
PHY–396 K. Mid-term Exam. Due Wednesday, October 23 (2024)

.

Please do not waste your time — and also my time — by copying posted homework solutions

or class notes. If you need to use any homework result, simply reference the appropriate

question or equation and go ahead; likewise for the class notes or anything else explicitly

derived in class. Similarly, you may quote the textbook or any other book you have happened

to read, but in that case make sure to spell out all the intermediate steps.

The first three problems of the exam are about the topologically massive gauge fields in 2+1

spacetime dimensions: Problem 1 deals with the classical abelian fields, problem 2 with the

classical non-abelian fields, and problem 3 with the quantum abelian fields. Finally, problem

4 takes you back to 3 + 1 dimensions and deals with the chiral symmetries of massless

fermions.

1. In three spacetime dimensions (two space plus one time) an antisymmetric Lorentz tensor

Fµν = −F νµ is equivalent to an axial Lorentz vector, Fµν = εµνλFλ. Consequently, in 3D one

can make the photons massive without breaking the gauge invariance of the electromagnetic

field Aµ(x). Indeed, consider the following Lagrangian:

L = −1

2
FλF

λ +
m

2
FλA

λ (1)

where

Fλ(x) = 1
2ελµνF

µν(x) = ελµν ∂
µAν(x), (2)

or in components, F 1 = −E2, F 2 = +E1, and F 0 = −B. (In 2+1 dimensions, the magnetic

field is a pseudoscalar rather than an axial vector.) The parity-breaking mass term in the

Lagrangian (1) is called the topological mass term.

(a) Although the topological mass term is not gauge invariant, the action S =
∫
d3xL is

gauge invariant. (Assuming the Aµ(x) vanish fast enough when x→∞.)

Prove this.
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(b) The massive analogues of the 3D Maxwell equations are

∂λF
λ = 0 and ελµν∂µFν = mF λ. (3)

Derive these equations. Also, spell them out in 2D vector notations.

(c) Show that eqs. (3) imply the Klein–Gordon equations for the tension fields,

(∂2 +m2)Fλ(x) = 0.

Hint: in 2 + 1 dimension εαβγε µνα = gβµgγν − gβνgγµ.

(d) Write down the plane-wave solutions to eqs. (3) and show that for each on-shell momen-

tum kµ = (+ωk,k) there is only one physical polarization. Or rather, one polarization

for the positive-frequency wave and another polarization for the negative frequency wave.

(e) Show that the polarization of the k = 0 wave is circular: E(t) rotates left for m > 0 but

right for m < 0. Then argue that this means that the 2D spin state |s〉 of a topologically

massive photon follows the sign of the topological mass m, namely s = 1× sign(m).

2. The non-abelian analogue of the topological mass term for the 3D gauge fields is the Chern–

Simons term. Combining it with the usual Yang–Mills Lagrangian for the non-abelian gauge

fields, we get

L = LYM + LCS = − 1

2g2
tr
(
FµνFµν

)
+

k

4π
ελµν tr

(
Aλ ∂µAν +

2i

3
AλAµAν

)
= − 1

2g2
tr
(
FµνFµν

)
+

k

8π
ελµν tr

(
AλFµν −

2i

3
AλAµAν

)
.

(4)

For simplicity, let’s assume an SU(N) gauge symmetry group, and all the traces are in the

fundamental representation N of the group.

(a) Expand the Lagrangian (4) in terms of the canonically normalized component fields

Aaµ(x). The Yang–Mills part was done in class, so focus on the Chern–Simons term:

Expand it into a topological mass term m = kg2/4π for each gluon and a derivative-less

3–gluon interaction term.
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Note that g2 has dimensionality of mass in 3D while the k coefficient — called the

Chern–Simons level — is dimensionless. In fact, k must be integer (positive, negative,

or zero) to assure gauge invariance of the quantum theory.

(b) Verify invariance of the action
∫
d3xL under the infinitesimal gauge transformations.

(b∗) For extra credit, instead of part (b):

Show that under a finite gauge transformation U(x), the action changes by a field-

independent amount

∆S =
−k
12π

∫
d3x ελµν tr

(
U−1∂λU · U−1∂µU · U−1∂νU

)
. (5)

FYI — but don’t try to prove this during the exam — the integral here depends only

on the topological properties of the U(x), and its values are always integer × 24π2.

Consequently, for integer k — and only for integer k — ∆S = 2π × an integer, which

makes eiS gauge invariant and assures the gauge invariance of the path integral of the

quantum theory.

(c) Derive the non-abelian analogues of eqs (3).

3. Next, consider the quantum theory of the massive EM fields in 3D; for simplicity, let’s focus

on the abelian fields of problem 1.

(a) Write down the canonical conjugate fields Π1,2(x) to the vector potentials A1,2(x), re-

express the electric fields E1,2 in terms of the Π1,2 and the A1,2 fields, then show that

the canonical commutation relations between the quantum Π̂1,2 and Â1,2 fields lead to

[
Êi(x, t), Êj(y, same t)

]
= −imεij δ(2)(x− y). (6)

(b) One of the classical equations of motion (3) amounts to ∇·E = mB. Since this equation

does not involve time derivatives, it becomes an operatorial identity in the Hilbert space

of the quantum theory.

Use this identity to derive the equal-time commutations relations between the magnetic

and the electric fields.
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(c) Derive the Hamiltonian of the quantum theory from the classical Lagrangian (1) and

show that regardless of the mass m

Ĥ =

∫
d2x
(
1
2Ê

2 + 1
2B̂

2
)
. (7)

Instead, the mass affects the equal-time commutation relations of the quantum fields.

(And also the time-independent relation between B and ∇ · E.)

(d) Finally, use the Hamiltonian (7) and the commutation relations from parts (a) and (b)

to show that in the Heisenberg picture, the quantum Ê(x) and B̂(x) fields obey similar

equations of motion to the classical fields.

4. Finally, let’s go back to 3+1 spacetime dimensions and consider a theory of N massless Dirac

spinor fields Ψ1(x), . . . ,ΨN (x) coupled to the electromagnetic field Aµ(x). All fermions have

the same charge q = −e, thus

L = −1
4FµνF

µν + Ψi(i 6∂ + e 6A)Ψi 〈〈 implicit
N∑
i=1

〉〉. (8)

(a) List all continuous symmetries of the classical theory — global or local, space-time or

internal — and specify how they act on the fields. For simplicity, skip the dilatation

and special conformal symmetries of the classical massless theory.

The rest of this problem focuses on the U(N)L⊗U(N)R chiral symmetries which act on the

Dirac fields according to

Ψ′i(x) =

(
1− γ5

2
(UL)ij +

1 + γ5

2
(UR)ij

)
Ψj(x), (9)

where UL and UR are two independent N × N unitary matrices. The infinitesimal chiral

symmetries act as

δΨi(x) = −iε
(

1− γ5

2
(TL)ij +

1 + γ5

2
(TR)ij

)
Ψj(x) = −iε

(
(TV )ij + γ5(TA)ij

)
Ψj

(10)

for some hermitian matrices TL and TR, and hence TV = 1
2(TR + TL) and TA = 1

2(TR− TL).
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(b) Show that the Noether currents of these symmetries are linear combinations of the vector

and axial currents

(
JµV
)j
i

= Ψiγ
µΨj and

(
JµA
)j
i

= Ψiγ
µγ5Ψj . (11)

Also, verify that all these currents are indeed conserved (in the classical theory).

Now consider the net charge operators in the quantum theory,

(
Q̂V
)i
j

=

∫
d3x

(
Ĵ0
V (x, t)

)i
j

and
(
Q̂A
)i
j

=

∫
d3x

(
Ĵ0
A(x, t)

)i
j
. (12)

(c) Calculate the equal-time commutators of these charges with the fermionic fields Ψ̂k(x, t)

and Ψ̂k(x, t).

(d) Verify that all the charges (12) commute with the Hamiltonian operator for the fermionic

fields. For simplicity, ignore the EM fields and their interactions with the fermions.

(e) Verify that the charges (12) obey the commutation relations of the U(N)× U(N) gen-

erators, namely [(
Q̂V
)i
j
,
(
Q̂V
)k
`

]
= δi`

(
Q̂V
)k
j
− δkj

(
Q̂V
)i
`
,[(

Q̂V
)i
j
,
(
Q̂A
)k
`

]
= δi`

(
Q̂A
)k
j
− δkj

(
Q̂A
)i
`
,[(

Q̂A
)i
j
,
(
Q̂A
)k
`

]
= δi`

(
Q̂V
)k
j
− δkj

(
Q̂V
)i
`
.

(13)

Finally, let’s expand the charges (12) in terms of fermionic creation and annihilation op-

erators. For simplicity, work in the Schrödinger picture and treat the fermionic fields as

free.

(f) As a first step, use the results of homework set#7 to show that

u†(+p, s′)v(−p, s) = 0 = v†(−p, s′)u(+p, s) for any spin states s, s′. (14)

Also show that in the helicity basis for spin states of massless particles

γ5u(p, λ) = +2λu(p, λ) but γ5v(p, λ) = −2λv(p, λ). (15)

Please do not redo the homework in your answer, simply quote the relevant formulae.
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(g) And now expand the fermionic fields into creation and annihilation operators and show

that in the helicity basis for the spin states Show that in the helicity basis of massless

particles’ spin states

(QV )ij =

∫
d3p

(2π)2 2Ep

∑
λ

(
â†(p, λ, j)â(p, λ, i) − b̂†(p, λ, i)b̂(p, λ, j)

)
, (16)

(QA)ij =

∫
d3p

(2π)2 2Ep

∑
λ

2λ×
(
â†(p, λ, j)â(p, λ, i) + b̂†(p, λ, i)b̂(p, λ, j)

)
. (17)

Note: For i = j you may get an extra infinite but c-number constant due to anticom-

muting b̂ and b̂† operators to bring them to normal order (b̂† to the left of b̂). Subtract

this constant away to make sure the vacuum state is annihilated by all the charges.
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