
SCATTERING IN QUANTUM MECHANICS

Consider the unbound motion of a single quantum particle — or equivalently, reduced

motion of two particles — in a central potential V (r)
?

which vanishes for r →∞. A scattering

solution of the Schrödinger equation

Ĥ |Ψ〉 = EΨ̂ for Ĥ =
p̂2

2M
+ V (r̂) (1)

is a solution whose wave function Ψ(x) combines an incoming plane wave with an outgoing

spherical wave. Or rather, Ψ(x) combines an incoming plane wave with an outgoing spherical

wave at asymptotically large distances from the center

for r →∞, Ψ(r, θ, \φ) = eikz +
eikr

r
× f(θ) + O(1/r2), (2)

k =
√

2ME 〈〈 in h̄ = 1 units 〉〉, (3)

where I used the spherical symmetry of the problem to send the incoming wave in the +z

direction. The f(θ) in eq. (2) is called the scattering amplitude; it governs the scattering

partial cross-section as

dσ

dΩ
= |f(θ)|2. (4)

To see how this works, let’s replace the exact eigenstate of the Hamiltonian with a wave

packet

Ψ(x, t) =

∫
dk e−(k−k0)2/α ×Ψk(x)× e−itE(k) (5)

of narrow energy width

∆E =
k0

M
×∆k =

k0

M
×
√
α

2
� E(k0) for α→ 0. (6)

Assuming Ψk(x) is as in eq. (2) with f(θ) approximately k-independent within the k0 ±∆k

? For simplicity, in these notes I assume a central potential v(r); generalizing to non-central potentials is
fairly straightforward but uses much messier notations.
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range, we end up with

Ψ(x, t) =
√

4πα e−itE0

(
eik0z × e−α(z−vt)2 +

eik0r

r
f(θ)× e−α(r−vt)2 + O(1/r2)

)
(7)

for v = k0/M being the particle’s asymptotic speed. In the asymptotic past t → −∞, the

expression inside (· · ·) is dominated by the first term, which physically is the incoming plane

wave packet. In the asymptotic future t → +∞, we have both the first term and the second

term, the first term being the un-scattered plane wave continuing in the forward direction,

while the second term is the scattered wave spreading out in all directions. Moreover, the

un-scattered wave and the scattered wave exist in the non-overlapping regions

z = r cos θ = vt ± 1√
α

versus r = vt ± 1√
α
, (8)

thus no overlap for vt � 1

1− cos θ
× 1√

α
. (9)

We see that in the wave packet description, the plane-wave and the spherical-wave terms in

the wave function (2) do not overlap at the same space at the same asymptotic time, so we

may treat the two terms as separate non-interfering waves. Consequently, the particle flux F

described by the wave function (2) splits into the incoming/un-scattered flux and the scattered

flux,

Fnet = Fin + Fsc (10)

and we do not have to worry about the interference terms in this flux. Specifically,

Fin = |Ψin|2k = k (11)

while

Fsc = |Ψsc|2knr =
|f(θ)|2

r2
k nr ,

hence identifying the partial cross section as a net flow rate of scattered particles through area

r2dω(θ, φ) divided by the incoming flux, we end up with

dσ

dΩ
= |f(θ)|2. (4)
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Perturbation Theory

A common approach to finding the scattering solutions of the Schrödinger equation and

hence the scattering amplitudes f(θ) is the perturbation theory. In the asymptotic past and

in the asymptotic future, the particle is at large distances where V (r) ≈ 0, so its energy is

purely kinetic. Therefore, we take the un-perturbed Hamiltonian

Ĥ0 =
p̂2

2M
(12)

to be purely kinetic, while the potential V̂ = V (r̂) acts as a perturbation.

Green’s Function

The perturbation theory uses Green’s functions

Ĝ(E) =
1

E − Ĥ0

(13)

of the un-perturbed Hamiltonian Ĥ0 and it’s coordinate-space matrix elements

〈x| Ĝ(E) |y〉 =

∫
d3k

(2π)3
e−ik·x × 1

E − (k2/2M)
× e+ik·y. (14)

Unfortunately, for any real E > 0, the integrand here has a pole along the spherical shell

|k| =
√

2ME, so the integral needs to be regulated. In a way that should be familiar to

this class, we are going to regulate it by moving E into the complex plane, thus two different

Green’s functions

G+(E) =
1

E + iε− Ĥ0

and G−(E) =
1

E − iε− Ĥ0

, both for ε → + 0. (15)

Let’s calculate their coordinate space matrix elements. Denoting k0 =
√

2EM , we have

E ± iε =
k2

0 ± iε
2M

=
(k0 ± iε)2

2M
(16)

and hence

G±(E) =
2M

(k0 ± iε)2 − p̂2
. (17)
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Consequently,

〈x| Ĝ±(E) |y〉 =

∫
d3k

(2π)3
e−ik·x × 2M

(k0 ± iε)2 − k2
× e+ik·y

=
2M

(2π)3

∞∫
0

dk

π∫
0

dθ k2 × 2π sin θ × 1

(k0 ± iε)2 − k2
×
(
eik·(x−y) = eikr cos θ

)
〈〈where r = |x− y| and θ is the angle between k and x− y 〉〉

=
2M

4π2

∞∫
0

dk
k2

(k0 ± iε)2 − k2
× e+ikr − e−ikr

ikr

=
2iM

4π2r

+∞∫
−∞

dk
k eikr

k2 − (k0 ± iε)2

=
2iM

4π2r

∮
Γ

dk
k eikr

k2 − (k0 ± iε)2

(18)

where Γ is a large semicircular contour in the complex plane. Since the eikr factor shrinks for

Im k → +∞, the semicircular arc should be above the real axis. Taking the contour integral

by residue method, we get

〈x| Ĝ±(E) |y〉 = −M
πr
× Residue

[
k eikr

k2 − (k0 ± iε)2

]
(19)

where the residue is taken at whichever pole happen to lie inside the integration contour —

i.e., above the real axis. Specifically:

• For the G+, the poles are at k1 = +(k0 + iε) and at k2 = −(k0 + iε), with only the first

pole being above the real axis. Consequently,

〈x| Ĝ+(E) |y〉 = −M
πr

Residue

[
k eikr

(k − (k0 + iε))(k + (k0 + iε))

]
k=k0+iε

= −M
πr
× eir(k0+iε

2

−−−→
ε→+0

− M

2πr
× e+ik0r.

(20)

• For the G−, the poles are at k1 = +(k0 − iε) and at k2 = −(k0 − iε), with only the
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second pole being above the real axis. Consequently,

〈x| Ĝ+(E) |y〉 = −M
πr

Residue

[
k eikr

(k − (k0 − iε))(k + (k0 − iε))

]
k=−k0+iε

= −M
πr
× eir(−k0+iε

2

−−−→
ε→+0

− M

2πr
× e−ik0r.

(21)

Lippmann–Schwinger Series

Coming back to the perturbation theory, we look for a scattering eigenstate |Ψ〉 of the full

Hamiltonian Ĥ = Ĥ0 + V̂ by starting with a plane wave eigenstate |Ψ0〉 of Ĥ0 for the same

energy E = k2M . Thus, we have (E − Ĥ0) |Ψ0〉 = 0 and we look for |Ψ〉 such that

(E − Ĥ) |Ψ〉 = (E − Ĥ0 − V̂ ) |Ψ〉 = 0. (22)

Consequently, for such a |Ψ〉 we would have

(E− Ĥ0)
(
|Ψ〉− |Ψ0〉

)
= (E− Ĥ0) |Ψ〉 = (E− Ĥ0− V̂ ) |Ψ〉 + V̂ |Ψ〉 = 0 + V̂ |Ψ〉 . (23)

Now let’s act with a Green’s function Ĝ±(E) on both sides of the equation: on the RHS we

have

Ĝ±(E)V̂ |Ψ〉

while on the LHS we have

Ĝ±(E)× (E − Ĥ0)
(
|Ψ〉 − |Ψ0〉

)
=
(
|Ψ〉 − |Ψ0〉

)
, (24)

thus

|Ψ〉 − |Ψ0〉 = Ĝ±(E)V̂ |Ψ〉 (25)

and therefore (
1 − Ĝ±(E)V̂

)
|Ψ〉 = |Ψ0〉 . (26)

For a small (in some sense) perturbation V̂ , the operator on the LHS here has an inverse
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obtaining as a power series,

(
1 − Ĝ±(E)V̂

)−1
= 1 + Ĝ±(E)V̂ + Ĝ±(E)V̂ Ĝ±(E)V̂ + Ĝ±(E)V̂ Ĝ±(E)V̂ Ĝ±(E)V̂ + · · · ,

(27)

hence the formal solution of eq. (26) is the Lippmann–Schwinger series

|Ψ〉 = |Ψ0〉 + Ĝ±(E)V̂ |Ψ0〉 + Ĝ±(E)V̂ Ĝ±(E)V̂ |Ψ0〉 + · · · . (28)

Usually, this series is summarized as

|Ψ〉 = |Ψ0〉 + Ĝ±(E)T̂±(E) |Ψ0〉 (29)

where T̂±(E) is the Lippmann–Schwinger operator

T̂±(E) = V̂ + V̂ Ĝ±(E)V̂ + V̂ Ĝ±(E)V̂ Ĝ±(E)V̂ + V̂ Ĝ±(E)V̂ Ĝ±(E)V̂ Ĝ±(E)V̂ + · · · . (30)

Now let’s look at the coordinate-space wavefunction of the perturbed state (29). We take

the un-perturbed state |Ψ0〉 to be the plane wave |k0〉, hence

Ψ(x) = eik0·x +

∫
d3y 〈x| Ĝ±(E) |y〉 × 〈y| T̂±(E) |k0〉

= eik0·x − M

2π

∫
d3y

exp
(
±ik0|x− y|

)
|x− y|

× 〈y| T̂±(E) |k0〉 .
(31)

In the second factor under the integral here, every term in the series (30) for the T̂±(E)

operator has V̂ as it’s left-most factor, so we may write

T̂±(E) = V̂ × (other factors) (32)

and hence

〈y| T̂±(E) |k0〉 = V (y)× 〈y| other factors |k0〉 , (33)

which becomes negligibly small for y outside the effective range of the potential V (y). Conse-

quently, for an asymptotically large |x| we may assume |x| � |y| and hence in the first factor

6



in the integrand of eq. (31)

|x−y| ≈ |x| − nx ·y =⇒
exp
(
±ik0|x− y|

)
|x− y|

≈ exp(±ik0|x|)
|x|

× exp(∓ik0nx ·y). (34)

Plugging this formula into eq. (31), we find that

for |x| → ∞, Ψ(x) ≈ eik0·x − M

2π

exp(±ik0|x|)
|x|

×
∫
d3y exp(∓ik0nx ·y)×〈y| T̂±(E) |k0〉 .

In particular, for the Ĝ+(E) choice of the Green’s function the second term here looks precisely

like the divergent spherical wave of the scattering solution,

for |x| → ∞, Ψ(x) ≈ eik0·x +
exp(+ik0|x|)

|x|
× f(nx), (35)

for the scattering amplitude

f(nx) = −M
2π

∫
d3y exp(∓ik0nx · y)× 〈y| T̂+(E) |k0〉

= −M
2π
×
〈
k′
∣∣ T̂+(E) |k0〉 (36)

for k′ = k0nx . (37)

Of in conventional (MKSA or Gauss) units,

f(θ) = − M

2πh̄2

〈
k′
∣∣ T̂+(E) |k0〉 (38)

where θ is the angle between the initial particle directions of bk0 and the final direction of k′.

Born Approximation

Born series is the series for the matrix elements of the Lippmann–Schwinger operator (30).

In momentum space, it looks like

〈
k′
∣∣ T̂+(E) |k0〉 =

〈
k′
∣∣ V̂ |k0〉 +

∫
d3k1

(2π)3

〈
k′
∣∣ T̂+(E) |k0〉×

2M

(bk0 + iε)2 − k2
1

×〈k1| V̂ |k0〉 + · · · .

(39)

The Born approximations obtain by truncating this series to its first few terms. In particularly,

the first Born approximation — often called the Born approximation — is simply the leading
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term in the series (39),

〈
k′
∣∣ T̂+(E) |k0〉 ≈

〈
k′
∣∣ V̂ |k0〉 (40)

and hence

f(θ) = −M
2π

〈
k′
∣∣ V̂ |k0〉 . (41)

The matrix element here is simply the Fourier transform of the potential V (y) to the momen-

tum space,

〈
k′
∣∣ V̂ |k0〉 =

∫
d3y e−ik

′·y × V (y)× e+iy·k0 =

∫
d3y e−iq·y × V (y) (42)

where q = k′ − k0. In particular, for a spherically symmetric potential V (r),

〈
k′
∣∣ V̂ |k0〉 =

∞∫
0

dry r
2
y

π∫
0

dθy 2π sin θy × V (ry)× exp(iqry cos θy)

=

∞∫
0

dry r
2
yv(ry)×

4π sin(qry)

qry

=
4π

q

∞∫
0

dr V (r)× r sin(qr),

(43)

and therefore

f(θ) = −2M

h̄2q

∞∫
0

dr V (r)× r sin(qr) (44)

for q = |k′ − k| =

√
2ME

h̄
× 2 sin(θ/2). (45)
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Example:

For an example, consider the Yukawa potential — or equivalently, the screened Coulomb

potential —

V (r) =
A

r
× e−κr. (46)

For this potential

∞∫
0

dr V (r)× r sin(qr) =

∞∫
0

dr Ae−κr × Im eiqr

= A Im

∞∫
0

dr exp(−r(κ− iq))

= A Im
1

κ− iq
= A

q

q2 + κ2
,

(47)

hence

f(θ) = −2MA

h̄2 × 1

q2 + κ2
= − 2MA

(h̄κ)2 + 4p2 sin2(θ/2)
. (48)

In particular, for the un-screened Coulomb potential with κ→ 0 while A = Z1Z2e
2 (in Gauss

units), we get

f(θ) = − 2MZ1Z2e
2

4(Mv)2 sin2(θ/2)
(49)

and therefore

dσ

dΩ
=

Z2
1Z

2
2e

4

M2
redv

4
rel

× 1

4 sin4(θ/2)
. (50)

Note: Although this formula is based on the first Born approximation, it happens to be

exact in Quantum Mechanics. Also, it happens to be in perfect agreement with the classical

Rutherford formula for the Coulomb scattering!
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The S Matrix and the Partial Wave Analysis

Beyond the Born approximation, we need to go back to the matrix elements of the

Lippmann–Schwinger operator

T̂+(E) = V̂ + V̂ Ĝ+(E)V̂ + V̂ Ĝ+(E)V̂ Ĝ+(E)V̂ + V̂ Ĝ+(E)V̂ Ĝ+(E)V̂ Ĝ+(E)V̂ + · · · . (30)

The same Lippmann–Schwinger operator is also related to the S-matrix

Ŝ = T-exp

−i +∞∫
−∞

dt e+itĤ0V̂ e−itĤ0

 , (51)

or rather their respective matrix elements between eigenstates of the un-perturbed Hamilto-

nian Ĥ0 are related as

〈f | Ŝ |i〉 = 〈f |i〉 − 2πiδ(Ef − Ei)× 〈f | T̂+(Ef = Ei) |i〉 . (52)

This relation obtains by formal integration of the Dyson series hiding in the time-ordered

exponential, but I am not going to do it in these notes. Instead, I am going to use it as it is,

and combine with the unitarity of the Ŝ operator.

Suppose the particles involved in the scattering are spinless, and the potential V (r) is

spherically symmetric. In this case, the complete Hamiltonian Ĥ = Ĥ0 + V̂ commutes with

the orbital angular momentum L̂, so the Ŝ-operator also commutes with L̂. Consequently, we

may use the simultaneous eigenstates of L̂2, L̂z, and Ĥ0 to make a basis |E, `,m〉 of all the

unbound states, and in that basis the S-matrix should be diagonal,

Ŝ |E, `,m〉 = C(E, `) |E, `,m〉 (53)

Furthermore, by unitarity of the S-matrix, all the coefficients C(E, `) here should be unimod-

ular, thus

Ŝ |E, `,m〉 = exp
(
2iδ`(E)

)
|E, `,m〉 (54)

for some real phase shifts δ`(E). Consequently,

〈
E′, `′,m′

∣∣ Ŝ |E, `,m〉 = (2π)δ(E′ − E) δ`′,`δm′,m × e2iδ`(E), (55)
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which in light of eq. (52) translates to

〈
E, `′,m′

∣∣ T̂+(E) |E, `,m〉 = δ`′,`δm′,m ×
e2iδ`(E) − 1

−i
. (56)

Furthermore, translating between the |E, `,m〉 basis and the momentum basis, we have

〈E, `,m|k〉 =
2π√
M |k|

δ(E − k2

2M
)× Y ∗`,m(nk). (57)

Consequently, for 2 momentum vectors k1 and k2 of equal magnitudes |k1| = |k2| =
√

2ME

but different directions n1 6= n2, we have

〈k2| T̂+(E) |k1〉 =
∑
`,m

〈k2|E, `,m〉 ×
e2iδ`(E) − 1

−i
× 〈E, `,m|k1〉

=
4π2

Mk

∑
`

e2iδ`(E) − 1

−i
×
∑
m

Y`,m(n2)Y ∗`,m(n1)

=
4π2

Mk

∑
`

e2iδ`(E) − 1

−i
× (2`+ 1)

4π
P`(n2 · n1)

= −2π

M

∑
`

e2iδ`(E) − 1

2ik
× (2`+ 1)P`(cos θ)

(58)

where θ is the angle between the directions of k1 and k2 and P` are the Legendre polynomials.

Therefore, in terms of the phase shifts δ`(E), the scattering amplitude is

f(θ) =
∞∑
`=0

e2iδ`(E) − 1

2ik
× (2`+ 1)P`(cos θ). (59)

The total cross-section also has a simple form in terms of the phase shifts. Indeed,

σtot =

∫
d2Ω

dσ

dΩ
=

π∫
0

dθ 2π sin θ × |f(θ)|2, (60)

so for the scattering amplitude f(θ) expanded into partial waves according to eq. (59), — or
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more generally, as

f(θ) =
∑
`

C`P`(cos θ), (61)

— we have

σtot =

π∫
0

dθ 2π sin θ ×
∑
`

∑
`′

C∗`C`′P`(cos θ)P`′(cos θ)

=
∑
`,l′

C∗`C`′ × 2π

+1∫
−1

d cos θ P`(cos θ)P`′(cos θ)

=
∑
`,l′

C∗`C`′ ×
4π

2`+ 1
δ`,`′

=
∑
`

4π

2`+ 1
|C`|2.

(62)

In our case,

C` = (2`+ 1)× e2iδ` − 1

2ik
=⇒ |C`|2 =

(2`+ 1)2

k2
× sin2 δ` , (63)

hence

σtot =
4π

k2

∞∑
`=0

(2`+ 1) sin2(δ`). (64)

Note the optical theorem: the imaginary part of the forward scattering amplitude is

related to the total cross-section as

σtot =
4π

k
× Im f(θ = 0). (65)

Proof: For θ = 0, all the Legendre polynomials P`(cos θ = 1) evaluate to 1. Consequently,

eq. (59) for the forward amplitude evaluates to

f(θ = 0) =
∑
`

e2iδ` − 1

2ik
× (2`+ 1) =

1

k

∑
`

(2`+ 1)× sin(δ`)e
iδ` , (66)
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and its imaginary part is

Im f(θ = 0) =
1

k

∑
`

(2`+ 1)× sin2 δ` . (67)

Comparing this formula to eq. (64) for the total cross-section, we immediately see the rela-

tion (65) between them. Quod erat demonstrandum.

Calculating the Phase Shifts

Now that we know what the phase shifts δ` are good for, let’s learn how to calculate them.

Our starting point the Schrödinger equation for the |E, `,m〉 states with wave-functions of

the form

Ψ(r, θ, φ) = ψ`(r)× Y`,m(θ, φ). (68)

The radial wavefunctions ψ`(r) obey

− 1

2M

(
ψ′′(r) +

2

r
ψ′(r) − `(`+ 1)

r2
ψ(r)

)
+ V (r)ψ(r) = Eψ(r), (69)

or equivalently

(rψ(r))′′ +

(
k2 − 2MV (r) − `(`+ 1)

r2

)
× rψ(r) = 0. (70)

In the total absence of the potential, the free solution of this equation that is non-singular

at r = 0 is the spherical Bessel function ψ`(r) = kj`(kr), which at large distances kr � `

asymptotes to

rψ`(r) −→ (+i)`e−ikr + (−i)`e+ikr. (71)

Physically, the first terms here is the (radial profile of the) convergent incoming wave while

the second term is the (radial profile of the) divergent outgoing wave.
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In presence of the potential, the solutions of the radial equations (70) would be more

complicated, but at asymptotically large distances where

both 2MV (r) and
`(`+ 1)

r2
� k2, (72)

the radial profiles rψ`(r) should always be combinations of incoming and outgoing waves,

albeit with different relative phases,

rψ`(r) −→ ψincoming(r) + e2iδ` × ψoutgoing(r), (73)

or — once we multiply both terms by e−iδ` , —

rψ`(r) −→ (+i)`e−iδ`−ikr + (−i)`e+iδ`+ikr = 2 sin
(
kr + δ` − `× π

2

)
. (74)

In light of this formula, this is how one calculates the phase shifts for a potential scattering

in QM:

1. Solve the radial Schrödinger equation (70) for the ψ`(r), subject to the boundary con-

dition of no singularity at r → 0.

2. Look at the asymptotic behavior of the solutions at large distances r → ∞. The

solutions must asymptote to

ψ`(r) −−−→
r→∞

const

r
× sin

(
kr + δ` − `× π

2

)
(75)

for some real phase shifts δ`. And these are precisely the phase shifts we need to calculate

the scattering amplitude f(θ) and the total cross-section.

Small hard sphere example

For an example of calculating the phase shifts, consider a hard sphere of a small radius

a � (1/k). By a hard sphere, the particle cannot penetrate the sphere at all, but there is
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nothing outside the sphere. In terms of the potential, the hard sphere is equivalent to

V (r) =

{
+∞ for r < a,

0 for r > 0,
(76)

while in terms of the radial Schrödinger equation, it means the Dirichlet boundary condition

ψ`(r = a) = 0 at the sphere’s edge, but outside the sphere ψ` obeys the free radial equation

(rψ`(r))
′′ +

(
k2 − `(`+ 1)

r2

)
× rψ`(r) = 0. (77)

A general solution of this equation is a linear combination of the regular and irregular spherical

Bessel functions of order `, thus up to an overall constant factor

ψ`(r) = cosα` × j`(kr) − sinα` × n`(kr), (78)

where α` obtains from the boundary condition ψ` = 0 for r = a, thus

cosα` × j`(ka) − sinα` × n`(ka) = 0 =⇒ tanα` =
j`(ka)

n`(ka)
. (79)

Asymptotically, at large distances kr � 1, `, the two spherical Bessel functions behave as

j`(kr) −→
sin(kr − `× π

2 )

kr
, n`(kr) −→ −

cos(kr − `× π
2 )

kr
, (80)

hence the radial wavefunctions of the form (78) become

ψ`(r) −→
sin(kr − `× π

2 + α`)

kr
. (81)

Comparing this equation to eq. (75) we immediately identify the phase shifts as

δ` = α` = arctan
j`(ka)

n`(ka)
. (82)

This formula applies to scattering off a hard sphere of any radius, but it becomes much

simpler for small radii ka� 1. In this case, we may approximate the spherical Bessel functions
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by their low-radius limits, thus

j`(ka) ≈ (ka)`

(2`+ 1)!!
, n`(ka) ≈ −(2`− 1)!!

(ka)`+1
, (83)

and hence

tan δ` ≈ −
(ka)2`+1

(2`− 1)!! (2`+ 1)!!
. (84)

In particular,

tan δ0 ≈ −(ka), tan δ1 ≈ −
(ka)3

3
, tan δ2 ≈ −

(ka)5

45
, . . . . (85)

For small ka, all these phase shifts are small, and they are rapidly shrink with `, so to a

leading order we may approximate

δ0 ≈ −ka, all other δ` ≈ 0. (86)

Consequently,

e2iδ0 − 1

2ik
≈ −2ika

2ik
= −a,

other
e2iδ` − 1

2ik
≈ 0,

(87)

and therefore the scattering amplitude

f(θ) ≈ −a× P0(θ) + 0 = −a ∀θ. (88)

This leads to the isotropic partial cross-section

dσ

dΩ
= a2 in all directions (89)

and hence

σtotal = 4πa2. (90)

Note this total cross section is 4 times larger than the geometric cross section πa2 of the hard

sphere, but that’s OK because the classical geometric scattering has no reason to work in the

ka� 1 regime.
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