
RESONANCES

In quantum mechanics, the resonances are closely related to the unstable quantum states.

For example, consider an excited quantum state |A∗〉 of an atom. This excited state is

unstable: After a while, the atom emits a photon and transitions to the ground state |A〉 or
a less-excited state |A′〉. If the excited state lives long enough, we may observe it directly.

But if its lifetime is too short, we see it only as a resonant peak in the scattering cross-section

for the A+ γ → A∗ → A+ γ process, or perhaps also A+ γ → A∗ → A′ + γ′:

E

σ(E)

ER

Γ

ER = peak energy of the resonance

= E(the excited state)

Γ = width (1)

Let’s focus on the narrow resonances for which other interesting features of the σ(E) curve

— such as other resonances or thresholds — are much further away from ER than the

resonance’s width Γ. Such narrow resonances generally have the Breit–Wigner profile of the

scattering amplitude,

f(E) =
const

E − ER + i
2Γ

+ smooth(E), (2)

and once they are made, they decay exponentially with lifetime τ = 1/Γ. To see how

this works, let the incoming state |in〉 before scattering be a wave packet of central energy

〈E〉 = ER and energy width ∆E ≫ Γ. Thus, the time duration of the incoming wave

packet — or rather, the time it spends in any particular place — is much shorter than 1/Γ.

Because of ∆E ≫ Γ, the energy profile of the outgoing scattered wave packet |out〉 follows
the Breit–Wigner scattering amplitude (2),

ψout(E) =
slowly varying(E)

E −ER + i
2Γ

≈ const

E −ER + i
2Γ

. (3)

Fourier transforming this outgoing wave from energy-dependence to time-dependence, we
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obtain

ψout(t) = exp(−iERt)×
{

0 for t < 0,

exp(−Γt/2) for t > 0.
(4)

In terms of probability |ψ|2, this means that the scattering creates an excited state which

then decays exponentially with time

survival probability(t) = exp(−Γt) = exp(−t/τ), lifetime τ =
1

Γ
. (5)

In quantum field theory, the resonances are related to unstable particles. Such particles

are created in some collisions, live for a short time, and then decay back to the original

particles or perhaps to some other decay products. If the unstable particle lives long enough

we may actually detect it as a particle: it travels a couple of meters through the particle

detector from the collision point to the calorimeter, and if it’s charged we can actually observe

its path in the ionization chamber. For shorter lived particles such as D mesons (made from

a c quark and a ū, d̄, or s̄ antiquark) with picosecond lifetimes, we can observe a short

displacement of a point where the particle decays from the point it was created. But for much

shorter lifetimes, we never see the unstable particle as a particle, we only see the resonant

cross-section peak in processes like A+B → R → A+B or A+B → R→ X +Y + · · ·. For
example, the ∆ baryon is observed as a strong resonance in pion-nucleon elastic scattering

at peak center-of-mass energy Ecm ≈ 1220 MeV.

The relativistic form of a Breit–Wigner resonance in some A + B → R → X + Y + · · ·
process is

M(Ecm) =
const

E2
cm −M2

R + iMRΓ
+ smooth(Ecm), (6)

where the resonant term has a pole at complex

E2
cm = s = M2

R − iMRΓ ≈ (MR − i
2Γ)

2. (7)
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In terms of Feynman diagrams, this pole stems from the unstable particle’s propagator,

resonance

B

B

X

Y

Z

propagator =
i

q2 −M2
R + iMRΓ

For a stable particle’s propagator in the s-channel, the amplitude would have a pole at a real

s =M2, but for an unstable particle AKA resonance, the pole moves below the real axis (in

the complex s plane) to s =M2
R − iMRΓ, so it is often said that a resonance has a complex

mass2 =M2
R − iMRΓ ≈ (MR − i

2Γ)
2.

Now consider making an unstable particle / resonance R in some collision A + B →
R. Given the amplitude 〈R|M |A+B〉, the cross-section obtains through the phase-space

integral

σ =
1

4PcmEcm

∫

d3pR
(2π)3

1

2ER
|M|2 (2π)4δ(4)(pR − pA − pB). (8)

In the center of mass frame — which is also the rest frame of the final-state resonance —

the delta-function becomes (2π)3δ(3)(pR)× (2π)δ(ER−Ecm), so the momentum integral (8)

evaluates to

|M|2
2ER

× (2π)δ(ER − Ecm) =
|M|2
2MR

× (2π)δ(Ecm −MR), (9)

hence

σ(A +B → R) =
|M|2

8pcmM
2
R

× (2π)δ(Ecm −MR). (10)

For a finite width resonance, the delta function here becomes a finite-width peak WRT
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energy,

(2π)δ(Ecm −MR) → Γ

(Ecm −MR)2 +
1
4Γ

2

→ 4M2
RΓ

(s−M2
R)

2 + (MRΓ)2
=

4M2
RΓ

|s−M2
R + iMRΓ|2

.

(11)

thus

σ(s) =
|M|2

2pcmMR
× MRΓ

|s−M2
R + iMRΓ|2

. (12)

When the unstable particle R is not detected as a particle but only as a resonance, what

we measure are the cross-sections of processes like A + B → R → X + Y + · · ·. At the

resonant energies, all such cross-sections follow from eq. (12) as

σres(A+B → R → X + Y + · · ·) = σ(A+B → R)×B(R → X + Y + · · ·) (13)

where B(R → X + Y + · · ·) is the branching ratio for the resonance R decaying into the

X + Y + · · · channel,

B(R→ X + Y + · · ·) =
Γ(R → X + Y + · · ·)
Γtotal(R → anything)

. (14)

• Note: the branching ratios of resonance’s decays do not depend on how the resonance

is made, the processes A + B → R → X + Y + · · · and C +D → R → X + Y + · · ·
have exactly the same branching ratios B(R → X + Y + · · ·). (However, the overall

cross-section σ(A + B → R → X + Y + · · ·) and σ(C + D → R → X + Y + · · ·)
would be different due to different cross-sections σ(A + B → R) and σ(C +D → R)

for making the resonance in the first place.)

• All collisions producing the resonance R by itself (rather than accompanied by other

particles, A+B → R+Q+ · · ·) have the same resonant dependence on the net energy,

σ(s) ∝ 1

|s−M2
R + iMRΓ|2

, (15)

although the factors multiplying this resonant peak differ from channel to channel due

to different amplitudes M(A+B → R) 6= M(C +D → R).
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• Making a resonance in some collision A + B → R and its decay back to the original

particles are related by the time reversal symmetry. By the CPT theorem, this means

that

M(A+B → R) = M∗(R → A+B), (16)

and if the interactions responsible for these processes happen to beC orCP symmetric,

then

M(A+B → R) = M∗(R → A+B). (17)

Thus, the cross-section σ(A+B → R) is related to the partial decay rate Γ(R→ A+B)

of the resonance back to the original particles, and hence to the branching ratio B(R→
A+B). Putting all the phase-space factors together, we get the Breit–Wigner formula

for the resonant cross-section,

σ(A +B → R → X + Y + · · ·) =
4π

p2cm
× (2JR + 1)

(2JA + 1)(2JB + 1)
× (MΓ)2

|s−M2 + iMΓ|2 ×

× B(R→ A+B)× B(R → X + Y + · · ·),
(18)

where M is the resonance’s mass and Γ is its total width.

Vector Resonances in e−e+ Collisions

Consider neutral mesons — bound states of a quark and and antiquark of the same flavor.

Such a qq̄ pair can be created in an electron-positron collision, and when q and q̄ appear in

a bound state (rather than parts of separate hadrons), this gives rise to a resonance in the

e− + e+ → R → hadrons reaction:

e−

e+

qq̄ bound state R



















hadrons

Note that the qq̄ bound state in this diagram must have similar quantum numbers to the

virtual photon which creates it. In particular, the virtual photon is a true vector (i.e., has
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spin = 1 and negative parity) and is odd WRT charge conjugation, so the qq̄ bound state

must also have JPC = 1−−. This does not forbid bound states with different quantum

numbers — to the contrary, there are qq̄ bound states with all kinds of J , P , and C. But

only the states with JPC = 1−− may appear as resonances in electron-positron collisions;

the states with different quantum numbers have to be made in other processes.

For a specific example, consider the J/ψ resonance at Ecm = 3097 MeV.
⋆
J/ψ is a

charmonium — a heavy meson made from a c (charm) quark and a c̄ antiquark; specifically,

J/ψ has net spin S = 1 while the spatial wave function ψ(xrelative) is in 1S state (lowest

energy for L = 0). Together, L = 0 and S = 1 lead to JPC = 1−−, which allows J/ψ to

appear as a resonance in e−+e+ collisions. In general, the heavier the meson is, the faster it

decays, but J/ψ is extraordinary narrow for its mass: its total decay rate Γ = 93 keV is 4.5

orders of magnitude smaller than the mass, Γ/M ≈ 3 · 10−5. Indeed, the decay rate of J/ψ

via strong interactions — basically, the annihilation of c and c̄ into 3 gluons — is so small

that the electromagnetic decays (via a virtual photon) to lepton pairs become competitive:

B(J/ψ → e− + e+) ≈ B(J/ψ → µ− + µ+) ≈ 6% (19)

while

B(J/ψ → hadrons) ≈ 88%. (20)

Let’s take a closer look at the J/ψ resonance production in e− + e+ collisions. In the

non-relativistic quark model approximation to the J/ψ meson, it has a wave function

ψ(xc − xc̄, sc, sc̄) = ψspace(r)× ψspin(sx, sc̄), (21)

so Fourier transforming the spatial wave function to the (reduced) momentum space, we may

write the |J/ψ〉 state at rest as a superposition of free quark and antiquark with opposite

⋆ The double name J/ψ is due to simultaneous discovery in 1974 by two very different experiments:

Samuel Ting’s group — who called the resonance J — at the AGS proton accelerator at Brookhaven

National Laboratory, and Burton Richter’s group — who called the resonance ψ — at the SPEAR

electron-positron collider at the Stanford Linear Accelerator Center.
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momenta:

|J/ψ〉 =

∫

d3pred

(2π)3
ψ̃(pred)

∑

sc,sc̄

ψS(sc, sc̄)

colors
∑

i

1√
3
× |c(+pred, sc, i), c̄(−pred, sc̄, i)〉 . (22)

Consequently, the QED amplitude for making this bound state in an electron-positron colli-

sion obtains by combining the QED amplitude for making a free quark+antiquark pair with

the wave function of the bound state. Correcting for the relativistic normalization of the

amplitudes, we have

〈J/ψ|M
∣

∣e−, e+
〉

=

√

2MJ/ψ

2mc

∫

d3p

(2π)3

∑

spins

colors
∑

i

ψ̃(p)× ψS(spins)×
1√
3
×

× 〈c(+p, sc, i), c̄(−p, sc̄, i)|M
∣

∣e−, e+
〉

.
(23)

On the second line here is the QED amplitude for pair-production of a free quark and a free

antiquark, which is exactly similar to the amplitude of the µ−+µ+ pair production we have

studied in class. The only difference is the electric charge of the charm quark being +2
3e

instead of −e charge of the muon; also, the quark and the antiquark must have matching

colors. Thus,

〈c, c̄|M
∣

∣e−, e+
〉

= −2e2

3s
× v̄(e+)γνu(e

−)× ū(c)γνv(c̄)× δc,c̄ colors . (24)

Since the electron is much lighter than the charm quark, the initial electron and positron

must be ultrarelativistic. Hence, as you should have seen in a recent homework, for opposite

helicities of the electron and the positron

v̄(e+)γνu(e−) = 2E(0,±i, 1, 0)ν (25)

while for similar helicities v̄(e+)γνu(e−) = 0. On the other hand, the quark and the antiquark

are non-relativistic, hence

u(c) ≈ √
mc

(

ξ

ξ

)

, v(c̄) ≈ √
mc

(

+η

−η

)

, (26)
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and therefore

ū(c)γ0 v(c̄) = u†(c)v(c̄) ≈ 0 (27)

while

ū(c)~γ v(c̄) = u†(c)γ0~γv(c̄) ≈ mc ( ξ
† ξ† )

(

~σ 0

0 −~σ

)(

+η

−η

)

= 2mc(ξ
†~ση), (28)

which depends on the quark’s and antiquark’s spins but not their momenta. In terms of the

net spin vector S of the quark-antiquark system

ξ†(sc)~ση(sc̄) = −
√
2iS,

hence altogether, the amplitude for creating a free non-relativistic quark-antiquark pair is

〈c, c̄|M
∣

∣e−, e+
〉

= −2e2

3
×
√
2(±Sx − iSy)× δc,c̄ colors . (29)

Plugging this formula into eq. (23) for the amplitude of creating the J/ψ resonance, we get

〈J/ψ|M
∣

∣e−, e+
〉

=
2
√
2e2

3
√
mc

× (∓Sx + iSy)×
(

3√
3

)

colors

×

×
∫

d3p

(2π)2
ψ̃(p)× 1

(30)

where the integral on the second line is simply the spatial wave function at the xrelative = 0.

Altogether,

〈J/ψ|M
∣

∣e−, e+
〉

=
2
√
2e2√
3mc

× ψspace(0)× (∓Sx + iSy)×
{

0 for λ(e+) = λ(e−),

1 for λ(e+) 6= λ(e−).
(31)

Finally, summing this amplitude or rather |M|2 over the J/ψ spin states and averaging over

the electron’s and positron’s helicities, we get

|M|2 =
8e4

3mc
|ψspace(0)|2, (32)

and hence cross-section

σ(e− + e+ → J/ψ) =
2e4|ψ(0)|2

3m3
c

× MΓ

|s−M2 + iMΓ|2 . (33)
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