
Types of Renormalization Group Flows

In these notes I solve the renormalization group equations (RGE) and explore the ways

the running couplings g(E), λ(E), and/or α(E) of different theories change with the energy

scale E. For simplicity, I focus mostly on theories with a single coupling — which I call

g regardless of its type — and explore its energy dependence for different types of beta-

functions. But in the last section of these notes I explore the RG flows in the two-coupling

Yukawa theory and generalize to other kinds of multi-coupling theories.

RG Flow for β > 0

Consider a QFT with a single coupling g, and suppose it has a positive beta-function

β(g) > 0 for all g, weak or strong. Consequently, the running coupling g(E) monotonically

increases with energy. But what is the manner of this increase? In particular, given g(E1) =

E1 at some fixed energy E1, how does g(E2) behave at much higher energies E2 → ∞?

Formally solving the renormalization group equation

dg(E)

d logE
= β(g(E)), (1)

we get

g(E2)
∫

g(E1)

dg

β(g)
= log

E2

E1
, (2)

so the manner in which g(E2) rises with the E2 depends on the behavior of β(g) at large g.

(A) Suppose at large g, β(g) increases faster than g1+ǫ,

g

β

(3)
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In this case, the integral

I
def
=

∞
∫

g1

dg

β(g)
is finite. (4)

Consequently, according to eq. (2), g(E2) reaches infinity for a

finite log
E2

E1
= I =⇒ finite E2 = E1 × exp(I), (5)

thus

logE

g

logEL
(6)

The energy EL = E1 × eI at which the coupling blows up is called the Landau pole,

after speculation by Lev Landau as to what would happen to the QED coupling e(E)

at ultra-high energies assuming the one-loop beta-function β(e) = +e3/12π2 persists

at strong e. Similar to QED, the λΦ4 theory — in the one-loop approximation to its

beta-function — also has a Landau pole at some very high energy scale.

(B) Now suppose the β(g) does not increase with large g, or increases no faster than g1,

g

β

(7)
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In this case, the integral

I
def
=

∞
∫

g1

dg

β(g)
is infinite. (8)

In this case, eq. (2) tells us that g(E2) does not reach ∞ for any finite E2, so there is

no Landau pole. Instead, at very high E2, g(E2) becomes large and keeps growing as

the energy keeps increasing, but it stays finite at all finite energies:

logE

g

(9)

Alas, in perturbation theory we are limited to calculating β(g) at weak g ≪ 1, but we

may only speculate how β(g) behaves at strong g ≫ 1. Consequently, we don’t know if the

theory has an actual Landau pole where the coupling blows up at some high but finite energy.

What we can do is to work out the renormalization group flow of the running coupling g(E)

for as long as it stays perturbatively weak, and to estimate the limiting energy Elim at which

the coupling g(Elim) becomes too strong for the perturbation theory. But beyond Elim, the

perturbation theory breaks down, and we need a different theory to describe the physics at

higher energies. Consequently, the original QFT is not a UV-complete theory but only an

effective theory for energies E <∼ Elim.

As to the physics at energies E >∼ Elim, it could be described by a different QFT with

with more or different fields than the low energy theory. Or it could be a very different kind

of a theory: maybe a theory of discrete degrees of freedom on some kind of a 4D lattice,

maybe a string theory, or maybe something radically different we have not invented yet. But

it cannot be the original perturbative low-energy QFT.
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⋆ ⋆ ⋆

To complete this section, let switch directions of the RG flow from the UV limit of very

high energies to the IR limit of very low energies. In this limit, the coupling g(E) remains

perturbatively weak, and its specific behavior at E → 0 depends on masses rather than on

the details of the β(g):

• If all the particles of the theory are massive — or if the theory without its massive

particles becomes free, — then the RG flow stops for E <∼ M and the running coupling

becomes constant,

g(E) → g0 for E ≪ M. (10)

For example, in QED the running of the α(E) stops for E ≪ Mass of the lightest

charged particle, the electron, because at E ≪ Me the EM fields become effectively

free.

⋆ But if the theory has massless particles with non-trivial interactions among them-

selves, then the RG flow continues all the way to E → 0. In this case, g(E) keeps

becoming weaker and weaker with lower and lower energies, and ultimately — for the

exponentially low energies and exponentially long distances — g(E) becomes so weak

the deep-IR theory is almost free.

RG Flow for β < 0: Asymptotic Freedom

For a negative β(g), the running coupling decreases with the energy scale E:

logE

g

weak → 0
(11)

For high enough energies, g(E) becomes so weak that the theory is almost free and the fields’

quanta behave as almost free particles. This is known as the asymptotic freedom, where the

‘asymptotic’ refers to E → ∞ limit, or equivalently distance → 0.
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Experimentally, the strong interactions were discovered to be asymptotically free in 1968

at the Stanford Linear Accelerator Center (SLAC). Friedman, Kendall, Taylor, et al were

studying deep inelastic scattering of electrons by protons; by deep inelastic, it means the

initial proton turns into may hadrons in the final state. From this scattering they obtained

the so-called structure functions of the initial-state proton; although these structure functions

are different from the on-shell form factors we have studied in this class, they also help us

understand how the electric charge and the magnetic moment are distributed across the

proton, and with much higher spatial resolution. To everybody’s surprise, Friedman et al

found that there are seeds in the grape: Instead of being spread all over the proton’s volume,

the electric charge seemed to be concentrated in a few point particles. This was the first direct

evidence of the quarks as real physical objects. Moreover, when probed at high momenta,

the quarks appeared to to be fairly independent from each other, quite contrary from their

strong interactions in the non-relativistic quark model. To many theorists — especially

Kurt Symanzik — this meant that the underlying theory of the strong force must be an

asymptotically free theory.

Unfortunately, the only asymptotically free QFT known at that time was the unphysical

λΦ4 theory with a negative coupling λ < 0. Although Iosif Khriplovich have found the

opposite-from-QED sign of charge renormalization in Yang–Mills theories back in 1969, but

he did not connect this to the asymptotic freedom, so his work went unnoticed until much

later. Then in 1972 Gerard ’t Hooft calculated the beta-functions of non-abelian gauge

theories and saw that many such theories do have β < 0 so they are asymptotically free.

Immediately after that, ’t Hooft himself and many of his European colleagues tried to come

up with an AF non-abelian gauge theory of the strong force, but they did not make it because

they did not believe in the colors of the quarks.
⋆
So it took an extra year and 3 Americans —

David Gross, Frank Wilczek, and (independently) Hugh Politzer — to discover the Quantum

Chromodynamics (QCD) in 1973 and to verify that it is indeed asymptotically free.

⋆ Back then, there were two alternative solutions to the statistics problem of the non-relativistic quark

model: The wave functions of baryons seem to be symmetric rather than antisymmetric in the combined

positions, spins, and flavors of the 3 constituent quarks, so how does the baryon end up a fermion?

One solution was the parastatistics — the modified Pauli principle that allows up to 3 quarks in the

same quantum state, — while the other was to make quark ordinary fermions but to give them an

extra degree of freedom — the color i = 1, 2, 3. Back in 1972, most European physicists did not like

the invisible degrees of freedom like the color and preferred the parastatistics solution, while most

American physicists thought parastatistics was BS and preferred the 3-color solution.
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Specifically, a QCD-like theory withNc quark colors (and hence the SU(Nc) gauge group)

and Nf quark flavors has one-loop beta-function

β1−loop(g) =
g3

48π2
×
(

2Neff
f − 11Nc

)

(12)

where Neff
f is the number of quark flavors with masses lighter than the relevant energy scale

E. So as long as Neff
f < 11

2 Nc, this beta-function is negative and the theory is asymptotically

free. In particular, the real-life QCD has 3 colors and 6 flavors altogether, thus

2Neff
f − 11Nc ≤ 2N total

f − 11Nc = 2× 6− 11× 3 = −21 < 0, (13)

so QCD is indeed asymptotically free.

Now let’s solve the RGE for the QCD coupling g in the one-loop approximation. For

simplicity, let’s ignore the quark mass thresholds for a moment and let

dg

d logE
= β(g) ≈ − Bg3

16π2
(14)

for a constant positive coefficient B. Then

B × d logE = −16π2

g3
dg = d

(

+
8π2

g2
= +

2π

α

)

(15)

and consequently

2π

α(E)
= const + B × logE. (16)

Thus, if we happen to know the value α(E1) of the QCD coupling at some energy scale E1

(for example, the mass of the Z0 weak gauge boson), then at all other energy scales

2π

α(E)
=

2π

α(E1)
+ B × log

E

E1
. (17)
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Graphically, we have

logE

2π
α

Λ E0

α(E0)

slo
pe

= B

(18)

and hence

logE

α(E)

0

Λ
(19)

On the right side of this plot we see the asymptotic freedom — the QCD coupling α(E)

becomes weaker and weaker with the increasing energy scale. But on the left side of the same

plot we see the infrared price of the asymptotic freedom: at lower energy scales — i.e., at

longer distances — the coupling becomes stronger and stronger, until it eventually blows up

some scale Λ AKA ΛQCD. Of course, the one-loop approximation becomes invalid for the IR-

strong coupling, so we would need a higher-loop and ultimately non-perturbative calculations

to find whether g(E) actually blows up for E → Λ or merely becomes non-perturbatively

strong. But either way, we cannot use the perturbation theory at low energies E <∼ Λ;

instead, we need to use some non-perturbative techniques such as lattice gauge theory or

holographic gauge/gravity duality.
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Phenomenologically, QCD has two major non-perturbative effects at the low-energy

scales E ∼ Λ: the confinement, and the chiral symmetry breaking. I have discussed the

χSB in class back in November, and I shall explain the mechanism of confinement on some

other occasion. For the moment, let me simply describe its consequences. Basically, while

the forces between the fundamental quanta of QCD — the quarks, the antiquarks, and the

gluons — are Coulomb-like at short distances, but at longer distances the forces do not

vanish as 1/r2 but asymptote to non-zero values,

r

F (r)

F0 > 0

Coulomb-like

(20)

In particular, for a quark-antiquark pair, the long-distance force is F0 ≈ 150 kN ≈ 15 tonnes.

Because of this long-distance force, the quarks, the antiquarks, and the gluons never

show up as standalone particles but are confined to color-singlet bound states, hence the

name ‘confinement’. Instead, the particle states of QCD are the color-singlet bound states:

• The qq̄ mesons, the qqq baryons, the q̄q̄q̄ antibaryons, collectively called the hadrons.

• The gg, ggg, etc., glueballs.

• The exotics qq̄g, qqq̄q̄, qqqqq̄, etc., etc.

Because of confinement and other non-perturbative effects at low momenta, QCD does

not have a low-energy limit α0 of its running coupling α(E). Alas, in this aspect, QCD

is quite different from QED or the λΦ4 theory: while in those theories we may start with

the low-energy α0 or λ0 and use it as the initial condition for the renormalization group

equations, in QCD we have to start by measuring the running coupling α1 at some high-

enough energy scale E1 ≫ Λ, and then follow the RGE solution to other energies, both
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higher and lower than the E1. At the one-loop level, this solution is simply

2π

α(E)
=

2π

α1
+ B × log

E

E1
, (17)

but at higher loop orders it becomes more complicated.

Instead of specifying the α1 coupling in eq. (17) — which makes sense only in the context

of a known initial energy scale E1 (for example, E1 = MZ), — we may rewrite the RHS of

that formula as

2π

α(E)
= B × log

E

Λ
(21)

where Λ = E1 × exp

(

− 2π

Bα1

)

, (22)

and then specify just the Λ as the initial condition for the RGE. Since the α1 coupling

is dimensionless while Λ has dimension of energy, this change of specification is called the

dimensional transmutation.

However, the precise definition of ΛQCD in eq. (21) involve two important subtleties.

First, there are different renormalization schemes for the precise definition of the running

coupling α(E). In general, two couplings α1(E) and α2(E) at the same energy scale E but

according to 2 different renormalization schemes differ by

α2(E) − α1(E) = O(α2(E)), (23)

hence

2π

α2(E)
− 2π

α1(E)
= O(1) (24)

and therefore

Λ2 = Λ1 ×
(

O(1) numeric constant
)

. (25)

For example, the Λ’s for the MS and the MS renormalization schemes are related as

Λ[MS] = Λ[MS]×
(

√

4π

eγE
≈ 2.66

)

. (26)

Second, the B coefficient in eq. (21) changes when the energy scale E crosses a quark
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mass threshold at mc, mb, or mt. Indeed,

B = 11
3 Nc − 2

3N
eff
f (27)

where Neff
f is the number of quark flavors with masses lighter than E. Thus,

for E > mt ≈ 175 GEV b = 7,

for mt > E > mb ≈ 4.5 GeV b = 23
3 ,

for mb > E > mc ≈ 1.5 GeV b = 25
3 ,

for E < mc b = 9.

(28)

Note: the light quark flavors u, d, s have masses smaller than ΛQCD, so they do not lead to

B-changing thresholds. But the heavy flavors c, b, t have masses in the perturbative range

of α(E), so they do lead to thresholds in the RGE for the QCD coupling.

With all these effects in mind, let me finally tell you the actual ΛQCD and plot the

running QCD coupling α(E). The experimental measurements of αQCD at high energies are

usually renormalized to E1 = MZ ≈ 91 GeV in the MS regularization scheme,

αQCD(MZ)[MS] = 0.1179± 0.0010. (29)

This further translates to the Λ of the five-flavor QCD (since the sixth flavor is heavier than

MZ)

Λ5[MS] = MZ × exp

(

− 6π

23α(MZ)

)

≈ 85 MeV. (30)

However, ΛQCD is usually quoted in a slightly different regularization scheme MS as

Λ5[MS] ≈ 225 MeV. (31)

Also, below the bottom quark’s mass — and then again below the charm quark’s mass, —
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the effective number of flavors drops from 5 to 4 to 3, so the 3-flavor lowish-energy QCD has

Λ3[MS] ≈ 330 MeV.

On the other hand, the high-energy 6-flavor QCD at E > mt has

Λ6[MS] ≈ 120 MeV. (32)

And with all these data in mind, here is the plot of the running QCD coupling:

logE

1/α(E)

mtmZmbmcΛ6 Λ5 Λ3

experimental α(MZ) = 0.118
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Fixed Points of the RG Flow

Thus far we looked at β(g) functions that are either positive at all g or negative at all g.

But now suppose the beta function changes sign at some critical value g∗ of the coupling g.

That is, either (A) β(g) is positive for g < g∗ but negative for g > g∗ or (B) the other way

around, β(g < g∗) < 0 but β(g > g∗) > 0:

g

β

g∗
A

g

β

g∗

B

(33)

Either way, at g = g∗, the beta function happens to vanish.

Now suppose at some starting energy scale E1, the running coupling happens to be equal

to the g∗, g(E1) = g∗. Then at that point

dg(E)

d logE

∣

∣

∣

∣

E1

= β(g(E1) = g∗) = 0, (34)

and consequently solving the RGE equation for the g(E) yields the constant solution,

∀E : g(E) ≡ g∗ = const. (35)

Consequently — assuming g is the only running coupling of the theory and all the particles

are massless — we have a scale invariant quantum theory. That is, it’s invariant under scale

transforms (AKA dilatations) which act as

x′µ = C × xµ for a constant C 6= 0,

E′ = C−1 × E,

Φ′(x′) = C−∆ × Φ(x)

where ∆ = 1 + γ∗ = 1 + γ(g = g∗), same ∀E,

(36)

and likewise for spinor and vector fields, if any. Even the composite operators — like Φ2(x)
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or Ψ(x)Ψ(x) in QED — scale like fixed powers of E and hence C:

Ô′(x′) = C−∆O × Ô(x) (37)

for a constant dimension

∆O = ∆canonical
O + E-independent quantum correction. (38)

Note: many field theories with massless fields — for example, QED with massless elec-

trons — are classically invariant under scale transforms, but the quantum theories lose this

scale invariance due to non-zero beta-functions and hence energy-dependent couplings g(E).

Only of the beta-function vanishes for some value g∗ of the coupling, and if the theory

happens to have that particular value of the coupling, only then the theory is truly scale

invariant at the quantum level.

Moreover, for a relativistic quantum field theory, the scale invariance and Poincare sym-

metry (translations plus Lorentz) usually combine to the conformal symmetry. To be pre-

cise, in d = 2 spacetime dimensions there is a theorem saying that a scale-invariant and

Poincare-invariant QFT must be conformally invariant. In d = 4 dimensions, there is no

such symmetry, and there are counterexamples of some weird QFTs with Poincare and scale

symmetries but no conformal symmetry. But these counterexamples are quite weird; for the

more conventional QFTs of scalar, spinor, and vector fields, relativity plus scale invariance

almost certainly means conformal symmetry.

There many books written on the conformal field theories (CFTs), i.e. conformally sym-

metric quantum field theories. The d = 1 + 1 dimensional CFTs are particularly important

in string theory — where they live on the string’s worldsheet. But the higher-dimensional

CFTs are also very important, both in condensed matter theory (where they describe the

critical phenomena) and in relativistic QFT. I wish I could explore CFTs in our class, but

alas the time is too short, and the worthy subjects are too many, so let’s move on.

Or at least, let’s move on off a fixed point g∗ to a different coupling g 6= g∗. That

is, suppose at some starting point E1 we have g(E1) 6= g, and let’s see what happens to

the running coupling g(E) at other energies. The answer here depends on whether β(g) is

positive for g < g∗ and negative for g > g∗ or the other way around, cf. 2 plots on figure (33).
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Let’s start with the case (A):

g

β

g∗

(39)

In this case, for g < g∗, β(g) is positive so g(E) increases with the energy. On the other

hand, for g > g7, he β(g) is negative so g(E) decreases with the energy. Either way, as the

energy E increases, the running coupling g(E) gets closer to the fixed point g∗. In other

words, in the UV direction of logE → +∞, the running coupling g(E) flows towards the

fixed point g∗. Here is a typical plot of RG flow trajectories starting with different initial

g(E1) and flowing towards the fixed point:

logE

g

g∗

(40)

Thus, regardless of the ‘initial’ low-energy coupling g(E1), in the extreme UV limit the

coupling asymptotes to the fixed point, and we end up with a scale-invariant theory. Con-

sequently, the fixed points like in figure (39) — i.e., with a negative derivative

β′ =
dβ(g)

dg

∣

∣

∣

∣

g∗
< 0, (41)
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— are called UV stable. And the derivative β′ here governs the rate at which the running

coupling asymptotes to the fixed point. Indeed, suppose g(E) is already close to g∗, then

β(g) ≈ β′ × (g − g∗), (42)

hence

d logE =
dg

β(g)
≈ 1

β′

dg

g − g∗
=

1

β′
d log(g − g∗), (43)

and therefore

g(E) − g∗ = const×Enegative β′

−−−→
E→∞

0. (44)

The flip side of a UV-stable fixed point is that it’s unstable when the energy scale flows

in the IR direction. That is, if at some initial energy E1 the coupling g(E1) is less than

the fixed point, then at much lower energies E ≪ E1, the running coupling gets smaller

and smaller, and eventually asymptotes to zero. On the other hand, if g(E1) > g∗, then at

much lower energies g(E) grows larger and larger, until it eventually blows up. Of course,

this behavior assumes a massless theory, while in a massive theory, the RG flow in the IR

direction stops at E ≃ M .

Now consider case (B):

g

β

g∗

(45)

This time, if we start with a g < g∗, then g(E) gets smaller with the increasing energy,

and eventually asymptotes to zero for E → ∞. This is asymptotic freedom. However, if we

start with g > g∗, then g(E) gets larger at the higher energies, and eventually blows up in a
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Landau pole. Either way, the RG flow in the UV direction moves g(E) away from the fixed

point:

logE

g

g∗

(46)

On the other hand, the RG flow in the IR direction brings g(E) closer and closer to the fixed

point g∗, regardless of whether we start with g > g∗ or g < g∗. Thus, in case (B) — the

fixed point with a positive derivative β′ (at g = g∗) — are IR stable. And once the coupling

g(E) gets close to g∗, it asymptotes to g∗ according to

g(E) − g∗ = const× Epositiveβ′

−−−→
E→0

0. (47)

Theories with fixed points like these — and with no masses to stop the RG flow to the deep

IR — do not have scale invariance at short distances, but their long-distance behavior is scale

invariant and can be described by an effective CFT. Indeed, may interesting CFTs obtain

from the deep IR limits of the non-conformal QFTs with non-trivial fixed points. So let

me present a couple of examples: (1) Wilson’s critical point in condensed matter in D < 4

dimensions, and (2) Banks–Zaks conformal window of QCD.

Wilson’s Critical Point in D < 4 dimensions.

Consider the λΦ4 theory in D < 4 dimensions. In condensed matter context, D = 3,

Φ(x) is the magnetization field along some preferred direction, and its mass2 is tuned to zero

by adjusting the temperature and/or the pressure to the critical point. But for our purposes,

we don’t care about the physical meaning of the Φ field and how is mass 2 is tuned to zero,
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as long as it is so tuned so we may follow the RG flow all the way to the deepest infrared.

Also, we allow for a generic non-integer dimension D as long as D < 4, in particular for the

D = 4− 2ǫ.

In D < 4 dimensions of space, the Φ4 coupling λ has dimensionality E4−D, so the proper

dimensionless running coupling is

λ̂(E) = λ(E)×ED−4, (48)

and the corresponding beta-function is

β̂(λ̂) = (D − 4)× λ̂ + β4d(λ̂)

= (D − 4)× λ̂ +
3λ̂2

16π2
− 17λ̂3

6(4π)4
+ · · · .

(49)

Viewing the bottom line here as a power series in λ̂, we see that the leading term is negative

while the first subleading term is positive, so at small λ̂, this beta-function indeed behaves

as in case (B):

λ̂

β̂

λ̂∗

(50)

As to the zero λ̂∗ of this beta-function, it obtains by solving

(4−D) =
β4d(λ̂

∗)

λ̂∗
= +3

λ̂∗

16π2
− 17

6

(

λ̂∗

16π2

)2

+ · · · . (51)

For D = 4− 2ǫ — and small ǫ — the solution is small,

λ̂∗

16π2
=

2

3
ǫ +

34

81
ǫ2 + · · · , (52)

and we may trust the weak-coupling perturbation theory. But extrapolating this solution to
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the condensed-matter case of D = 3 yields

λ̂∗

16π2
=

1

3
+

17

162
+ · · · , (53)

which looks marginal: weak enough to expect the leading-order perturbative results to be in

the right ballpark, but too strong to trust the perturbation theory to be more accurate than

that. In practice though, the anomalous dimensions and other critical exponents calculated

to the leading order in λ̂ for (λ̂/16π2) = 1
3 — as in the leading order of eq. (53) — seem to

be fairly close to the experimental results.

Conformal Window of QCD

Consider a QCD-like theory in D = 4 dimensions with Nc colors and Nf exactly massless

quark flavors. The 2-loop beta-function of this theory has been calculated back in 1970s,

β(g) = b1 ×
g3

16π2
+ b2 ×

g5

(4π)4
+ · · · , (54)

for b1 =
2

3
Nf − 11

3
Nc , (55)

and b2 =
13

3
NfNc − Nf

Nc
− 34

3
N2

c . (56)

Thus, for large numbers of colors and flavors, and the flavor-to-color ratio Nf/Nc in the

range

11

2
>

Nf

Nc
>

34

13
(57)

we have b1 < 0 but b2 > 0. Consequently, the 2-loop beta function looks like case (B):

g

β

g∗

for
g∗2

16π2
=

−b1
b2

. (58)

But since this calculation is based on truncating the QCD beta function to the first two loop
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orders, it is trustworthy only if it happens to yield a weak fixed coupling g∗, or rather a weak

’t Hoof coupling

λ∗
def
= Nc ×

g∗2

16π2
≪ 1. (59)

But alas, for generic flavor to color ratios within the range (57), we end up with

λ∗ =
(−b1)Nc

b2
= O(1), (60)

so our calculation is unreliable: Not only we cannot trust the value of the fixed coupling λ∗,

but we cannot even be sure that the beta-function actually has a zero at come coupling.

In 1982, Banks and Zaks solved this problem by focusing on the upper edge of the

range (57). That is, let’s take the limit

Nc → ∞, Nf → ∞, but ∆
def
= 11Nc − 2Nf is positive and small, ∆ ≪ Nc . (61)

In this limit,

−b1 = +
1

3
∆,

while b2 ≈ +
25

2
N2

c ,

(62)

hence

λ∗ ≈ 2

75
× ∆

Nc
≪ 1. (63)

Thus, in the Banks–Zaks limit, QCD does have a weakly-coupled IR-stable fixed point of

the RG flow. And if all the quark flavors are exactly massless, then the deep IR limit of this

theory is a weakly-coupled conformal field theory.

Outside of the Banks–Zaks limit, the deep IR limit of QCD-like theories with massless

quarks depends on the flavor-to-color ratio:

⋆ For (Nf/Nc) >
11
2 , QCD is in the non-abelian Coulomb phase. In this regime β(g) > 0

even for weak couplings, so there is no asymptotic freedom. On the other hand, at low

energies the running coupling becomes weaker and weaker, until in the deep IR the

quarks and the gluons become almost-free massless particles with rather weak Coulomb

forces between them. Or rather, non-abelian versions of the Coulomb forces, hence the

name of this phase.
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⋆ The 11
2 > (Nf/Nc) > about 4 range is the so-called conformal window. In this regime,

the beta-function has a IR-stable zero, so the deep IR limit of QCD is a conformal

field theory of some kind. In the Banks–Zaks corner of this range, this CFT is weakly

coupled, but through the rest of the conformal window it becomes strongly coupled,

λ∗ = O(1), and we cannot use the perturbation theory to calculate the scaling dimen-

sions of various operators. Although one might be able to use some non-perturbative

techniques, such as lattice gauge theory. Indeed, it was the lattice gauge theory that

gave us the approximate lower end of the conformal window.

⋆ For (Nf/Nc) < about 4, QCD is in the confining phase, just like the real-life QCD.

In this phase β(g) < 0 at all couplings, so in the IR direction the running coupling

gets stronger and stronger until it blows up at E ∼ ΛQCD. Below this energy scale,

the quarks and the gluons become confined and do not appear as standalone particles;

instead, the particle spectrum is made from the color-singlet combinations of quarks

and gluons, such as mesons, baryons, or glueballs. Almost all of these composite

particles are massive — with masses O(ΛQCD) — except for the Goldstone bosons

of the spontaneously broken chiral symmetry SU(Nf )L × SU(Nf )R → SU(Nf )V .

But while the Goldstone bosons are massless, their interactions with each other are

proportional to their momenta, so in the low-energy limit these bosons become free.

So ultimately, the deep IR limit of QCD in the confining phase is the free theory of

N2
f − 1 Goldstone bosons.

RG Flows for Multiple Couplings

Up to now we have focused on QFTs with a single running coupling g(E) or α(E) or

λ(E). But many QFTs have multiple couplings: For example, the Standard Model has 3

gauge couplings α1(E), α2(E), α3(E), the Higgs scalar’s selfcoupling λ(E), and a truckload

of Yukawa couplings of the Higgs to the quarks and the leptons. For such theories, each

coupling has its own renormalization group equation

dgi(E)

d logE
= βi(g1(E), . . . , gN (E)), (64)

where each beta-function depends on all the couplings of the theory. Thus, the RGEs are

a system of coupled differential equations, and are generally much harder to solve than the

RGE for a single coupling.
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As a pedagogical example, consider the Yukawa theory

Lphys = Ψ(i 6∂ −M)Ψ +
1

2
(∂µΦ)

2 − M2

2
Φ2 − igΦ×Ψγ5Ψ − λ

24
Φ4 (65)

with 2 running couplings g(E) and λ(E), thus 2 coupled RGEs

dg(E)

d logE
= βg(g(E), λ(E)) and

dλ(E)

d logE
= βλ(g(E), λ(E)). (66)

In my previous set of notes on the renormalization group I have calculated the beta-functions

here to the 1-loop order:

β1 loop
g =

5g3

16π2
, (67)

β1 loop
λ =

3λ2 + 8λg2 − 48g4

16π2
, (68)

so let’s solve the eqs. (66) for these beta-functions.

Since β1 loop
g (g) is independent of λ, we may solve the one-loop RGE for the Yukawa

coupling independently of the λ(E):

dg

d logE
=

5g3

16π2
=⇒ d logE =

dg

βg
=

16π2 dg

5g3
= d

(

−8π2

5g2

)

, (69)

hence

8π2

g2(E)
=

8π2

g2(E0)
− 5 log

E

E0
. (70)

Graphically,

logE

16π2/g2

Landau
pole

slope = −5

logE

g

Landau
pole

(71)

We see that similar to QED or to the λφ4 theory, the Yukawa coupling keeps increasing with

energy, and eventually at some very high energy hits a Landau pole. In the other hand,
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in the IR direction of the RG flow, the Yukawa coupling gets weaker and weaker until this

RG flow is stopped by the scalar’s mass or the fermion’s mass. But if both masses happen

to vanish, then the Yukawa coupling keeps getting weaker, and in the extreme IR limit the

fermions become free.

The RG flow of the 4-scalar coupling λ(E) is more complicated since βλ depends on both

couplings λ and g. To simplify solving the RGE for the λ(E), we shall first focus on the RG

flow trajectory through the coupling space (g2, λ) — that is, we shall first calculate λ as a

function of g2 — and then plug in the energy-dependence of the g2(E) according to eq. (70).

To get a differential equation for the λ(g2), we start by dividing the RGE for λ by the RGE

for g2, thus

dλ(E)

dg2(E)
=

dλ

d logE

/

2g dg

d logE
=

βλ
2gβg

=
3λ2 + 8λg2 − 48g4

10g4
. (72)

Next, we take the coupling ratio λ/g2 to be a function of g2, which in turn depends on the

energy, thus

λ(E)

g2(E)
= X(g2(E)), (73)

and rewrite eq. (72) as a first-order differential equation for X : On one hand

dλ

d(g2)
=

d

d(g2)

(

λ = g2 ×X(g2)
)

= X + g2 × dX

d(g2)
= X +

dX

d log g2
, (74)

while on the other hand eq. (72) becomes

dλ

d(g2)
=

3X2 + 8X − 48

10
, (75)

hence

X +
dX

d log g2
=

3X2 + 8X − 48

10
,

dX

d log g2
=

3X2 − 2X − 48

10
,

(76)

and therefore

dX

3X2 − 2X − 48
=

1

10
d log(g2(E)). (77)
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Integrating the LHS here we get

∫

dX

3X2 − 2X − 48
=

1

2
√
145

log
3X − 1−

√
145

3X − 1 +
√
145

+ const, (78)

hence

log
3X − 1−

√
145

3X − 1 +
√
145

=

(

2
√
145

10
=

√

29

5

)

× log(g2(E)) + const,

3X − 1−
√
145

3X − 1 +
√
145

= const×
(

g2(E)
)

√
29/5

,

(79)

and therefore

3λ(E) − (
√
145 + 1)g2(E)

3λ(E) + (
√
145− 1)g2(E)

= const×
(

g2(E)
)

√
29/5

. (80)

The overall constant factor on the RHS here follows from the initial conditions to the RGE,

namely the coupling values λ0 and g0 at some reference energy E0, thus

3λ(E) − (
√
145 + 1)g2(E)

3λ(E) + (
√
145− 1)g2(E)

=
3λ0 − (

√
145 + 1)g20

3λ0 + (
√
145− 1)g20

×
(

g2(E)

g20

)

√
29/5

. (81)

Physically, eq. (81) describes a trajectory of the renormalization group flow through the

(g2, λ) coupling space. Here is a plot of several such trajectories for different initial values of

(g20, λ0):

g2

λ

A few noteworthy features of these trajectories:
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• Since βg > 0 at all g, the UV-bound direction of these trajectories is to the right, while

the IR-bound direction is to the left.

• In the IR direction, all trajectories converge to the attractor line (shown in red)

λ(E) =

√
145 + 1

3
× g2(E). (82)

Note: this attractor line is not a line of fixed points: Once the couplings reach this

line, they do not stop evolving with log(E) but continue to diminish with decreasing

energy scale; they simply evolve in lock-step along the attractor line.

• In the UV direction, the trajectories spread out away from the red line.

∗ If we start at some point above this line, then in the UV direction the λ/g2 ratio

keeps increasing until eventually λ(g2(E)) hits a Landau pole. That is, it hits a

Landau pole before the Landau pole of the g2(E) itself, assuming these Landau

poles actually exist beyond the one-loop approximations to the β-functions.

∗ On the other hand, if we start at some point below the red line, then the λ/g2 ratio

decreases in the UV direction until λ(E) itself starts decreasing and eventually hits

zero value. Beyond that point, a negative λ destabilizes the vacuum state of the

theory due to unlimited-from-below scalar potential.

∗ Similar to a Landau pole, a point where the scalar potential becomes unbounded

from below acts as an upper limit on UV energy scales to which the original

low-energy may be extrapolated. Beyond this limit we would need a different

high-energy theory with more degrees of freedom. In other words, the original

low-energy theory is not UV-complete.

⋆ ⋆ ⋆

Beyond the Yukawa theory, other QFTs with n > 1 independent coupling parameters

generally have n coupled renormalization group equations:

for each i = 1, . . . , n :
dgi

d logE
= βi(g1, . . . , gn). (83)

A common tool for solving such equations is to eliminate the logE variable — just like we

did above for the Yukawa theory — and reduce the problem to a system of n− 1 differential

24



equations for the RG flow trajectory through the n-dimensional coupling space. Plotting the

flow lines then reveals all kinds of interesting features, such as attractor lines, surfaces, etc.,

bifurcation points (or lines, etc.), or even phase boundaries where the trajectories starting

on two sides of a boundary end up in radically different places.

A particularly interesting features are the fixed points attracting all the trajectories —

or at least all the trajectories starting within a particular basin of attraction — in either UV

or IR direction. A theory that has such a fixed point becomes scale-invariant — and usually

conformally invariant — in either extreme UV limit or extreme IR limit, depending on the

type of a fixed point.

From the β-function point of view, a fixed point is a common zero of all n β-functions,

all βi(g
∗
1, . . . , g

∗
n) = 0. (84)

Also, the derivative matrix

Bij =

(

∂βi
∂gj

)

(g∗
1
,...,g∗n)

(85)

determines the fixed point’s type:

• If the matrix (85) is positive-definite (all eigenvalues are positive), then the fixed point

is IR-stable. That is, the RG flow in the IR direction moves the couplings closer and

closer to the fixed point.

• OOH, if the matrix (85) is negative-definite (all eigenvalues are negative), then the

fixed point is UV stable. That is, the RG flow in the UV direction moves the couplings

closer and closer to the fixed point.

• Finally, if the matrix (85) has both positive and negative eigenvalues, then the fixed

point is unstable in both UV and IR directions: Either way, the RG flow moves some

couplings (or coupling combinations) closer to the fixed point while other couplings or

combinations move further away from it.

25


