
Neutrino masses

Back when the Glashow–Weinberg–Salam theory was formulated, the neutrinos were

though to be exactly massless. But the later discovery of neutrino oscillations between

the νe, νµ, and ντ species calls for tiny but non-zero neutrino masses, mν < 1 eV. Or

rather, the oscillations call for the neutrino mass matrix Mν
α,β that is non-diagonal in the

weak-interactions basis (νe, µµ, ντ ). Indeed, consider the effective Hamiltonian for a single

ultra-relativistic neutrino particle; in the momentum-species basis,

Ĥ =

√

p̂2 + M̂2 ≈ p̂ +
M̂2

2p̂
. (1)

While a free neutrino flies through distance L from the point where it is produced to the

point where it is detected, the second term here causes its species state to oscillate,

|p, α〉 →
∑

β

exp

(

iL

2p
×M2

)

α,β

|p, β〉 (up to an overall phase). (2)

To illustrate how this works, let me spell out the oscillation matrix for 2 neutrino species,

say νe and νµ. In this case, the 2× 2 mass matrix can be written as

M2 =

(

cos θ − sin θ

sin θ cos θ

)(

m2
1 0

0 m2
2

)(

cos θ sin θ

− sin θ cos θ

)

=
m2

1 +m2
2

2
×
(

1 0

0 1

)

+
m2

1 −m2
2

2
×
(

cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

)

.

(3)

where m1
2 and m2

2 are the eigenvalues and θ is the mixing angle between the mass eigenbasis

(ν1, ν2) and the weak-interaction basis (νe, µµ). Consequently, the oscillation matrix in eq. (2)

becomes (up to an overall phase)

exp

(

iL

2p
×M2

)

= cos

(

L(m2
1 −m2

2)

4p

)

×
(

1 0

0 1

)

+ i sin

(

L(m2
1 −m2

2)

4p

)

×
(

cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

)

.

(4)

In particular, the probability of the neutrino changing its species from νe to νµ (or vice verse)
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after flying through a long distance L is

P (νe → νµ) = sin2(2θ)× sin2
(

L(m2
1 −m2

2)

4p

)

. (5)

For the three neutrino species, the 3 × 3 oscillation matrix is more complicated, so I

am not writing it here. Let me simply say that it depends on the differences m2
1 −m2

2 and

m2
2 − m2

3 between the mass2 eigenvalues, and on the CKM-like mixing angles between the

weak-interactions basis (νe, µµ, ντ ) and the mass eigenbasis (ν1, ν2, ν3). Experimentally, the

neutrino mixing angles are rather large, much larger than the CKM angles for the quarks,

while the δm2 differences are very small. According to the October 2021 best fit from the

NuFit website, the neutrino mixing angles are θ12 = 33.45◦ ± 0.75◦, θ23 = 42◦ ± 1◦ or

49◦ ± 1◦, θ13 = 8.62◦ ± 0.12◦, while the CP-violating phase is either δ13 = 230◦+36
◦

−25◦
or

δ13 = 278◦+22
◦

−30◦
. At the same time, the two independent ∆mass2 differences are ∆m2

21 =

(7.42± 0.21)× 10−5 eV2 and ∆m2
32 = (2.50± 0.03)× 10−3 eV2.

Theoretically, there are two ways to add the neutrino masses to the Glashow–Weinberg–

Salam theory. The first possibility is to make the neutrino fields Dirac spinors and give them

masses via Yukawa couplings to the Higgs doublet, just like the other fermions of the theory.

In terms of the original theory (with massless neutrinos), this means add three right-handed

Weyl fields ψR(N
α) to the theory, make them SU(2) singlets with zero hypercharges, and

give them Yukawa couplings

LYukawa ⊃ −
∑

α,β

Y N
α,β × ψ†

R(N
α)ψiL(L

β)× ǫijH
j + Hermitian conjugates. (6)

When the Higgs scalar gets its VEV

〈H〉 =
v√
2

(

0

1

)

, v ≈ 247 GeV, (7)

the Yukawa couplings (6) give rise to the Dirac mass terms for the neutrinos

Lmass ⊃ −
∑

α,β

MN
α,β × ψ†

R(Nα)ψ
1
L(Lβ) + H. c., MN

α,β =
v√
2
× Y Nα,β . (8)

Similar to the quark mass matrices, theMN
α,β matrix can be diagonalized by a suitable change
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of basis,

ψiL(L
β) → (ŨL)β + γψiL(L

γ), ψR(N
α) → (UN )αδψR(N

δ), (9)

MN → (UN )∗MN (ŨL)† =







m1 0 0

0 m2 0

0 0 m3






, (10)

and the mismatch between the unitary matrices UL and ŨL respectively diagonalizing the

charged leptons’ and neutrinos’ masses gives rise to a CKM-like mixing matrix V = ŨL(UL)†.

The only problem with this setup is that it does not explain why the neutrinos are so

light compared to the other fermions of the Standard Model — million times lighter than

even the electron, never mind the heavier leptons or quarks. All we can say is that the

Yukawa couplings for the neutrinos are extremely weak, Y N ∼ 10−12, but we have no idea

why they are so weak.

The other possibility is to make the neutrinos Majorana fermions. In Dirac-spinor no-

tations, a Majorana fermion is a neutral field Ψ(x) = γ2Ψ∗(x). In terms of the Weyl spinor

fields,

Majorana Ψ(x) =

(

ψL(x)

−σ2ψ∗
L(x)

)

for the same ψL(x), (11)

without an independent ψR(x). Thus, a majorana fermion is equivalent to a single Weyl

fermion ψL(x) together with its conjugate ψ†
L(x). The free Lagrangian for a Majorana

fermion is

L = 1

2
Ψ(i 6∂ − m)Ψ = iψ†

Lσ̄
µ∂µψL +

m

2
ψ⊤
Lσ2ψL +

m

2
ψ†
Lσ2ψ

∗
L , (12)

where the mass term couples the LH Weyl spinor ψL to itself rather than to a separate RH

Weyl spinor ψ†
R. In a general theory of multiple fermions, mass terms of this type are called

the Majorana masses.

To give the neutrinos Majorana masses we do not need the independent right-handed

neutrino fields ψR(Nα). All we need are the left-handed neutrino fields ψ1
L(Lα) and their
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conjugates, plus some interactions that would give rise to the Majorana mass terms

Lmass ⊃ 1

2

∑

α,β

Mν
α,β

(

ψ1
L(Lα)

)⊤
σ2ψ

1
L(Lβ) + 1

2

∑

α,β

Mν∗
α,β

(

ψ1
L(Lα)

)†
σ2
(

ψ1
L(Lβ)

)∗
, (13)

Note that the mass matrix in this formula may be complex rather than real, but it should

be symmetric Mν
β,α =Mν

α,β because

(

ψ1
L(Lβ)

)⊤
σ2ψ

1
L(Lα) = +

(

ψ1
L(Lα)

)⊤
σ2ψ

1
L(Lβ) (14)

— the σ2 matrix is antisymmetric, but the fields are anticommuting fermions.

The neutrino mass terms (13) break the SU(2) × U(1) gauge symmetry so we cannot

put them directly into the Lagrangian of the high-energy theory. Instead, they obtain from

the gauge-invariant couplings of the leptons and Higgs fields, which give rise to the mass

terms after the Higgs gets its vacuum expectation value. The simplest couplings that will do

this job are the Yukawa-like couplings involving two left-handed lepton fields and two Higgs

scalars,

LLLHH =
1

2

∑

α,β

Cα,β ×
(

ǫijH
iψjL(Lα)

)⊤
σ2
(

ǫkℓH
kψℓL(Lβ)

)

+ H. c. (15)

Note that the product ǫijH
iψjL of the Higgs doublet and the left-handed Lepton doublet is

SU(2) invariant and has Ynet = 0. This makes ǫijH
iψjL a gauge-invariant Weyl spinor and

allows us to combine two such products into a gauge-invariant, Lorentz-invariant Lagrangian

term.

When the Higgs VEV breaks the electroweak gauge symmetry, it also makes neutrino

mass terms from the couplings (15). Indeed, in the unitary gauge

H(x) =
v + h(x)√

2

(

0

1

)

(16)

we have

ǫijH
iψjL(Lα) = −v + h√

2
ψ1
L(Lα) = −v + h√

2
ψL(να) (17)

4



and hence

LLLHH =
(v + h)2

4

∑

α,β

Cα,β
(

ψ1
L(Lα)

)⊤
σ2ψ

1
L(Lβ) + H. c.

= Lνmasses + Lν−h interactions
where the emergent neutrino mass

Lνmasses = 1
2

∑

α,β

Mν
α,β

(

ψ1
L(Lα)

)⊤
σ2ψ

1
L(Lβ) + H. c. (18)

are precisely as in eq. (13) for

Mν
α,β =

v2

2
× Cα,β . (19)

Unlike the dimensionless gauge and Yukawa couplings, the Cα,β couplings have dimen-

sionality (energy)−1. Such couplings make trouble for the perturbation theory at high en-

ergies, so they are not allowed in UV-complete quantum field theories. However, if the

Standard Model is only an effective theory that’s valid up to some maximal energy Emax but

at higher energies must be superseded by a more complete theory, then it’s OK for the SM

to have small negative-dimensionality couplings C <∼ (1/Emax). The key word here is small

— it explains why the neutrinos are so much lighter than the other fermions: If C < 1/Emax,

then

mν <∼
v2

Emax

≪ v. (20)

In particular, for Emax ∼ (1015GeV) this limit tells us mν <∼ 0.1 eV, which is in the right

ballpark for the neutrino masses inferred from the neutrino oscillations.

Seesaw Mechanism
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The simplest way to generate the Cα,β couplings in a UV-complete theory is the so-called

seesaw mechanism, which involves:

1. Right handed neutrino fields ψR(Nα) (α = 1, 2, 3) which are completely neutral; in

particular, they are SU(2) singlets with Y = 0 hypercharge.

2. Majorana mass terms for these neutral RH neutrinos in the Lagrangian,

L ⊃ −1

2

∑

α,β

Mα,β
N ψ⊤

R(Nα)σ2ψR(Nβ) + Hermitian conjugates. (21)

These Majorana masses should be very large, MN ≫ 250 GeV.

3. Yukawa couplings of the LH and RH neutrinos to the Higgs scalars exactly as in eq. (6),

and hence Dirac neutrino masses exactly as in eq. (8) once the Higgs gets its VEV.

Let me explain how the seesaw mechanism works with a 1-family example: 1 LH lepton

doublet Li = (ν, e−)L, 1 RH neutrino N , and we ignore all other fields except for the Higgs

doublet H i. The fermionic terms of interest to us are

Lψ ⊃ − yǫijH
iψ†
R(N)ψL(L

j)− 1

2
MNψ

⊤
R(N)σ2ψR(N) + H. c., (22)

and once the Higgs gets its VEV (7), we end up with both Dirac and Majorana masses for

the neutrinos,

Lν mass = − yv√
2
ψ†
R(N)ψL(L

1 = ν) − 1

2
MNψ

⊤
R(N)σ2ψR(N) + H. c. (23)

Trading the RH Weyl spinor ψR(N) for an equivalent LH Weyl spinor ψL(N̄) = σ2ψ
∗
R(N),

we get

Lν mass = −1

2

∑

α,β=ν,N̄

(

Mαβψ
⊤
L (α)σ2ψL(β) + M∗αβψ†

L(α)σ2ψ
∗
L(β)

)

(24)

where Mαβ is a 2× 2 symmetric mass matrix

Mν =

(

0 mD

mD MN

)

where mD =
yv√
2

≪ MN . (25)
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Diagonalizing this mass matrix gives us two Majorana mass terms

Lν mass = −m1

2
ψ⊤
L (1)σ2ψL(1) − m2

2
ψ⊤
L (2)σ2ψL(2) + H. c.

for eigenvalues

m1 ≈ m2
D

MN
and m2 ≈ MN (26)

and eigenstates

ψL(1) ≈ ψL(ν) − mD

MN
ψL(N̄) ≈ ψL(ν).

ψL(2) ≈ ψL(N̄) +
mD

MN
ψL(ν) ≈ ψL(N̄),

(27)

Qualitatively, this diagonalization leaves the fermionic fields ψL(ν) and ψL(N̄) almost as

they are, but it turns the Dirac mass mixing these fields into a much smaller Majorana mass

mν = m2
D/MN for the neutrino ν. Moreover, it is very easy to make this mν very small

— much smaller than the charged leptons’ or quarks’ masses — by a simple expedient of

starting with very heavy MN in the Lagrangian. For example, for mD = 100 MeV (similar

to the muon mass), raising MN to 108 GeV lowers the mν down to 0.1 eV (in the right ball

park for the neutrino oscillations). On the logarithmic scale, the extreme mass inequalities

Mν ≪ mD ≪MN look like a seesaw

log(mass)

MN

mD

mν

and that’s where the name seesaw mechanism comes from: with the Dirac neutrino mass

acting as the pivot point, the heavier we make the RH neutrino N , the lighter the LH
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neutrino ν mass comes out.
⋆

Another way to understand the seesaw mechanism is via Feynman diagrams. Consider

the amplitude involving two LH leptons and two Higgs scalars; by crossing symmetry, we

treat all 4 particles as incoming. This amplitude changes the lepton number by −2, so it

must involve the RH neutrino N and its mass term. At the tree level, there are two diagrams

related by exchanging the external legs:

LjLi

Hk Hℓ

N
iM1 = ǫikǫjℓ × (−iy)2v̄ i

6q −MN
u, (28)

and

LjLi

Hk Hℓ

N
iM2 = ǫiℓǫjk × (−iy)2v̄ i

6q′ −MN
u, (29)

At energies much lower than MN we may approximate the N propagators in both diagrams

as

i

6q −MN
≈ i

6q′ −MN
≈ −i

MN
, (30)

hence

M1 + M2 ≈ y2

MN
×
(

ǫikǫjℓ + ǫiℓǫjk
)

. (31)

In terms of Feynman diagrams, this approximation corresponds to shrinking the N propa-

⋆ By LH vs RH neutrinos I mean their chiralities rather than helicities. In terms of particle helicities, the
ψ(ν) contains the LH neutrinos and the RH antineutrinos, while the ψ(N) contains the RH neutrinos
and LH antineutrinos.
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gator to a point,

LjLi

Hk Hℓ

iM ≈ iy2

MN
×
(

ǫikǫjℓ + ǫiℓǫjk
)

, (32)

where the vertex corresponds to the effective low-energy theory — for E ≪ MN — LLHH

coupling

L ⊃ C

2
(ǫijH

iψjL)
⊤σ2(ǫkℓH

kψkL) + H. c. for C =
y2

MN
, (33)

exactly as in eq. (15) (except for only one neutrino flavor here). Consequently, when the

Higgs scalar get its VEV, the LH neutrino gets a Majorana mass

mν =
v2

2
× C =

v2y2

2MN
=

m2
D

MN
. (34)

Generalization of the seesaw mechanism to 3 LH neutrino species is completely straight-

forward. Take 3 RH neutrinos with a generic 3 × 3 mass matrix MN
αβ and a generic 3 × 3

matrix Y Nαβ of Yukawa couplings to the LH neutrinos and the Higgs scalars. Consequently,

the Feynman propagators for the Nα fields need species indices α, β in addition to the usual

Dirac indices (which we suppress)

=

(

i

6q −MN + i0

)

α,β

, (35)

the Yukawa vertices also need the species indices, and the Feynman diagrams like

Lj,βLi,α

Hk Hℓ

N
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evaluate to

iM = ǫijǫkℓ ×
∑

γ,δ

(iY Nαγ)(iY
N
βδ ) v̄

(

i

6q −MN + i0

)

γδ

u. (36)

In the q ≪ MN limit, this amplitude (plus a similar amplitude related by exchanging the

scalar legs) evaluates to

M(Li,α, Lj,β , Hk, Hℓ) = Cα,β ×
(

ǫikǫjℓ + ǫiℓǫjk
)

× v̄u, (37)

where

Cα,β =
∑

γ,δ

Y NαγY
N
βδ ×

(

1

MN

)

γδ

, (38)

or in 3× 3 matrix notations,

C = YN × 1

MN
× Y ⊤

N . (39)

And this is the matrix of LLHH couplings in the effective theory at energies belowMN (but

above the electroweak scale of the Higgs VEV). Once the Higgs scalar gets its VEV, these

couplings give rise to the Majorana masses of the LH neutrinos; in matrix notations

mν =
v2

2
× C = mD × 1

MN
×m⊤

D. (40)

Experimentally, we have no knowledge of the N fields’ masses or Yukawa couplings to

the LH leptons. All we know is the LH neutrino mass matrix (40), or rather some parameters

of this matrix relevant to the neutrino oscillations. Consequently, there is a wide range of

YN and MN values consistent with out current knowledge; in particular, MN could be as

low as 1 TeV (for electron-like y ∼ 10−6) or as high as 1015 GeV (for top-quark-like y ∼ 1).

To narrow this range, we would need new Physics beyond the Standard Model.
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