
Feynman Propagators

Time Ordering and Propagators

Perturbation theory (as we shall learn later in this class) requires putting products of

time-dependent operators in time order,

V̂ (tn)V̂ (tn−1) · · · V̂ (t2)V̂ (t1) for tn > tn−1 > · · · > t2 > t1 (1)

— the earliest operator V̂ (t1) goes to the right of the product so it acts first on a quantum

state, the second-earliest V̂ (t2) is second from the right so it acts second (after V̂ (t1) but

before all the other operators), etc., etc., until the latest operator V̂ (tn) goes to the left so it

acts after everybody else. In short, the operators act in the order of their times, so an earlier

operators must stand to the right of a later operator.

The procedure of putting operators in time order can be described by a meta-operator

acting in the space of operator products, namely the time-orderer T which acts as

T Ô1(x1)Ô2(x2) =

{

Ô1(x1)Ô2(x2) if x01 > x02,

Ô2(x2)Ô1(x1) if x02 > x01.
(2)

Thanks to relativistic causality, the two operators Ô1(x1) and Ô2(x2) commute for spacelike

x1 − x2, so their sudden commutation at x01 = x02 does not cause any discontinuity. (Except

maybe at x1 = x2.) The time-orderer T acts on products of several operators in a manner

similar to eq. (2); for example, for a product of 3 operators

T Ô1(x1)Ô2(x2)Ô3(x3) =















































Ô1(x1)Ô2(x2)Ô3(x3) if x01 > x02 > x03,

Ô1(x1)Ô3(x3)Ô2(x2) if x01 > x03 > x02,

Ô2(x2)Ô3(x3)Ô1(x1) if x02 > x03 > x01,

Ô2(x2)Ô1(x1)Ô3(x3) if x02 > x01 > x03,

Ô3(x3)Ô1(x1)Ô2(x2) if x03 > x01 > x02,

Ô3(x3)Ô2(x2)Ô1(x1) if x03 > x02 > x01.

(3)

Again, thanks to relativistic causality, the time-ordered product has no discontinuities when

x01 = x02, or x
0
1 = x03, or x

0
2 = x03.
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A particularly important application of the time ordering to the perturbation theory is

constructing of Feynman propagators — vacuum ‘sandwiches’ of two time-ordered quantum

fields. Thus, for the scalar field Φ̂(x) we have

GF (x− y) = 〈0|T Φ̂(x)Φ̂(y) |0〉 (4)

where |0〉 is the vacuum state of the theory, for the massive vector field Âµ(x) we have

G
µν
F = 〈0|T Âµ(x)Âν(y) |0〉 , (5)

etc., etc. Through most of these notes I shall focus on the scalar propagator (4), but in the

last section I shall explore the propagators of other field types.

Feynman Propagator of a Scalar Field

Let’s evaluate the Feynman propagator (4) for the free scalar field Φ̂(x). As we saw

a couple of lectures ago (see my notes on the subject), the Φ̂(x) is a linear combination of

creation and annihilation operators with plane-wave coefficients,

Φ̂(x) =

∫

d3k

(2π)3 2ωk

(

e−ikx âk + e+ikx â
†
k

)k0=+ωk

. (6)

A product of two fields Φ̂(x)Φ̂(y) involves products of two creation or annihilation operators,

Φ̂Φ̂ ⊃ ââ, â†â, ââ†, â†â†. (7)

Among these, only the ââ† products have non-zero vacuum ‘sandwiches’, and only for k = k′,

〈0| â
k
â
†
k′ |0〉 = 2ωk (2π)

3δ(3)(k− k′), (8)

while 〈0| ââ |0〉 ≡ 〈0| â†â† |0〉 ≡ 〈0| â†â |0〉 ≡ 0. (9)
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Consequently, the vacuum sandwich of a product of two scalar fields (without the time order-

ing) evaluates to

〈0| Φ̂(x)Φ̂(y) |0〉 =

∫

d3k

(2π)3 2ωk

∫

d3k′

(2π)3 2ωk′



















e−ikx−ik′y × 〈0| âk, âk′ |0〉

+ e−ikx+ik′y × 〈0| â
k
, â

†
k′ |0〉

+ e+ikx−ik′y × 〈0| â†
k
, â

k′ |0〉

+ e+ikx+ik′y × 〈0| â†
k
, â

†
k′ |0〉



















=

∫

d3k

(2π)3 2ωk

∫

d3k′

(2π)3 2ωk′



















e−ikx−ik′y × 0

+ e−ikx+ik′y × 2ωk(2π)
3δ(3)(k− k′)

+ e+ikx−ik′y × 0

+ e+ikx+ik′y × 0



















=

∫

d3k

(2π)3 2ωk

e−ikx+iky,

(10)

where in all the exponentials k0 = +ωk and k′0 = +ωk′. Earlier in class we have defined

D(z)
def
=

∫

d3k

(2π)3 2ωk

(

e−ikz
)k0=+ωk

, (11)

so the bottom line of eq. (10) amounts to

〈0| Φ̂(x)Φ̂(y) |0〉 = D(x− y). (12)

Thus far, we have ignored the time ordering. Taking it into account, we have

for x0 > y0, GF (x− y) = 〈0| Φ̂(x)Φ̂(y) |0〉 = D(x− y), (13)

for x0 < y0, GF (x− y) = 〈0| Φ̂(y)Φ̂(x) |0〉 = D(y − x), (14)

or in other words

GF (x−y) = θ(x0 > y0)×D(x−y) + θ(x0 < y0)×D(y−x) =

{

D(x− y) when x0 > y0,

D(y − x) when x0 < y0.
(15)

Now consider a complex scalar field, which decomposes into creation and annihilation
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operators according to

Φ̂(x) =

∫

d3k

(2π)3 2ωk

(

e−ikx â
k
+ e+ikx b̂

†
k

)k0=+ωk

, (16)

Φ̂†(x) =

∫

d3k

(2π)3 2ωk

(

e−ikx b̂
k
+ e+ikx â

†
k

)k0=+ωk

. (17)

This time a product of two Φ̂’s or two Φ̂†’s decomposes into operator products

Φ̂Φ̂ ⊃ ââ, âb̂†, b̂†â, b̂†b̂†,

Φ̂†Φ̂† ⊃ â†â†, â†b̂, b̂â†, b̂b̂,
(18)

none of which has any vacuum sandwiches, hence

〈0|T Φ̂(x)Φ̂(y) |0〉 = 〈0|T Φ̂†(x)Φ̂†(y) |0〉 = 0. (19)

On the other hand, a product of a Φ̂ and a Φ̂† does have a non-zero vacuum sandwich due to

Φ̂Φ̂† ⊃ ââ† + useless,

Φ̂†Φ̂ ⊃ b̂b̂† + useless.
(20)

Consequently

〈0| Φ̂†(x)Φ̂(y) |0〉 =

∫

d3k

(2π)3 2ωk

∫

d3k′

(2π)3 2ωk′

(

e−ikx+ik′y 〈0| b̂
k
b̂
†
k′ |0〉 + 0 + 0 + 0

)

=

∫

d3k

(2π)3 2ωk

∫

d3k′

(2π)3 2ωk′

e−ikx+ik′y × 2ωk(2π)
2δ(3)(k− k′)

=

∫

d3k

(2π)3 2ωk

e−ikx+iky = D(x− y),

(21)

and likewise

〈0| Φ̂(x)Φ̂†(y) |0〉 = D(x− y). (22)

Hence, after time-ordering the two fields, we get

〈0|T Φ̂†(x)Φ̂(y) |0〉 = 〈0|T Φ̂(x)Φ̂†(y) |0〉 = GF (x− y)

=

{

D(x− y) when x0 > y0,

D(y − x) when y0 > x0.

(23)

Thus, the charged scalar field has exactly the same Feynman propagator GF (x − y) as the

neutral scalar field.
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The Feynman propagator is a Green’s function

A free scalar field obeys the Klein–Gordon equation (∂2 + m2)Φ̂(x) = 0. Consequently,

the Feynman propagator (4) for the Φ̂ is a Green’s function of that equation,

(∂2 +m2)GF (x− y) = −iδ(4)(x− y). (24)

Note the delta-function on the RHS is in all four dimensions of the spacetime.

To prove eq. (24), we start with a Lemma: the time derivative of a time-ordered product

of two operators Â(t) and B̂(t0) obtains as

∂

∂t

(

TÂ(t)B̂(t0)
)

= T

(

∂Â(t)

∂t

)

B̂(t0) + δ(t− t0)×
[

Â(t), B̂(t0)
]

. (25)

Proof (of the lemma):

TÂ(t)B̂(t0)
def
= θ(t > t0)× Â(t)B̂(t0) + θ(t < t0)× B̂(t0)Â(t), (26)

∂

∂t
θ(t > t0) = +δ(t− t0),

∂

∂t
θ(t < t0) = −δ(t− t0), (27)

therefore

∂

∂t

(

TÂ(t)B̂(t0)
)

=
∂

∂t

(

θ(t > t0)× Â(t)B̂(t0)
)

+
∂

∂t

(

θ(t < t0)× B̂(t0)Â(t)
)

= δ(t− t0)× Â(t)× B̂(t0) + θ(t > t0)×
∂Â(t)

∂t
× B̂(t0)

− δ(t− t0)× B̂(t0)× Â(t) + θ(t < t0)× B̂(t)× ∂Â(t)

∂t

〈〈 reorganizing terms 〉〉

= δ(t− t0)×
(

Â(t)B̂(t0) − B̂(t0)Â(t)
)

+

(

θ(t > t0)
∂Â

∂t
B̂(t0) + θ(t < t0)B̂(t0)

∂Â

∂t

)

= δ(t− t0)×
[

Â(t), B̂(t0)
]

+ T

(

∂Â(t)

∂t
B̂(t0)

)

.

(28)

Quod erat demonstrandum.
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Now let’s prove that the propagator (4) is a Green’s function. In light of the lemma (25),

∂

∂x0
GF (x− y) = 〈0| ∂

∂x0

(

TΦ̂(x)×̂Φ(y)
)

|0〉

= 〈0|T
(

∂0Φ̂(x)× Φ̂(y)
)

|0〉 + δ(x0 − y0)× 〈0|
[

Φ̂(x), Φ̂(y)
]

|0〉 .
(29)

In the second term on the bottom line here, the quantum fields Φ̂(x) and Φ̂(y) are at equal

times x0 = y0, so they commute with each other. Consequently, the second term vanishes,

and we are left with

∂

∂x0
GF (x− y) = 〈0|T

(

∂0Φ̂(x)× Φ̂(y)
)

|0〉 . (30)

Now let’s take another time derivative. Again, using the lemma (25), we obtain

∂20GF (x− y) =
∂

∂x0
〈0|T

(

∂0Φ̂(x)× Φ̂(y)
)

|0〉

= 〈0|T
(

∂20 Φ̂(x)× Φ̂(y)
)

|0〉 + δ(x0 − y0)× 〈0|
[

∂0Φ̂(x), Φ̂(y)
]

|0〉 .
(31)

This time, in the second term on the bottom line, ∂0Φ̂(x) = Π̂(x), and at equal times x0 = y0

it does not commute with the Φ̂(y). Instead,

for x0 = y0,
[

Π̂(x), Φ̂(y)
]

= −iδ(3)(x− y), (32)

hence

δ(x0 − y0)× 〈0|
[

∂0Φ̂(x), Φ̂(y)
]

|0〉 = −iδ(3)(x− y)× δ(x0 − y0) = −iδ(4)(x− y). (33)

Thus, eq. (31) reduces to

∂20GF (x− y) = 〈0|T
(

∂20Φ̂(x)× Φ̂(y)
)

|0〉 − iδ(4)(x− y). (34)

Now consider the space-derivative terms in the Klein-Gordon equation. Since the space
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derivatives commute with the time-ordering, we have

∇2
xGF (x− y) = ∇2

x 〈0|
(

TΦ̂(x)× Φ̂(y)
)

|0〉 = 〈0|T
(

∇2Φ̂(x)× Φ̂(y)
)

|0〉 (35)

without any extra terms. Combining this formula with eq. (34), we obtain

(

∂20 −∇2 +m2
)

GF (x− y) = 〈0|T
(

(∂20 −∇2 +m2)Φ̂(x)× Φ̂(y)
)

|0〉 − iδ(4)(x− y). (36)

In the first term on the RHS here, the quantum field Φ̂(x) obeys the Klein–Gordon equation

(∂20 − ∇2 + m2)Φ̂(x) = 0, so the first term vanishes. The remaining second term is just the

delta function, thus

(

∂20 −∇2 +m2
)

GF (x− y) = −iδ(4)(x− y), (37)

which proves that GF (x−y) is indeed a Green’s function of the Klein–Gordon equation. Quod

erat demonstrandum.

General Green’s functions and the Feynman’s choice

In general, the same differential equation may have many different Green’s functions,

depending on the boundary conditions, etc. So let’s consider a generic Green’s function of the

Klein–Gordon equation, that is, some function G(x− y) satisfying

(∂2 +m2)G(x− y) = −iδ(4)(x− y). (38)

Let’s Fourier transform this function in all four dimensions, thus

G(x− y) =

∫

d4k

(2π)4
e−ik(x−y) × G̃(k). (39)

In the 4–momentum space, eq. (38) becomes

(−k2 +m2)× G̃(k) = −i, (40)
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hence naively

G̃(k) =
i

k2 −m2
(41)

and therefore

G(x− y) =

∫

d4k

(2π)4
ie−ik(x−y)

k2 −m2
. (42)

The problem with this naive formula is that it integrates over the singularities of the

integrand. Indeed, the denominator k2 − m2 = k20 − k2 − m2 vanishes on the mass shells

k0 = ±
√
k2 +m2, so we have two 3D families of poles. In general, an integral of a singular

function over its pole is ill-defined, and we must regularize it to get a definite answer. For the

Green’s function in question, we must regulate two 3D-families of poles, thus

G(x) =

∫

reg

d4k

(2π)4
ie−ik(x−y)

k2 −m2
=

∫

d3k

(2π)3
eix·k ×

∫

reg

dk0

2π

ie−itk0

k20 − k2 −m2
. (43)

In other words, we integrate over the k0 before we integrate over the k. In the
∫

dk0 integral,

we encounter two simple poles at k0 = ±ωk, and we must somehow regularize them to get

a definite result. Only then we integrate that result over k; hopefully, that integral does not

encounter any singularities.

Alas, the devil is in the details: There are many different ways to regularize an integral,

and different regulators yield different regularized integrals — which eventually yield many

different Green’s functions (43) of the same Klein–Gordon equation.

In these notes, we are going to use a particularly simple way to regulate an integral over

a simple pole — move the pole away from the real axis into the complex plane,

∫

reg

dx
f(x)

x− x0
=

∫

dx
f(x)

x− (x0 ± iǫ)
(44)

for an infinitesimal ǫ → +0. Equivalently, we may leave the pole real but deform the integra-

tion contour slightly away from the real axis so that it bypasses the pole,

=

x0 − iǫ
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or

=
x0 + iǫ

Note that the contour above the pole and the contour below the pole — or equivalently,

shifting the pole below or above the real axis — makes for a different regulator which produces

a different regularized integral. Indeed, their difference amounts to a contour integral over a

closed circle around x0, hence

∫

dx
f(x)

x− (x0 + iǫ)
−
∫

dx
f(x)

x− (x0 − iǫ)
=

∮

circle

dx
f(x)

x− x0
= 〈〈 by residues 〉〉 = 2πi×f(x0).

(45)

In the context of the integral (43), there are two poles in the
∫

dk0 for every k, so we

must make our choices. For the sake of Lorentz invariance, we should use the same regulator

for every k, which leaves us with 2× 2 = 4 choices:

• Move the pole at k0 = +ωk to +ωk + iǫ or to +ωk − iǫ.

• Move the pole at k0 = −ωk to −ωk + iǫ or to −ωk − iǫ.

The 4 choices give rise to 4 distinct Lorentz-invariant Green’s functions, namely:

1. Causal retarded Green’s function GR for poles at k0 = ±ωk − iǫ,

2. Causal advanced Green’s function GA for poles at k0 = ±ωk + iǫ,

3. Time-ordered Green’s function GF for poles at k0 = ±(ωk − iǫ),

This Green’s function is the Feynman’s propagator (4).
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4. Anti-time-ordered Green’s function GAT for poles at k0 = ±(ωk + iǫ),

Feynman’s Choice

Let’s focus on the Feynman’s choice of the poles at +ωk − iǫ and −ωk + iǫ. Altogether,

the denominator of the integrand in eq. (43) is

(k0−ωk+iǫ)×(k0+ωk−iǫ) = k20 − (ωk−iǫ)2 ≈ k20 − ω2
k + 2iωkǫ = k20 − k2 −m2 + iǫ×2ωk.

(46)

In the last expression, we may replace ǫ× 2ωk with simply ǫ, since all we care about is is that

it’s a positive infinitesimal number → +0. Thus

the denominator = k20 − k2 − m2 + iǫ = k2 − m2 + iǫ, (47)

hence a manifestly Lorentz invariant expression for the Feynman’s Green’s function as

GF (x− y) =

∫

d4k

(2π)4
ie−ik(x−y)

k2 −m2+iǫ
. (48)

In this section of the notes, we shall see that this Green’s function is precisely the Feynman

propagator (4). Without loss of generality, let’s set y = 0. In light of eq. (15), we expect two

different cases according to the sign of the t = x0. Let’s start with the t > 0 case and deal

with t < 0 later.

We begin to evaluate the 4D integral (48) by integrating over the k0 for a fixed k,

I(t, ωk) =

∫

dk0

2π

ie−itk0

k20 − ω2
k + iǫ

, (49)

then GF (x, t) =

∫

d3k

(2π)3
eix·k × I(t, ωk) (50)
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In the integral (49), the integration contour is the real axis, while the two poles lie near the

axis — but not quite on it — as on the following diagram

(51)

Outside the real axis, the exponential e−itk0 — with positive t — rapidly decreases for large

negative Im(k0). Consequently, we may close the integration contour by adding to it a large

semicircular arc in the negative Im(k0) half of the complex plane. Thus,

I(t, ωk) =

∮

Γ

dk0

2π

ie−itk0

(k0 − ωk + iǫ)(k0 + ωk − iǫ)
(52)

where

Γ = (53)

The closed-contour integrals like (52) may be evaluated in terms of residues at the poles

surrounded by the contour. For the contour (53) at hand, the pole at +ωk − iǫ lies inside the

contour while the other pole lies outside the contour. Consequently,

I(t, ωk) = −2πi× Residue at k0 = +ωk − iǫ, (54)
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where the overall −2πi factor is due to clockwise direction of the contour. Specifically,

I(t, ωk) = −2πi×
(

ie−itk0

2π × (k0 − ωk + iǫ)× (k0 + ωk − iǫ)

)

k0=+ωk−iǫ

= +
exp(−it(ωk − iǫ))

2(ωk − iǫ)

〈〈 taking the ǫ → +0 limit, which is non-singular 〉〉

= +
e−itωk

2ωk

.

(55)

Plugging this result into eq. (50), we have

GF (x) =

∫

d3k

(2π)3
eix·k × e−itωk

2ωk

=

∫

d3k

(2π)3
1

2ωk

exp(ix · k− itωk) = D(x), (56)

in perfect agreement with the Feynman propagator (4) for t > 0, cf. eq. (15).

Now let’s turn to the t < 0 case. Again, we need to take the integral

I(t, ωk) =

∫

dk0

2π

ie−itk0

k20 − ω2
k + iǫ

(49)

along the real axis, bypassing the poles according to

(51)

However, for a negative t, the exponential e−itk0 decreases for large positive Im(k0) (rather

than large negative Im(k0) as we had for positive t), so to close the integration contour (51)

we should add a large semicircular arc in the positive half of the complex plane. Thus,

I(t, ωk) =

∮

Γ′

dk0

2π

ie−itk0

(k0 − ωk + iǫ)(k0 + ωk − iǫ)
(57)
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where

Γ′ = (58)

Unlike the contour (53) which we have used for positive t, the contour (58) surrounds the

negative-frequency pole at k0 = −ωk + iǫ. It is also counterclockwise, hence

I(t, ωk) = +2πi× Residue at k0 = −ωk + iǫ

= +2πi×
(

ie−itk0

2π × (k0 − ωk + iǫ)× (k0 + ωk − iǫ)

)

k0=−ωk+iǫ

= −exp(−it(−ωk + iǫ))

2(−ωk + iǫ)

〈〈 taking the ǫ → +0 limit, which is non-singular 〉〉

= +
e+itωk

2ωk

.

(59)

Plugging this k0 integral into the
∫

d3k integral (50), we obtain

GF (x, t) =

∫

d3k

(2π)3
e+ix·k × e+itωk

2ωk

= D(+x,−t).

At first blush, this is not quite the answer we want, but fortunately D is invariant under

orthochronous Lorentz transformation, and in particular under any rotations of the 3D space.

Consequently

D(+x,−t) = D(−x,−t), (60)
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and therefore

for t < 0, GF (x) = D(−x), (61)

in perfect agreement with eq. (15).

Altogether, eqs. (56) and (61) tell us that the Feynman’s Green’s function

GF (x− y) =

∫

d4k

(2π)4
ie−ik(x−y)

k2 −m2+iǫ
=

{

D(x− y) when x0 > y0

D(y − x) when x0 < y0

}

= 〈0|TΦ̂(x)Φ̂(y) |0〉

(62)

is precisely the time-ordered correlation function of two free scalar fields.

Other Green’s functions

Besides the Feynman’s time-ordered Green’s function, there are other useful Green’s func-

tions (of the same Klein-Gordon equation) which obtain for other choices of regularizing the

poles. Of particular interest is the causal retarded Green’s function

GR(x− y) =

∫

d3x

(2π)3
ei(x−y)k ×

∫

dk0

2π

i e−i(x0−y0)k0

(k0 − ωk + iǫ)(k0 + ωk + iǫ)
, (63)

which obtains by shifting both poles below the real axis,

(64)

As before, we close this contour by adding a large semicircular arc in the lower or upper half

of the complex plane, depending on the sign of the time difference t = x0 − y0. In particular,
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for t < 0 we close the contour above the real axis,

Γ′ = (65)

which puts both poles outside the contour. Consequently, the contour integral vanishes alto-

gether, thus

GR(x− y) = 0 when x0 − y0 < 0. (66)

This is why this Green’s function is called retarded: time-wise, the point x must follow the

point y, hence in the context of a source j(y) and the induced field

φ(x) =

∫

d4y GR(x− y)× j(y), (67)

the source at point y affects the field φ(x) only at later times x0 > y0 than the source.

Now let’s see what GR(x − y) looks like for t = x0 − y0 > 0. This time, we close the

contour (64) below the real axis,
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Γ = (68)

so both poles are inside the contour. Consequently,

IR(t, ω) =

∫

Γ

dk0

2π

i e−itk0

(k0 − ω + iǫ)(k0 + ω + iǫ)

= −2πi× Residue @(k0 = +ω − iǫ) − 2πi× Residue @(k0 = −ω − iǫ)

=
−2πi

2π
×
(

ie−itk0

(k0 − ω + iǫ)× (k0 + ω + iǫ)

)

k0=+ω−iǫ

+
−2πi

2π
×
(

ie−itk0

(k0 − ω + iǫ)× (k0 + ω + iǫ)

)

k0=−ω−iǫ

= +
e−it(ω−iǫ)

2(ω − iǫ)
+

e−it(−ω−iǫ)

2(−ω − iǫ)

= +
e−itω

2ω
− e+itω

2ω
.

(69)

Plugging this result into the
∫

d3k integral, we obtain

For x0 > y0, GR(x− y) =

∫

d3k

(2π)3
eik(x−y) × e−itωk − e+itωk

2ωk

= D(x− y; t) − D(x− y;−t)

= D(x− y; t) − D(y− x;−t)

= D(x− y) − D(y − x).

(70)

Note that the bottom line here vanishes for spacelike (x−y), which makes the Green’s function

GR not only retarded but also causal: it vanishes unless x lies in the future light cone from y.
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Similar to the causal retarded Green’s function GR(x−y) we can make the causal advanced

Green’s function GA(x− y) by shifting both poles above the real axis,

(71)

GA(x− y) =

∫

d3x

(2π)3
ei(x−y)k ×

∫

dk0

2π

i e−i(x0−y0)k0

(k0 − ωk − iǫ)(k0 + ωk − iǫ)
(72)

=

{

0 when x0 > y0,

D(y − x) − D(x− y) when x0 < y0.
(73)

This Green’s function vanishes for x being later than y or at spacelike separation from y; in

other words, it vanishes unless unless x is in the past light cone from y. That’s why it’s called

the causal advanced Green’s function.

Finally, the fourth choice of regularized poles

(74)

produce the anti-time-ordered Green’s function

GAT (x− y) =

∫

d4k

(2π)4
i e−ik(x−y)

k2 −m2 − iǫ
=

{

−D(y − x) when x0 > y0,

−D(x− y) when y0 > x0.
(75)

Propagators for non-scalar fields

Let me conclude these notes with a few words about propagators for the non-scalar rel-

ativistic fields — the vector fields, the tensor fields, the spinor fields, etc., etc. For all such

fields, the Feynman propagator is the time-ordered correlation function of two free fields in

the vacuum state, for example

G
µν
F (x− y) = 〈0|T∗Âµ(x)× Âν(y) |0〉 (76)

for the massive vector field — deriving this propagator is part of your next homework, set#3,
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problem 2, — or

S
αβ
F (x− y) = 〈0|TΨ̂α(x)× Ψ̂β(y) |0〉 (77)

for the Dirac spinor field Ψ̂β(x) and its conjugate Ψ̂α(x) (to be explained in future classes).

All such propagators are Green’s functions of the equations of motion for the appropriate

fields. For example, the free massive vector fields obey

(

gµν(∂
2 +m2) − ∂µ∂ν

)

Aν = 0, (78)

so the propagator is a Green’s function of the differential operator here,

(

gµν(∂
2 +m2) − ∂µ∂ν

)

Gνλ
F = −iδλµ × δ(4)(x− y). (79)

(The proof is part of your next homework, set#3.) Likewise, the free Dirac spinor fields Ψα(x)

obey the Dirac equation

(

iγµ∂µ −m
)

αβ
Ψβ(x) = 0, (80)

so the Dirac propagator is a Green’s function of the Dirac equation,

(

iγµ∂µ −m
)

αβ
S
βδ
F (x− y) = −iδδα × δ(4)(x− y). (81)

(I shall prove this in class in a few weeks.)

Moreover, all such Green’s functions involve momentum integrals over poles along both

mass shells k0 = ±ωk, and those poles must be regularized. For the Feynman propagators,

the poles are always regularized just as we did for the scalar field, the pole at k0 = +ωk shifts

below the real axis to +ωk − iǫ while the pole at k0 = −ωk shifts above the real axis to

−ωk + iǫ. Consequently, all the Feynman propagators have momentum-space form of

(propagator)indices(x− y) =

∫

d4k

(2π)4
i e−ik(x−y)

k2 −m2 + iǫ
× F indices(k) (82)

for some simple — and hopefully non-singular — function F indices(k). For example, for the
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massive vector field

G
µν
F (x− y) =

∫

d4k

(2π)4
i e−ik(x−y)

k2 −m2 + iǫ
×
(

−gµν − kµkν

m2

)

, (83)

while for the Dirac spinor field

S
αβ
F (x− y) =

∫

d4k

(2π)4
i e−ik(x−y)

k2 −m2 + iǫ
×
(

kµγµ +m
)αβ

. (84)

In general, for any kind of a field other than a gauge field, the function F indices(k) is

simply a polynomial of k of degree 2 × Spin. For the gauge fields — and other massless

gauge-like fields, such as the (linearized) gravitational fields or the gravitino fields — we have

propagators of the form (82) with a polynomial F (k) for the gauge-invariant tension fields.

For example, for the EM tension fields,

〈0|T∗F̂ µν(x)F̂ ρσ(y) |0〉 =

∫

d4k

(2π)4
i e−ik(x−y)

k2 −m2 + iǫ
× Fµν,ρσ(k)

where Fµν,ρσ(k) = kµkρgνσ − kνkρgµσ − kµkσgνρ + kνkσgµρ

is a quadratic polynomial.

(85)

But the propagators 〈0|T∗Âµ(x)Âν(y) |0〉 of the potential fields themselves are more com-

plicated: Although we may always write them in the form (82), but this time the function

Fµ,ν(k) is non-polynomial. Worse, it’s specific form depends on a particular gauge-fixing

condition for the potentials Âµ(x).

I shall explain the EM propagator in detail later in class, probably in November. Mean-

while, you may read my notes on QED (pages 1–8).
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