
PHY–396 K/L. Solutions for the Casimir-effect problem.

Part (a):

A general EM wave in the space between the two plates is a superposition of two plane waves

reflecting back and forth from each plate:

Fµν(x) = C
(1)
µν e

ik1x + C
(2)
µν e

ik2x

for kµ1,2 = (ω, kx, ky,±kz)

where ω = c
√
k2x + k2y + k2z

(S.1)

and the polarization tensors C
(1)
µν and C

(2)
µν obey the Maxwell equations for the corresponding

wave vectors kµ1 and kµ2 . In addition, the net wave (S.1) must obey the boundary conditions

at each conducting plane:

at z = 0 or z = b and any x, y : Ex = Ey = Bz = 0. (S.2)

For the sake of notational simplicity, let’s focus on the wave propagating in the x direction

in the (x, y) plane, thus let ky = 0. In this case, the two independent polarizations of the

two reflecting waves (S.1) are as follows:

(A) The electric field E of each plane wave points in the y direction while the magnetic

field vector B lies in the (x, z) plane.

(B) The magnetic field B of each plane wave points in the y direction while the electric

field vector lies in the (x, y) plane.

For the (A) polarization, the Ey field must vanish at both z = 0 and z = b, so its z-

dependence is a standing wave with nodes at both ends. Thus,

Ey(x, y, z, t) = eikxx−iωt × sin
nπz

b
for n = 1, 2, 3, 4, . . . , (S.3)

or in other words,

kz =
π

b
× a positive integer. (S.4)

For the (B) polarization, the magnetic field in y direction is related by the electric field in x
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direction by the Maxwell–Ampere Law

∇×B =
1

c

∂E

∂t
=⇒

∂By
∂z

=
iω

c
Ex , (S.5)

so the Dirichlet boundary conditions for the Ex at z = 0 and z = b translate to the Neumann

boundary conditions for the By. Consequently, the z-dependence of the By is a standing

wave with anti-nodes at both ends, thus

By(x, y, z, t) = eikxx−iωt × cos
nπz

b
for n = 0, 1, 2, 3, 4, . . . . (S.6)

Or in other words,

kz =
π

b
× a non-negative integer. (S.7)

Altogether, the allowed values of kz have form kz = πn/b for non-negative integers n.

For n = 0 there is only one polarization (B), while for the positive n = 1, 2, 3, . . . there are

two polarizations (A) and (B).

Finally, for the 2D wave vector (kx, ky) pointing in a general direction, we may repeat

the above analysis almost verbatim but in more complicated notations for the directions

of the electric and magnetic fields for the (A) and (B) polarization. Thus, for any kx and

ky, the spectrum of kz comprises n × π/b for non-negative integers n, and there are two

polarizations for n > 0 but only one for n = 0. Quod erat demonstrandum.

Part (b):

For the square plates with periodic boundary conditions the 2D wave vectors (kx, ky) have

discrete spectrum

kx =
2πnx
L

, ky =
2πny
L

for integernxandny , (S.8)

while according to part (a)

kz =
πnz
b

for integer nz ≥ 0. (S.9)
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Consequently, eq. (2) for the regularized vacuum energy of the cavity becomes

E(τ) =
+∞∑

nx=−∞

+∞∑
ny=−∞

+∞∑
nz=0

h̄ω(k)

2
× e−τω(k) ×

{
1 for nz = 0,

2 for nz > 0.
(S.10)

For large plate size L→∞, the spectrum of kx and ky becomes near-continuous with density

d#(kx, ky) =
L2

(2π)2
× dkx dky (S.11)

so we may replace the sum over nx and ny with integrals over kx and ky,

E(τ) =
L2

(2π)2

∫∫
dkx dky

+∞∑
nz=0

h̄ω(k)

2
× e−τω(k) ×

{
1 for nz = 0,

2 for nz > 0,
(S.12)

where the integration range is the whole 2D momentum space.

Next, since

ω(k) = c
√
k2x + k2y + k2z (S.13)

does not care about the sign of the kz, we may replace the sum over non-negative nz with

the sum over all integer nz — positive, zero, or negative — but count each such nz only

once. This way, we would get two similar terms for ±nz 6= 0 but only one term for nz = 0,

which is precisely agrees with the polarization count in eq. (S.12). Thus,

E(τ) =
L2

(2π)2

∫∫
dkx dky

+∞∑
nz=−∞

h̄ω(k)

2
× e−τω(k). (S.14)

Now, for each nz we can get kz = πnz/b by integrating (over the whole real axis)∫
dkz δ

(
kz −

πnz
b

)
=

b

π

∫
dkz δ

(
bkz
π
− nz

)
(S.15)

and hence ∑
nz

f(kz) =
b

π

∫
dkz f(kz)×

∑
nz

δ

(
bkz
π
− nz

)
.
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In this way, eq. (S.14) becomes a 3D integral over the wave vector k = (kx, ky, kz),

E(τ) =
L2

(2π)2
× b

π

∫∫∫
d3k

h̄ω(k)

2
× e−τω(k) ×

∑
nz

δ

(
bkz
π
− nz

)
. (S.16)

Finally, dividing both sides of this equation by the cavity’s volume V = L2b, we get

E(τ)

V
=

h̄

(2π)3

∫
d3kω(k)× e−τω(k) ×

∑
nz

δ

(
bkz
π
− nz

)
. (S.17)

Eq. (4) follows from this formula via ω(k) = c|k|.

Part (c):

Eq. (5) — or rather its corollary

+∞∑
n=−∞

F (n) =

+∞∫
−∞

dxF (x)×
+∞∑

n=−∞
δ(n− x) =

+∞∑
m=−∞

+∞∫
−∞

dxF (x)× e2πmix (S.18)

is known as the Poisson’s resummation formula. To prove it, let’s calculate the sum on the

LHS of eq. (5), or rather the regulated version of this sum,

S(x, ε)
def
=

+∞∑
m=−∞

e2πmix × e−ε|m|

〈〈 using m′ = −m for m < 0 〉〉

= 1 +
∞∑
m=1

e+2πimx × e−εm +
∞∑

m′=1

e−2πim
′x × e−εm

′

= 1 +
∞∑
m=1

(
e+2πix−ε)m +

∞∑
m′=1

(
e−2πix−ε

)m′

= 1 +
e+2πix−ε

1− e+2πix−ε +
e−2πix−ε

1− e+2πix−ε

=
sinh(ε)

cosh(ε)− cos(2πx)
.

(S.19)

In the small ε limit, this expression becomes

S(x, ε) −−−→
ε→+0

2ε

ε2 + 4 sin2(πx)
−→

{
O(ε) for sin(πx) 6= 0,

2
ε for sin(πx) = 0.

(S.20)

Since sin(πx) vanishes at integer x — and only at integer x, — the sum (S.19) becomes very
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large at integer values of x and very small everywhere else. Moreover, for any integer n and

any c� ε but c� 1, we have

n+c∫
n−c

dx
2ε

ε2 + 4 sin2(πx)
=

+c∫
−c

dx′
2ε

ε2 + 4 sin2(πx′)
〈〈where x′ = x− n 〉〉

≈
+c∫
−c

dx′
2ε

ε2 + (2πx′)2

=
4ε

2πε
× arctan

2πc

ε
≈ 1,

(S.21)

and since the integrand is very small at all non-integer x, it follows that∫
any range containing

only one integer

lim
ε→0

S(x, ε) dx = 1. (S.22)

In a similar way, for any smooth function f(x),∫
any range containing

only one integer

f(x)× lim
ε→0

S(x, ε) dx = f(that integer), (S.23)

and therefore ∫
anyrange

f(x)× lim
ε→0

S(x, ε) =
∑
n

f(n) (S.24)

where the sum is over all integers which happen to lie withing the integration range. In other

words,

lim
ε→0

S(x, ε) =
+∞∑

n=−∞
δ(x− n), (S.25)

and hence

+∞∑
m=−∞

e2πimx = lim
ε→+0

+∞∑
m=−∞

e2πimx × e−ε|m| =
+∞∑

n=−∞
δ(x− n). (S.26)

Quod erat demonstrandum.

5



Part (d):

Let’s approximate the infinite empty space by a cube of large volume L3 →∞ with periodic

boundary conditions. The EM wave modes in this cube are plane waves with

k =
2π

L
(nx, ny, nz) for integer nx, ny, nz (S.27)

and two polarizations for each k. For large L, the spectrum of k becomes near-continuous

with density

d#k =
L3

(2π)3
d3k, (S.28)

hence the regularized vacuum energy of the cube becomes

E(τ) =
∑
k

2polarizations × h̄ω(k)× e−τω(k)

=
L3

(2π)3

∫
d3k h̄ω(k)× e−τω(k)

=
L3h̄c

(2π)3

∫
d3k |k| × e−τc|k|.

(S.29)

This energy is proportional to the cube’s volume L3, so the L-independent energy density

E(τ)

volume = L3
=

h̄c

(2π)3

∫
d3k |k| × e−τc|k| (S.30)

of a large cube should be the same as the energy density of infinite space without any walls.

By inspection, eq. (S.30) for the vacuum energy density of the infinite space looks pre-

cisely like the m = 0 term in eq. (6) for the vacuum energy density of the cavity between the

plates. Hence, according to eq. (3), the Casimir energy density of the cavity obtains from

eq. (7) where the sum skips the m = 0 term.
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Part (e):

To evaluate the RHS of eq. (7), we start by integrating
∫
d3k in spherical coordinates for the

wave vector k:

∫
d3k |k| × e−τc|k| × e2mibkz =

=

∞∫
0

dk k2
π∫

0

dθ sin θ

2π∫
0

dφ k × e−τck × e2imbk cos θ

= 2π

π∫
0

dθ sin θ ×
∞∫
0

dk k3 × exp
(
−k(τc− 2imb cos θ)

)

= 2π

π∫
0

dθ sin θ × Γ(4) = 6

(τc− 2imb cos θ)4

= 12π

τc+2imb∫
τc−2imb

d(τc− 2imb cos θ)

2imb

1

(τc− 2imb cos θ)4

= 12π × −1/3

2imb

[
1

(τc+ 2imb)3
− 1

(τc− 2imb)2

]
= −4π × 2(2mb)2 − 6(τc)2

[(2mb)2 + (τc)2]3
.

(S.31)

Next, we remove the regularization by taking the τ → +0 limit, which yields

lim
τ→+0

∫
d3k (· · ·) = −4π × 2(2mb)2

[(2mb)2]3
= − π

2m4b4
. (S.32)

Consequently,

ECasimir

volume
= − h̄c

16π2b4

∑
m6=0

1

m4
(S.33)

where the sum evaluates to

∑
m6=0

1

m4
= 2

∞∑
m=1

1

m4
= 2ζ(4) =

π4

45
. (S.34)
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Thus altogether,

ECasimir

volume
= − π2

720

h̄c

b4
. (S.35)

Part (f):

The two reflective plates divide the infinite space into 3 regions — two semi-infinite regions

outside the plates, and one cavity between them — and the Casimir energy is the difference

between the net vacuum energy of the three regions and the vacuum energy of the empty

space without any plates. But since the vacuum energy — or even the UV-regularized

vacuum energy — or a large region is proportional to its volume, the E(τ) of the infinite

space or of a semi-infinite region is infinite, and one must be very careful subtracting such

infinities.

To avoid this trouble, we were careful calculating the vacuum energy densities rather

than the net vacuum energies, and now we must be careful subtracting the net vacuum

energies of exactly same net volumes of space.

Thus, let’s put the whole system — the plates, and the spaces between and outside the

plates — into a huge box of size L × L × L′ with periodic boundary conditions. In effect,

such boundary conditions in z direction merge the two outside regions into a single cavity

with two reflective walls of width L′− b, so altogether we have two cavities, one narrow and

one wide. Consequently, the net Casimir energy is

ECasimir = Evac[narrow cavity] + Evac[wide cavity] − Evac[whole box without the plates],

(S.36)

or rather

ECasimir = lim
τ→0

(
E(τ)[narrow cavity] + E(τ)[wide cavity] − E(τ)[whole box]

)
. (S.37)
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Or in terms of energy densities E = E/volume

ECasimir = lim
τ→0

L2b× E(τ)[narrow cavity] + L2(L′ − b)× E(τ)[wide cavity]

− L2L′ × E(τ)[whole box]


= L2b× lim

τ→0

(
E(τ)[narrow cavity] − E(τ)[whole box]

)
+ L2(L′ − b)× lim

τ→0

(
E(τ)[wide cavity] − E(τ)[whole box]

)
= L2b× ECasimir[narrow cavity] + L2(L′ − b)× ECasimir[wide cavity].

(S.38)

At this point, we may use eq. (S.35) for the Casimir energy densities of the two cavities

to obtain

ECasimir = L2b× ECasimir(b) + L2(L′ − b)× ECasimir(L
′ − b)

= − π
2h̄c

720b4
× L2b − π2h̄c

720(L′ − b)4
× L2(L′ − b)

= −π
2h̄cL2

720b3
− π2h̄cL2

720(L′ − b)3

−−−−→
L′→∞

− π2h̄cL2

720b3
.

(S.39)

And this is the net Casimir energy of the cavity, including the (vanishing) effect of the outside

regions of space.

Two noteworthy features of the Casimir energy (S.39): (1) it’s negative, and (2) its

magnitude decreases with the cavity’s width b. Consequently, when we allow the walls to

move, the Casimir energy acts as a potential energy for such motion, which results in the

mechanical force on the walls attracting them towards each other. Specifically,

F = −dECasimir

db
= −π

2h̄cL2

240b4
(S.40)

where the overall − sign indicates that the force is attractive. And since this force is pro-

portional to the plates’ area L2, it means the negative Casimir pressure

P =
F

L2
= − π

2h̄c

240b4
. (S.41)

Numerically, for b = 1.000 micron the Casimir pressure is 1.300 · 10−3 Pa.

9


