
SPINOR FIELDS IN DIFFERENT DIMENSIONS

In class, we have focused on Dirac, Majorana, and Weyl spinor fields in 3 + 1 dimensions

we happen to live in. But in string theory — as well as other hypothetical unified theories

— one often deals with spacetimes of other dimensions, from 2 to 11 and beyond that. So

in these notes I shall briefly review the Dirac, Majorana, and Weyl spinor fields in different

dimensions.

Dirac Spinor Fields

Dirac spinors and Dirac spinor fields exist in all space dimension. Similar to 4d, in other

dimensions we start with d Dirac matrices γµ obeying anticommutation relations

{γµ, γν} = 2gµν , (1)

define the spin matrices Sµν = i
4 [γµ, γν ], and use them to construct the Dirac spinor rep-

resentation of the d-dimensional Lorentz group SO+(d − 1, 1). And then the Dirac spinor

fields are multiplets of fermionic component fields in the Dirac spinor representation of this

group, with the free Lagrangian

L = Ψ(iγµ∂µ −m)Ψ = Ψ†(iγ0γµ∂µ −mγ0)Ψ. (2)

Everything work exactly as in d = 4, except for the size of the γµ matrices and hence the

size of the Dirac spinor multiplet:

d size

2,3 2

4,5 4

6,7 8

8,9 16

10,11 32

(2n), (2n+ 1) 2n

in an even spacetime dimension d, size = 2d/2,

in an odd spacetime dimension d, size = 2(d−1)/2.

These formulae for the Dirac spinor size come from counting the independent product

of Dirac matrices γµ. Since these matrices anticommute with each other and square to ±1,
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any product of these matrices can be simplified to ±(1 or γ0)× (1 or γ1)× · · · × (1 or γd−1).

Altogether, this gives 2d different product, and in even dimensions d all these product are

linearly independent. Consequently, the Dirac matrices must have 2d independent matrix

elements to allow for 2d independent products, which calls for the matrix size 2d/2 × 2d/2

and hence 2d/2 components of the Dirac spinor multiplet.

In odd d, only a half of the 2d matrix products are independent due to a different nature

of the product of all Dirac matrices

Γ
def
= γ0γ1 · · · γd−1 × (±1 or ± i) (3)

where the last factor provides for Γ† = +Γ and Γ2 = +1. In even spacetime dimensions d,

this Γ matrix anti-commutes with all the γµ, so it acts as a d-dimensional analogue of the

4D γ5. Consequently, it will be instrumental in constructing the Weyl spinors, as we shall

see in the next section of these notes.

But in odd dimensions d, the Γ matrix commutes rather than anticommutes with all

the γµ and hence also commutes with the entire Clifford algebra of the γ-matrix products.

Consequently, we may just as well restrict the whole algebra to an eigenblock of Γ, which has

an effect of simply identifying Γ = +1 or Γ = −1. This identification reduces the number

of independent γ-matrix products by half, from 2d down to 2d−1, so we only need 2d−1

independent matrix elements rather than 2d. And this is why in odd d, the Dirac matrices

have size 2(d−1)/2 × 2(d−1)/2 and the Dirac spinors have 2(d−1)/2 independent components.

Parity

The parity — the space reflection symmetry — works differently in spacetimes of even

vs. odd dimensions. For an even d — and hence an odd space dimension d − 1 — the

parity combines an a mirror reflection x1 → −x1 with 180◦ rotations in pairs of other space

dimensions (x2, x3), . . . to a space reversal

x → x′ = −x (but t → +t). (4)

Under this symmetry, a Dirac spinor field transforms as

Ψ′(x′) = ±γ0Ψ(x), (5)
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which leaves the Dirac Lagrangian invariant, or rather transforms as a true scalar, L′(x′) =

L(x). Indeed,

L′(x′) = Ψ′†(x′)
(
i∂′0 + iγ0~γ · ∇′ − mγ0

)
Ψ′(x′)

〈〈where ∇′ = −∇ but ∂′0 = +∂0 〉〉

= Ψ†(x)γ0
(
i∂0 − iγ0~γ · ∇ − mγ0

)
γ0Ψ(x)

= Ψ†(x)
(
i∂0 + iγ0~γ · ∇ − mγ0

)
Ψ(x)

= L(x).

(6)

But for an odd d — and hence an even space dimension d− 1, — the space reversal (4)

is not a reflection but a rotation (by 180◦ in (d− 1/2) planes). Instead, the parity acts as a

mirror reflection in just one space dimensions, for example

x0 → +x0, x1 → −xi, other xi → + xi. (7)

Consequently, the parity transformation rule for a Dirac fermion has a more general form

Ψ′(x′) = PΨ(x) (8)

for some unitary matrix P 6= γ0. In order for this transformation to preserve the massless

Dirac Lagrangian

L0 = Ψ†(i∂0 + iγ0~γ · ∇)Ψ, (9)

where the mirror reflection flips the sign of the ∇1 but not of other space derivatives ∇i, we

need

P †γ0γiP =

{
−γ0γi for i = 1,

+γ0γi for i 6= 1.
(10)

and hence P = γ1 (or rather P = iγ1 since we want P 2 = 1). But then the parity transform

ends up reversing the sign of the Lagrangian mass term

Lm = −mΨ†γ0Ψ −−−→
parity

−mΨ†(−iγi)γ0(+iγ1)Ψ = −mΨ†(−γ0)Ψ = −Lm . (11)

This in odd spacetime dimensions, a non-zero mass of a Dirac fermion breaks its parity

symmetry!
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However, a pair of massive Dirac fermion fields with m1 = −m2 (and hence the same

particle mass |m|), do have an unbroken combination of parity with an internal symmetry

exchanging the two fields.

Weyl Spinor Fields

In 4D, the γ5 matrix commutes with all the spin matrices Sµν and hence with all the

continuous Lorentz transforms. Consequently, the Dirac spinor is a reducible representation

2 + 2̄ of the Spin(3, 1) symmetry group, with the irreducible components — the LH and the

RH Weyl spinors 2 and 2̄ — being the eigenblock of the γ5. In particular, in the Weyl basis

where γ5 is diagonal,

γ5 =

(
−1 0

0 +1

)
, ΨDirac(x) =

(
ψL(x)

ψR(x)

)
, (12)

the 4-component Dirac spinor field splits into 2-component Weyl spinor fields ψL(x) and

ψR(x). Or in the basis-independent way, the two Weyl spinors obtain by projecting

ψL(x) =
1− γ5

2
Ψ(x), ψR(x) =

1 + γ5

2
Ψ(x). (13)

Likewise, in any even spacetime dimension d, there is a matrix Γ which anticommutes

with all the γµ and hence commutes with all the spin matrices Sµν = i
2 [γµ, γν ]. Consequently,

all the continuous d-dimensional Lorentz symmetries Spin(d − 1, 1) commute with the Γ,

and since Γ has two distinct eigenvalues ±1 (with equal numbers of eigenspinors for each

eigenvalue), the Dirac spinor representation is reducible, with one irreducible component for

each eigenblock of Γ. Similar to 4D, these irreducible spinor representations are respectively

the LH and the RH Weyl spinors.

In terms of d-dimensional spinor fields, the 2d/2 component Dirac spinor field splits into

two 2(d−2)/2 components Weyl spinor fields,

ψL(x) =
1− Γ

2
Ψ(x), ψR(x) =

1 + Γ

2
Ψ(x). (14)
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In particular, in the basis where

Γ =

(
−1 0

0 +1

)
in 2(d−2)/2) × 2(d−2)/2) blocks, (15)

ΨDirac(x) =

(
ψL(x)

ψR(x)

)
. (16)

But note that all of the above analysis depends on the Γ matrix which anticommutes

with all the Dirac matrices γµ. Such a Γ matrix exists for any even spacetime dimension

d, but it does not exist for an odd d. Consequently, the Weyl spinor fields exist in even

spacetime dimensions but not in odd dimensions!

Finally, a few words about complex-conjugate Weyl spinor fields. In 4D, the conjugate of

a LH Weyl spinor transforms equivalently to a RH Weyl spinor and vice verse, the conjugate

of a RH Weyl spinor transforms equivalently to a LH Weyl spinor,

ψ∗L
∼= ψR , ψ∗R

∼= ψL . (17)

The same is true in other spacetime dimensions divisible by 4, d = 4n = 4, 8, 12, . . .. Con-

sequently, in all such dimensions a LH Weyl field (together with its conjugate) is physically

equivalent to a RH Weyl field (together with its conjugate), so the same physical parti-

cle species (and the corresponding antiparticles) can be described in terms of either LH

Weyl fields ψL(x), ψ†L(x) or in terms of RH Weyl fields ψR(x), ψ†R(x) of opposite charge(s),

whichever is convenient. Or in terms of particle-antiparticle pairings, a LH fermions comes

with a RH antifermion while a RH fermion comes with a LH antifermion.

However, in even spacetime dimensions not divisible by 4, — in d = 4n−2 = 2, 6, 10, . . .,

— the conjugate of a LH spinor transform equivalently to a LH spinor, while the conjugate

of a RH spinor transform equivalently to a RH spinor,

ψ∗L
∼= ψL , ψ∗R

∼= ψR . (18)

Consequently, in these dimensions, you cannot trade LH Weyl fields for RH Weyl fields of

opposite charge(s), but you are stuck with a particular chirality for each fermion species.
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Likewise, the particles and their antiparticles have similar ‘helicity’ states: either both left-

handed or both right-handed.

In particular, in d = 2 — one space dimension and one time — the massless Weyl

fermions move at the speed of light in a particular direction, depending on the Weyl spinor’s

chirality: the ψL(x+t) move to the left while the ψR(x−t) move to the right. And of course,

a particle and its antiparticle always move in the same direction: both to the left, or both

to the right,

Majorana Spinor Fields

A Majorana spinor has a s many components as a Dirac spinor, but these components

are linearly related to each other’s complex conjugates,

Ψ = CΨ∗ (19)

for some matrix C such that

C∗C = 1 and Cγµ = −γµ∗C. (20)

Consequently, a Majorana spinor field Ψ(x) = CΨ∗(x) has half as many degrees of freedom

as a Dirac field, and its quanta are inherently neutral particles (same as their antiparticles).

The Majorana spinor fields exists in any spacetime dimension d for which we can find a

matrix C obeying the criteria (20). Although the specific form of such a C matrix depends

on a particular convention of the γµ matrices — in particular, on which γµ are real and which

are imaginary — the existence or non-existence of the matrix C is convention independent.

Instead, it depends only on the dimension d, or rather on d modulo 8! Specifically:

? The C matrix and hence Majorana spinor fields exist for d ≡ 0, 1, 2, 3, 4 (mod 8) but

do not exist for d ≡ 5, 6, 7 (mod 8). In other words, they exist for

d = 2, 3, 4; 8, 9, 10, 11, 12; 16, 17, 18, 19, 20; . . . . (21)

Some other features of Majorana spinor fields also depend on d modulo 8:
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• In d ≡ 0, 4 (mod 8) dimensions — i.e., in d = 4, 8, 12, 16, . . . dimensions, — A massive

Majorana field is physically equivalent to a neutral Weyl field — left-handed or right-

handed — with a Majorana mass term. And a massless Majorana field with axial

charge Q is equivalent to a massless LH Weyl field with charge +Q or a massless RH

Weyl field with charge −Q.

• In d ≡ 1, 3 (mod 8) dimensions — i.e., in d = 3, 9, 11, 17, 19, . . . dimensions — There

are Dirac or Majorana spinor fields but there are no Weyl spinor fields, hence no

Majorana/Weyl equivalence.

• Finally, in d ≡ 2 (mod 8) dimensions — i.e., in d = 2, 10, 18, . . . dimensions, there

are both Majorana and Weyl spinor fields, and they are nor equivalent to each other.

Instead, the Majorana condition Ψ(x) = CΨ∗(x) is independent from but compatible

with the Weyl condition ΓΨ(x) = ±Ψ(x). Consequently, both conditions can be

imposed at the same time, which leads to the Majorana–Weyl spinor fields.

Altogether, in d ≡ 2 (mod 8) dimensions there are several kinds of spinors and spinor

fields: Dirac, Majorana, Weyl (LH or RH), and Majorana–Weyl (LH or RH). So let

me complete this section by counting the components (and the degrees of freedom) of

all such spinor fields in d = 2 and d = 10 dimensions.

∗ In d = 1 + 1 dimensions,

ΨDirac has 2 complex components, 2 DoF

ΨMajorana has 2 real components, 1 DoF

ΨWeyl has 1 complex components, 1 DoF

ΨMW has 1 real components, 1
2 DoF

(22)

∗ In d = 9 + 1 dimensions,

ΨDirac has 32 complex components, 32 DoF

ΨMajorana has 32 real components, 16 DoF

ΨWeyl has 16 complex components, 16 DoF

ΨMW has 16 real components, 8 DoF

(23)
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Summary

Altogether, the existence of different spinor types — and the relations between them —

depends on the spacetime dimension d modulo 8. This periodicity is related to the Bott

periodicity of the homotopy groups of SO(N) group manifolds, but the math of this relation

is way beyond the scope of our QFT class. So instead of this math, let me simply give you

the periodic table of spinor types in different dimensions:

d (mod 8) spinor fields

0 Dirac, Majorana, Weyl (LH and RH), but M ∼= WL
∼= WR.

1 Dirac and Majorana, but no Weyl.

2 Dirac, Majorana, Weyl (LH and RH), Majorana–Weyl (LH and RH),
all inequivalent.

3 Dirac and Majorana, but no Weyl.

4 Dirac, Majorana, Weyl (LH and RH), but M ∼= WL
∼= WR.

5 Dirac only — no Majorana, no Weyl.

6 Dirac and Weyl (LH and RH) but no Majorana; WL 6∼= WR.

7 Dirac only — no Majorana, no Weyl.

Math: Real, Pseudoreal, and Complex Spinors

From the mathematical point of view, the existence of different types of spinors and the

relations between them depends on the irreducible spinor representation of the d-dimensional

Lorentz group SO+(d− 1, 1), or rather its double cover Spin(d− 1, 1). Specifically, is there

just one irreducible spinor representation or are there two inequivalent irreducible spinors?

Also, is this spinor representation (or representations) real, pseudo-real, or complex?

Before I answer these questions for the Lorentz groups, let me start with a few definitions.

• Two matrix representations (a) and (b) of the same group G,

g 7→ Ma(g) and g 7→Mb(g) (24)

are called equivalent iff they has the same matrix size and there is a constant matrix
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V such that for any g ∈ G

Mb(g) = V −1Ma(g)V. (25)

Note: same V for all group elements g.

In multiplet terms, equivalent representations describe symmetry transformations of

the same multiplet but in different bases for the multiplet’s components, and the matrix

V relates the two bases to each other. For example, in a triplet multiplet of the SO(3)

rotation symmetry, we may use a basis of |`,m〉 states with ` = 1 and m = −1, 0,+1,

or we may use a basis of vector components x, y, z. The same rotation R(φ,n) is

describes in one basis by the complex D(1)
m,m′(R) matrices and in the other by the real

Rij matrices, but these two representations are equivalent to each other.

• A representation (r) is called real iff it’s equivalent to a representation by real matrices.

For example, all integer-j representations of the SO(3) rotation group are real, since

they are all equivalent to tensor representations. For example, members of a j = 2

multiplet transform into each other equivalently to the independent components of a

real traceless symmetric 2-index tensor,

Tik 7→ T ′ik = RimRknTkn . (26)

• A representation (s) is called self-conjugate iff it’s equivalent to its complex conjugate,

thus

M∗s (g) = V −1Ms(g)V, same V for all Ms(g). (27)

All real representations are self-conjugate, but there are self-conjugate representations

that are not real; such self-conjugate but not real representations are called pseudo-real.

For example, all the half-integer-j representations of the Spin(3) rotation group are

pseudo-real. In particular, the doublet representation of Spin(3) = SU(2) is pseudo-

real. Indeed, for any SU(2) matrix U ,

U∗ = σ2Uσ2, (28)

so the doublet 2 is a self-conjugate representation, but it’s not equivalent to a represen-
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tation by any real 2×2 matrices, so 2 is a pseudo-real rather than a real representation.

• Finally, a representation (c) is called complex iff it’s not equivalent to its complex-

conjugate representation (c̄). For example, the fundamental 2 representation of the

SL(2,C) group is complex — it is not equivalent to the conjugate doublet 2̄. Likewise,

for all SU(N) groups with N ≥ 3, the fundamental representation N (by the column

vector of N complex components) is complex: For N ≥ 3, there is no matrix V such

that

U∗ = V −1UV ∀U ∈ SU(N). (29)

(Unlike the SU(2) group for which V = σ2 does the job.)

Now with all these definitions in mind, let’s classify the irreducible spinor representations

of the Lorentz-like groups SO+(a, b) in a space and b time dimensions. For Physics purposes,

we are primarily interested in the orthogonal SO(N) groups of internal symmetries (rigid or

gauged) and in the Lorentz groups SO+(d− 1, 1), but from the Mathematical point of view

it’s easier to consider the general SO+(a, b) case. While the size of an irreducible spinor

representation of such a group depends only on the net dimension d = a+ b,

size =

{
2(d−2)/2 for even d,

2(d−1)/2 for odd d,
(30)

the type of the irreducible spinor depends only on the difference a− b modulo 8. Specifically,

a− b (mod 8) irreducible spinor representations

0 two different real spinors R1 and R2, R1 6∼= R2

±1 one real spinor R

±2 two different complex spinors, C and its conjugate C, C 6∼= C

±3 one pseudoreal spinor P

4 two different pseudoreal spinors P1 and P2, P1 6∼= P2

Now let’s apply this general table to the spinor fields in d − 1 space dimensions and 1

time, thus a − b = d − 2. In general, a Majorana spinor field has real components, so it
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must be in a real representation of the Lorentz group. And the two Weyl spinors — the left-

handed and the right-handed — must be in different representations of the Lorentz group.

Therefore:

• For d − 2 ≡ 0 (mod 8) — i.e., d = 2, 10, 18, 26, . . ., — two distinct and real spinor

representations allow for the Majorana–Weyl spinor fields, left-handed ΨMW
L in the R1

representation and right-handed ΨMW
R in the R2 representation. The Majorana spinor

ΨM (x) =

(
ΨMW
L (x)

ΨMW
R (x)

)
(31)

is in the reducible real R1⊕R2 representation. A Weyl spinor has complex components

in a real representation of the Lorentz group, so it’s physically equivalent to two real

Majorana–Weyl spinors of the same chirality,

ΨW
L (x) = ΨMW

L1 (x) + iΨMW
L2 (x), ΨW

R (x) = ΨMW
R1 (x) + iΨMW

R2 (x). (32)

Finally, a Dirac spinor

ΨD(x) =

(
ΨW
L (x)

ΨW
R (x)

)
= ΨM

1 (x) + iΨM
2 (x) (33)

has complex components in the reducible real R1 ⊕ R2 representation. Physically, 1

Dirac spinor field is equivalent to 2 Majorana fields, or two Weyl fields (1LH + 1RH),

or two 4 Majorana–Weyl fields (2LH + 2RH).

• For d− 2 ≡ ±1 (mod 8) — i.e., d = 3, 9, 11, 17, 19, . . ., — the only irreducible spinor

representation allows for the Majorana spinor field ΨM (x), but there are no Weyl or

Majorana-Weyl fields. As to the Dirac spinor field, it has complex components in a

real representation R, so it’s equivalent to two Majorana fields,

ΨD(x) = ΨM
1 (x) + iΨM

2 (x). (34)

• For d− 2 ≡ ±2 (mod 8) — i.e., d = 4, 8, 12, 16, . . . — two distinct spinor representa-

tions C and C allow for the Weyl spinor fields ΨW
L (x) and ΨW

R (x), and since the two
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representations are complex conjugate to each other, the LH Weyl spinor is physically

equivalent to the RH Weyl spinor with opposite charges, and vice verse. Also, the

reducible spinor representation C ⊕C is real, which allows for Majorana spinor fields,

but any such field is physically equivalent to a Weyl field (LH or RH) together with

its conjugate, thus

ΨM ∼= ΨW
L +

(
ΨW
L

)† ∼= ΨW
R +

(
ΨW
R

)†
. (35)

Lastly, a Dirac spinor field is a combination of two Weyl spinor fields of opposite

chiralities,

ΨD(x) =

(
ΨW
L (x)

ΨW
R (x)

)
. (36)

• For d − 2 ≡ ±3 (mod 8) — i.e., d = 5, 7, 13, 15, . . . — there is only one irreducible

spinor representation P , hence no Weyl spinor fields, and since P is pseudoreal rather

than real, there are no Majorana fields either. Thus, in these dimensions there are

Dirac spinor fields but no other kinds of spinors.

• Finally, for d− 2 ≡ 4 (mod 8) — i.e., d = 6, 14, 22, . . . — the two distinct irreducible

spinor representations P1 and P2 give rise to the Weyl spinor fields ΨW
L (x) and ΨW

R (x),

but since P1 and P2 are pseudoreal rather than real (and so is P1 ⊕ P2), there are no

Majorana or Majorana–Weyl spinor fields. Also, since P1 and P2 are not complex

conjugates of each other, the LH and the RH Weyl spinor fields are not equivalent to

each other conjugates. Instead

(
ΨW
L

)† ∼= ΨW
L 6∼= ΨW

R and
(

ΨW
R

)† ∼= ΨW
R 6∼= ΨW

L . (37)

Lastly, a Dirac spinor field is a combination of two Weyl spinor fields of opposite

chiralities,

ΨD(x) =

(
ΨW
L (x)

ΨW
R (x)

)
. (38)
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