨL(x), Ψ′R(x) = URΨR(x) (129)

instead of the original ΨL and ΨR. And since the mass matrix can always be made real by

such a chiral transform, M ′ = M ′∗, the modified CP transform would be a good symmetry

of the fermionic Lagrangian.

But any chiral transform that would make the mass matrix M ′ real would also change

the instanton angle from Θ to Θ′ = Θ as in eq. (126). And if that new instanton angle

has non-zero value, then we would still have the strong CP violation in the gluon sector.

But if the combined Θ angle happens to vanish, then the (modified) CP would be an exact
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symmetry of QCD. So here is the bottom line: The strong CP violation in QCD depends

only on the combined Θ angle rather than the original Θ and/or the phases of the quark

mass matrix .

Furthermore, the CP-violating Θ angle of QCD has no perturbative effects, as it affects

only the topologically non-trivial configurations of gauge fields with I 6= 0. But it does affect

the non-perturbative QCD effects such as quark confinement and hence the properties of the

bound states — the mesons, the baryons, and the glueballs. In particular, Θ 6= 0 would give

the neutron a CP-violating electric dipole moment
?

dn = eΘ×
{
O(αQCD × neutron’s radius),

best estimate 4.5 · 10−15 cm.
(131)

However, no strong CP-violating effects were ever discovered experimentally despite diligent

searches. Instead, all we have are rather stringent upper limits on such effects. In particular,

according to the 2024 Particle Data Group listing, the neutron’s electric dipole moment is

limited to |dn| < e× 1.8 · 10−26 cm, which translates to

|Θ| < 4 · 10−12. (132)

Thus, for all practical purposes, there is no strong CP violation.

But from the theoretical point of view, having Θ ≈ 0 with such a high accuracy is rather

puzzling, especially in light of the Higgs origin of quark masses. As we have learned back

in December (here are my notes on the subject), the mass matrices for the (u, c, t) and the

(d, s, b) quark flavors cannot be diagonalized in the same basis respecting the SU(2)W doublet

structure of the LH quarks. Instead, there is a non-trivial unitary Cabibbo–Kobayashi–

Maskawa matrix relating the two bases, and this CKM matrix has a rather large complex

phase. Thus, prior to diagonalization, the Muct and the Mdsb quark mass matrices should

? By Wigner’s projection theorem, the matrix elements of a vector operator d between neutron state
must be parallel to those of the spin operator S,

〈· · ·| d̂ |· · ·〉 = 4
3 〈· · ·| d̂ |· · ·〉 〈n| Ŝ · d̂ |n〉 = (coeff) 4

3 〈· · ·| d̂ |· · ·〉 〈n| ~̂µ · d̂ |n〉 (130)

where ~̂µ is the neutron’s magnetic dipole moment. But the dipole moment product ~̂µ · d̂ is C-even and
parity-odd, so its non-zero value for the neutron would violate the CP symmetry.
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be complex, and there is absolutely no reason to expect the determinant of the net 6 × 6

quark mass matrix

M =

(
Muct 0

0 Mdsb

)
(133)

to have a real determinant. Consequently, to have the phase of this complex determinant

being precisely canceled by the bare instanton angle Θ to obtain Θ = 0 would take either a

miracle of fine tuning, or some new physics beyond the Standard Model.

The most likely explanation of ΘQCD = 0 seems to be some kind of a Peccei–Quinn

symmetry, named after its first proposal by Roberto Peccei and Helen Quinn back in 1977.

Let me give you a rather brief explanation in these notes; for details, please look up Roberto

Peccei’s 2006 lecture notes. Basically, let’s extend the Standard Model to include 2 or

more Higgs doublets, and let the scalar potential have a global U(1) symmetry changing

their relative phases. This symmetry is classically exact but spontaneously broken by the

Higgses’ VEVs, which gives us a continuous family of classically degenerate vacua. Moreover,

let the Yukawa couplings of the several Higgs doublets to the quarks be such that the action

of the Peccei–Quinn U(1) symmetry on the Higgs VEVs changes the phases of the quark

masses such that

U(1)PQ : det(M) → det(M)× eiα. (134)

At the same time, the bare instanton angle Θ of QCD remain unchanged, so that the CP-

violating combined angle changes by φ,

Θ = Θ + phase det(M) → Θ + α. (135)

From the Goldstone–Nambu theorem point of view, we may promote the phase α to a

massless Goldsone field α(x). Classically, the effective low-energy Lagrangian for this field

is simply

Leff =
F 2

2
(∂µα)2 (136)

where F ∼ energy scale where the Peccei–Quinn symmetry is spontaneously broken. In

28

https://arxiv.org/abs/hep-ph/0607268
https://arxiv.org/abs/hep-ph/0607268


terms of a canonically normalized Goldsone field

Φ(x) = F × α(x) + const (137)

this gives us

Leff = 1
2(∂µΦ)2 + no potential, (138)

while the constant in eq, (137) can be set so that

Θ(Φ) =
Φ

F
. (139)

To be precise, the Lagrangian (138) does not include the QCD effects. Non-perturbatively,

the value of Θ(Φ) affects the vacuum state of QCD and hence its vacuum energy density

V (Θ). We do not know how exactly does this potential depend on the Θ, but we know some

of its general features:

• Its general magnitude is O(Λ4
QCD), since all non-perturbative effects in QCD happen

at the ΛQCD scale.

• As a function of Θ, the potential V (Θ) is periodic WRT Θ→ Θ + 2π and even WRT

Θ → −Θ (which is reuired by the CP symmetry of the Θ-less QCD). Consequently,

V (Θ) should have a local extremum at Θ = 0.

? We presume that the extremum at Θ = 0 is the global minimum of the potential V (Θ).

In terms of the Goldstone field Φ, this QCD vacuum energy V (Θ) becomes an effective

potential

Veff(Φ) = V (Θ(Φ)), (140)

whose minimum corresponds to Θ(Φmin) = 0. Thus, QCD effects lift the degeneracies

between the vacua connected by the Peccei–Quinn symmetry, and the preferred vacuum state

is precisely the state which leads to Θ = 0. And that’s how the Peccei–Quinn symmetry

solves the strong CP violation problem, or rather explains why such strong CP violations

happen to be absent from the real world.
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The flip side of the effective potential (140) is that it gives a small mass to the Gold-

stone field Φ of the Peccei–Quinn symmetry; this field is usually called the axion. Indeed,

expanding V (Θ) in powers of Θ we generally have

V (Θ) =
A

2
×Θ

2
+

B

24
×Θ

4
+ · · · (141)

with coefficients A,B, . . . = O(Λ4
QCD). In terms of the canonically normalized axion field Φ,

Veff(Φ) =
A

2F 2
× Φ2 +

B

24F 4
× Φ4 + · · · (142)

hence mass

M =

√
A

F
=

O(Λ2
QCD)

F
. (143)

BTW, the axion field is called that way (or rather its quanta are called the axions) because

of its axial coupling to the gluon fields,

Laxion = 1
2(∂µΦ)2 − M2

2
Φ2 +

g2

16π2F
× Φ× tr

(
FµνF̃

µν
)

+ · · ·

where · · · stand for a similar axial coupling to the electromagnetic fields.

The axions — if they exist — are very interesting particles, and there are zillions of

papers written about them. For a good introduction to the subject, I recommend Roberto

Peccei’s 2006 lecture notes.
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