
PHY–396 K. Solutions and mathematical supplement for problem set #1.

Problem 1(a):

Similar to the massless vector field discussed in class, the derivatives ∂µAν enter the La-

grangian density only via Fµν , so just like for the EM field, ∂L/∂(∂µAν) = −Fµν . At the

same time, for the massive field ∂L/∂(Aν) = +m2Aν − Jν . Thus, the Euler–Lagrange field

equation for the massive vector field is

−∂µ
∂L

∂(∂µAν)
+

∂L
∂(Aν)

≡ ∂µF
µν + m2Aν − Jν = 0. (S.1)

In terms of the Aν and their explicit derivatives,

∂µF
µν = ∂µ∂

µAν − ∂µ∂
νAµ = ∂2Aµ − ∂ν(∂µA

µ), (S.2)

so the Euler–Lagrange field equation becomes

∂2Aν − ∂ν(∂µA
µ) + m2Aν − Jν = 0. (S.3)

Problem 1(b):

Take the divergence ∂ν of the field equation (S.3); the first two terms cancel out while the

rest becomes

m2 ∂νA
ν − ∂νJ

ν = 0. (S.4)

In the massless case, this equation enforces the current conservation ∂νJ
ν = 0 regardless of

the 4–vector potential Aν(x), but there is no such constraint in the massive case at hand.

Instead, eq. (S.4) simply relates the current divergence to the 4–potential divergence,

∂νA
ν =

1

m2
∂νJ

ν . (S.5)

Consequently, eq. (S.3) for the massive vector field becomes

(∂2 +m2)Aν = Jν +
1

m2
∂ν(∂µJ

µ). (S.6)

In particular, when the current happens to be conserved, ∂νJ
ν = 0, then — and only then —
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eqs. (S.5) and (S.6) become

∂νA
ν = 0 and (∂2 +m2)Aν = Jν . (2)

Quod erat demonstrandum.

Problem 2(a):

For the complex scalar field Φ(x) with Lagrangian density (3), we have

∂L
∂(∂µΦ)

= ∂µΦ∗,

∂L
∂(∂µΦ∗)

= ∂µΦ,

∂L
∂Φ

= −
(
m2 +

λ

2
Φ∗Φ

)
Φ∗,

∂L
∂Φ∗

= −
(
m2 +

λ

2
Φ∗Φ

)
Φ.

(S.7)

Consequently, the Euler–Lagrange equations (4) and (5) become respectively

∂µ∂
µΦ∗ +

(
m2 +

λ

2
Φ∗Φ

)
Φ∗ = 0 (S.8)

and

∂µ∂
µΦ +

(
m2 +

λ

2
Φ∗Φ

)
Φ = 0. (S.9)

Note that the two equations are complex conjugates of each other.

Separating linear from non-linear parts of the field equations (S.8) and (S.9), we may

rewrite them as

(∂2 +m2)Φ = −λ
2

Φ∗Φ2, (∂2 +m2)Φ∗ = −λ
2

Φ∗2Φ, (S.10)

then from the linear left-hand sides of these equations we see that both Φ and Φ∗ fields have

mass2 = m2. Hence, once we quantize the fields, their quanta would be scalar particles of

mass m+ quantum corrections.
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Problem 2(b):

By definition (6) of the current Jµ, its divergence is

∂µJ
µ = −i∂µ(Φ∗∂µΦ) + i∂µ(Φ∂µΦ∗)

= −i(∂µΦ∗)× (∂µΦ) − iΦ∗ × (∂2Φ) + i(∂µΦ)× (∂µΦ∗) + iΦ× (∂2Φ∗)

= −iΦ∗ × (∂2Φ) + iΦ× (∂2Φ∗).

(S.11)

Now let’s make use of the field equations (S.8) and (S.9). For compactness sake, let’s rewrite

those equations as

∂2Φ = −T × Φ and ∂2Φ∗ = −T × Φ∗ (S.12)

for the same real

T = m2 +
λ

2
Φ∗Φ. (S.13)

Plugging eqs. (S.12) into the bottom line of eq. (S.11), we arrive at

∂µJ
µ = +iΦ∗ × T × Φ − iΦ× T × Φ∗ = 0. (S.14)

Thus, when the fields Φ and Φ∗ obey their equations of motion, the current Jµ is conserved,

quod erat demonstrandum.

Problem 3(a):

The definition (7) is manifestly symmetric with respect to cyclic permutations of indices

λ, µ, ν, thus

Hλµν = Hµνλ = Hνλµ . (S.15)

Hence, to prove the total antisymmetry of the Hλµν tensor it is enough to show that

Hλνµ = −Hλµν — antisymmetry with respect to other index pairs then follows by the

cyclic symmetry (S.15). And indeed, antisymmetry of the B tensor leads to

Hλνµ = ∂λBνµ + ∂νBµλ + ∂µBλν

= −∂λBµν − ∂νBλµ − ∂µBνλ

= −Hλµν

(S.16)

and hence total antisymmetry of the H tensor. Quod erat demonstrandum.
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Alternative proof:

Let us redefine the H tensor as

Hλµν = 1
2∂[λBµν] (S.17)

where [λµν] imply total antisymmetrization with respect to the λ, µ, ν, i.e. summing over all

possible permutations of those indices with appropriate signs. Obviously, this new definition

makes Hλµν a totally antisymmetric tensor.

To see that the new definition (S.17) is equivalent to the old definition (7) we use the fact

that Bµν is itself antisymmetric. Consequently, there is no need to antisymmetrize ∂[λBµν]

with respect to the two indices belonging to the B tensor, thus

Hλµν = 1
2(∂λBµν − ∂λBνµ) + 1

2(∂µBνλ − ∂µBλν) + 1
2(∂νBλµ − ∂νBµλ)

= ∂λBµν + ∂µBνλ + ∂νBλµ ,
(S.18)

exactly as in eq. (7).

Problem 3(b):

Thanks to eq. (S.17),

∂[κHλµν] = 1
2∂[κ∂λBµν] , (S.19)

where all the indices are totally antisymmetrized. In particular, the indices of the two

derivatives are antisymmetrized, which yields ∂[κ∂λ] = [∂κ, ∂λ] = 0 since the spacetime

derivatives commute with each other. Consequently,

∂[κHλµν] = 0. (S.20)

Mathematically, this is the differential identity for the tensor Hλµν(x) defined according to

eq. (S.17), or equivalently according to eq. (7).

Note that ∂[κHλµν] stand for the signed sum of 4! = 24 terms according to permutations

of the indices κ, λ, µ, ν. Fortunately, total antisymmetry of the H tensor means that there

is a 6-fold redundancy and only 4 of those 24 terms are different, thus

1
6 ∂[κHλµν] = ∂κHλµν − ∂λHµνκ + ∂µHνκλ − ∂νHκλµ . (S.21)

Consequently, the differential identity (S.20) for the Hλµν(x) field may be written as (8).
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Problem 3(c):

Given the Lagrangian (9) as a function of Bµν fields and their derivatives, we have

∂L(B, ∂B)

∂Bµν
= 0 (S.22)

while

∂L(B, ∂B)

∂(∂λBµν)
= 1

6 H
αβγ ×

∂Hαβγ

∂(∂λBµν)

= 1
6 H

αβγ × 1
2δ

[λ
α δ

µ
βδ

ν]
γ

= 1
2H

λµν .

(S.23)

Consequently, the Euler–Lagrange field equations

∂λ

(
∂L(B, ∂B)

∂(∂λBµν)

)
− ∂L(B, ∂B)

∂Bµν
= 0 (S.24)

for the B fields become

∂λH
λµν = 0. (S.25)

Problem 3(d):

Rewriting eq. (10) as

B′µν(x) = Bµν(x) + ∂[µΛν](x), (S.26)

we have

H ′λµν(x) = 1
2∂[λB

′
µν](x)

= 1
2∂[λBµν](x) + 1

2∂[λ∂µΛν](x)

= Hλµν(x) + 0,

(S.27)

where the last equality follows from ∂[λ∂µ] = 0. Thus, the tension tensor Hλµν(x) — and

hence the Lagrangian (9) — is invariant under the gauge transforms (10).
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Problem 3(e):

Proceeding similarly to part (b), we have

∂[λGµ1µ2···µp+1](x) =
1

p!
∂[λ∂µ1Cµ2···µp+1](x) = 0 (S.28)

because ∂[λ∂µ1] = 0. Thus regardless of any equations obeyed or not obeyed by the C(x)

potentials, their very existence implies the differential identity

∂[λGµ1µ2···µp+1](x) = 0 (S.29)

for the tension fields G(x).

As to the equations of motion, the Lagrangian (12) has derivatives

∂L(C, ∂C)

∂Cµ1···µp

= 0,

∂L(C, ∂C)

∂(∂λCµ1···µp)
=

(−1)p

(p+ 1)!
Gα1···αp+1 ×

∂Gα1···αp+1

∂(∂λCµ1···µp)

=
(−1)p

(p+ 1)!
Gα1···αp+1 × 1

p!
δ
[λ
α1δ

µ1
α2
δµ2
α3
· · · δµp]

αp+1

=
(−1)p

p!
Gλµ1···µp .

(S.30)

Hence, the Euler–Lagrange field equations

∂λ

(
∂L(C, ∂C)

∂(∂λCµ1···µp)

)
− ∂L(C, ∂C)

∂Cµ1···µp

= 0 (S.31)

for the Cµ1···µp(x) fields become (up to an overall coefficient)

∂λG
λµ1···µp(x) = 0. (S.32)
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Problem 3(f):

Under gauge transformations, the C tensor potential changes by

∆Cµ1···µp(x) =
1

(p− 1)!
∂[µ1

Λµ2···µp](x) (S.33)

for some arbitrary (p−1)–index antisymmetric tensor Λ[µ2·µp](x). Hence the G tension tensor

changes by

∆Gµ1µ2···µp+1(x) =
1

p!
∂[µ1

∆Cµ2···µp+1](x) =
1

(p− 1)!
∂[µ1

∂µ2Λµ3···µp+1](x), (S.34)

which vanishes because ∂[µ1
∂µ2] = 0. Thus, the tension tensor G is gauge invariant, and

hence the Lagrangian (12) is also gauge invariant. Quod erat demonstrandum.

Problem 4(a):

Let’s start with Maxwell equations in 4D notations: the homogeneous equation(s)

∂λFµν + ∂µFνλ + ∂νFλµ = 0. (S.35)

— or equivalently

∂[λFµν] = 0, (S.36)

or even

εκλµν∂λFµν = 0, (S.37)

— and the inhomogeneous equation(s)

∂µF
µν = Jν −→ 0 in the absence of electric currents. (S.38)

In terms of the dual EM tensor (14), the homogeneous equation (S.37) for the original
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EM tensor Fµν(x) becomes

0 = ∂λ
(
εκλµνFµν

)
= ∂λ

(
2F̃ κλ

)
= −2∂λF̃

λκ, (S.39)

or equivalently

∂λF̃
λκ = 0, (S.40)

which is the in-homogeneous Maxwell equation for the dual tensor F̃ λκ (in the absence of a

dual current J̃κ).

On the other hand, reversing eq. (14) we get Fµν = −1
2ε
µνκλF̃κλ. Plugging this relation

into the in-homogeneous Maxwell equation (S.38) for the original EM tensor Fµν(x), we get

0 = ∂µF
µν = −1

2ε
µνκλ∂µF̃κλ, (S.41)

or equivalently

ενµκλ∂µF̃κλ = 0, (S.42)

which is the homogeneous Maxwell equation for the dual tensor F̃ κλ.

Altogether, the complete set of Maxwell equations for the original EM tensor Fµν(x) (in

the absence of any electric currents) is equivalent to the complete set of Maxwell equations for

the dual EM tensor F̃ κλ (also in the absence of dual currents J̃κ). Quod erat demonstrandum.

PS: When the electric charges and/or currents do not vanish, Jµ(x) 6≡ 0, the electric-

magnetic duality (14) turns them into the magnetic charges and currents J̃κ(x) — i.e., the

charge/current densities of magnetic monopoles. In presence of such magnetic monopoles,

the homogeneous Maxwell equation (S.38) stops being homogeneous; instead, it becomes

1
2ε
κλµν∂λFµν = −J̃κ, (S.43)

or equivalently

∂λF̃
λκ = J̃κ, (S.44)
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while the in-homogeneous Maxwell eq. (S.38) remains the same,

∂µF
µν = Jν (S.45)

or equivalently

1
2ε
µνκλ∂νF̃κλ = Jµ. (S.46)

Note that the no-longer-homogeneous eq. (S.43) disagrees with Fµν = ∂µAν − ∂νAµ for any

4-vector potential Aµ(x). Consequently, the EM fields which couple to both electric and

magnetic charges must be reformulated in a way which does not involve the potentials Aµ.

Such reformulation is possible but it goes way beyond the scope of this class.

Problem 4(b):

As we saw in problem 3, the antisymmetric tension tensor Gµ1,...µp+1(x) obeys the Euler–

Lagrange equation

∂µ1G
µ1,µ2...,µp+1 = 0 (S.47)

and the differential identity

∂[µGν1,...,νp+1] = 0. (S.48)

The LHS of this differential identity is a (p + 2) index totally antisymmetric tensor, so

contracting it with the Levi-Civita tensor εν1,...,νD turns it into a (D − p − 2 = q) index

antisymmetric tensor

1

(p+ 1)!
ελ1,...,λq,µ,ν1,...,νp+1∂µGν1,...,νp+1 ,

so the differential identity (S.48) becomes

0 =
1

(p+ 1)!
ελ1,...,λq,µ,ν1,...,νp+1∂µEν1,...,νp+1

= ∂µ

(
1

(p+ 1)!
ελ1,...,λq,µ,ν1,...,νp+1Eν1,...,νp+1 = G̃λ1,...,λq,µ

)
= (−1)q∂µG̃

µ,λ1,...,λq .

(S.49)

In other words, the differential identity for the original tension tensor G is equivalent to the

Euler–Lagrange equation of motion for the dual tensor G̃.
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In exactly the same way, the Euler–Lagrange equation of motion for the original tensor

G is equivalent to the differential identity for the dual tensor G̃:

0 = ∂λG
λ,µ1,...,µp

= ∂λ

(
±1

(p+ 1)!
ελ,µ1,...,µp,ν1,...,νq+1G̃ν1,...,νq+1

)
=

±′1
(p+ 1)!

εµ1,...,µp,λ,ν1,...,νq+1 ∂λG̃ν1,...,νq+1 ,

(S.50)

or equivalently

∂[λG̃ν1,...,νq+1] = 0. (S.51)

Problem 4(c):

As we saw in problem 3, a 2-index tensor potential Bµν has a 3-index antisymmetric tension

tensor Hλµν . In 4 Minkowski dimensions, such a 3-index antisymmetric tensor is dual to a

1-index tensor i.e. a vector

vκ(x) = 1
6ε
κλµνHλµν(x) ⇔ Hλµν(x) = ελµνκvκ(x). (S.52)

The H tensor obeys the differential identity

1
6εκλµν∂

κHλµν = 0 (S.53)

and the Euler–Lagrange equation of motion

∂λH
λµν = 0. (S.54)

In terms of the vκ vector, eq. (S.53) becomes

∂κv
κ = 0 (S.55)

while eq. (S.54) becomes

ελµνκ∂λvκ = 0, (S.56)
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or equivalently

∂λvκ − ∂κvλ = 0. (S.57)

Mathematically, eq. (S.57) is the integrability condition for the vector field vκ(x) being a

gradient of some scalar field φ(x). That is, eq. (S.57) is automatically true for vκ(x) = ∂κφ(x)

for any scalar field φ(x), and conversely, if eq. (S.57) holds true at all x, then vκ(x) = ∂κφ(x)

for some scalar field φ(x).

Now let’s treat φ(x) as an independent scalar potential field whose tension is the vector

field vκ(x). In terms of the φ(x), eq. (S.57) is automatic while eq. (S.55) becomes

∂2φ = 0. (S.58)

Physically, this is the equation of motion of a free massless scalar field with the Lagrangian

density

L = 1
2(∂κφ)(∂κφ). (S.59)

And that’s why we say that in 4D, a free two-index antisymmetric tensor field Bµν(x) is

dual to a free massless scalar field φ(x).

Mathematical Supplement to Problems 3 and 4

Differential Forms.

Mathematics of various antisymmetric tensor fields becomes much simpler in the lan-

guage of differential forms. Students interested in string theory should master this language

and then go ahead and learn as much differential geometry and topology as they can; take a

class on the subject or at least read a book. Wikipedia has a quick and dirty introduction to

differential forms at http://en.wikipedia.org/wiki/Differential form and related web pages.

Consider a space or spacetime of dimension D; it can be Euclidean or Minkowski, flat

or curved; it might even be a smooth topological manifold without any metric at all. A

differential form of rank p ≤ D in such a space combines a tensor with p indices and a
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differential suitable for integration over a sub-manifold of dimension p (a line for p = 1,

a surface for p = 2, etc., etc.). For example,

A = Aµ(x) dxµ, B = Bµν(x) dxµ∧dxν , C = Cλµν(x) dxλ∧dxµ∧dxν , . . . . (S.60)

For p = 2, a 2–form should be integrated over an oriented surface, so the order of dxµ and

dxν matters; in fact they anticommute so dxµ ∧ dxν = −dxν ∧ dxµ. Likewise, the volume

differential dxλ ∧ dxµ ∧ dxν is totally antisymmetric with respect to permutation of indices

λµν. Consequently, in eq. (S.60), the Bµν(x) tensor is antisymmetric, Bνµ = −Bµν , while

the Cλµν(x) tensor is totally antisymmetric in all of its 3 indices. And a general form of

rank p

E = Eµ1µ2···µp(x) dxµ1 ∧ dxµ2 ∧ · · · ∧ dxµp (S.61)

involves a p-index totally antisymmetric tensor Eµ1µ2···µp(x).

The exterior derivative of a rank-p form E is a form dE of rank p+ 1 defined as

dE =
(
dEµ1µ2···µp(x)

)
∧dxµ1 ∧· · ·∧dxµp = ∂λEµ1µ2···µp(x) dxλ∧dxµ1 ∧ · · ·∧dxµp , (S.62)

but this compact formula hides the antisymmetrization due to anticommutativity of the dxµ

differentials. In the antisymmetric tensor form, J = dE means

Jµ1···µp+1(x) =
1

p!
∂[µ1

Eµ2···µp+1](x) =

p+1∑
j=1

(−1)j−1∂µjEµ1···6µj ···µp+1
(x)

= ∂µ1Eµ2···µp+1 − ∂µ2Eµ1µ3···µp+1 ± · · · + (−1)p∂µp+1Eµ1···µp .

(S.63)

The exterior derivative generalizes the 3D notions of gradient, curl, and divergence. Indeed,

a scalar φ(x) is a 0–form and its gradient ∇φ is a vector defining a 1-form (∇φ)i dx
i = dφ.

Likewise, for a vector ~A(x) and its curl ~B(x) = ∇ × ~A(x) we have a 1-form A = Ai(x)dxi

and a 2-form B = Bij(x)dxi ∧ dxj = dA where Bij = ∂iAj − ∂jAi; note that in 3D this

antisymmetric tensor is equivalent to an axial vector, Bij = εijkBk. Finally, for a vector ~E(x)

and its divergence f(x) = ∇· ~E we have an exterior derivative relation f = dE for the 2-form

E = Ei(x)εijkdx
j∧dxk equivalent to the vector Ei(x) and a 3-form f = f(x)εijkdx

i∧dxj∧dxk

equivalent to the scalar f(x).
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The most important property of the exterior derivative is its nilpotency: for any dif-

ferential form E, ddE = 0. This rule corresponds to the differential identities for all kinds

of antisymmetric tensors, in particular the vector calculus identities ∇ × (∇φ) = 0 and

∇ · (∇ × ~A) = 0. The proof is very simple: If E is a form of rank p, J = dE is a form of

rank p+ 1, and K = dJ is a form of rank p+ 2, then applying eq. (S.63) twice, we have

Kλµν1···νp(x) =
1

(p+ 1)!
∂[λJµν1···νp](x)

=
1

(p+ 1)! p!
∂[λ∂[µEν1···νp]](x)

=
1

p!
∂[λ∂µEν1···νp](x)

= 0

(S.64)

where the last equality follow from ∂[λ∂µ] = 0.

The application of the differential form language to electromagnetic fields and to the

antisymmetric tensor fields in this homework is completely straightforward. In electromag-

netism we work in Minkowski spacetime and identify the 4–vector potential Aµ(x) with a

1–form A = Aµ(x)dxµ and the tension tensor Fµν(x) with a 2–form F = Fµν(x)dxµdxν .

Clearly, F is the exterior derivative of A:

F = dA ⇐⇒ Fµν = ∂[µAν] = ∂µAν − ∂νAµ . (S.65)

The differential identity ∂[λFµν] = 0 is simply dF = 0, which follows from F = dA and

dF = ddA = 0 by nilpotency of d. The gauge transform of the potentials is A′ = A + dΛ

(where Λ is a 0–form, i.e. a scalar field), and the gauge invariance of the tension fields is

simply

F ′ = dA′ = dA + ddΛ = F + 0 (S.66)

because ddΛ = 0.

Similarly, for the tensor potential Bµν(x) and the tension tensor Hλµν in parts (a)

through (d) of problem 3, we have a 2–form B = Bµν(x)dxµdxν and a 3–form H =

Hλµν(x)dxλdxµdxν . Clearly, eq. (7) for the tension tensor translates to H = dB, which
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immediately gives rise to the differential identity dH = 0 because ddB = 0. Translating

back to the tensor language, dH = 0 means eq. (8). And the gauge transform (10) is simply

B′ = B + dΛ(1) where Λ(1) is an arbitrary 1–form; the tension form H is gauge invariant

because ddΛ(1) = 0.

Finally, in parts (e) and (f) of problem 3, the totally-antisymmetric tensor potential

Cµ1···µp(x) with p indices corresponds to a form C of rank p and the tension tensor (11)

corresponds to a form G = dC of rank p + 1. The differential identity is dG = 0, which

follows from ddC = 0. And the gauge transform (13) is C ′ = C + dΛ(p−1) for an arbitrary

rank p− 1 form Λ(p−1); the tension form G is gauge invariant because ddΛ(p−1) = 0.

The Lagrangians and the equations of motion for the EM and tensor fields may also be

written in the differential form language, but they — as well as the electric-magnetic duality

of in problem 4 — require an additional mathematical tool, the Hodge duality. There is a

quick and dirty introduction to this subject at the Wikipedia page

https://en.wikipedia.org/wiki/Hodge star operator.

Note: while the differential forms as such can be put on any smooth topological manifold

even if it does not have a metric, the Hodge duality requires an orientable Riemannian

manifold with some metric gµν(x) — which can be Euclidean or Minkowski — and the

volume form

V =
√
±g εµ1,...,µDdx

µ1 · · · dxµD . (S.67)

In the antisymmetric tensor language, the Hodge duality works like this: First raise all

the indices of a (p′ = p + 1)-index tensor Gµ1,...,µp′ , and then contract it with the volume

tensor (S.67); the remaining (un-contracted) q′ = D − p′ indices of the volume tensor yield

a (q′ = q + 1)–index antisymmetric tensor

G̃ν1,...,νq′ =
1

p′!

√
±g εν1,...,νD × gνq′+1µq′+1 · · · gνDµD ×Gµp′+1,...,µD . (S.68)

In particular, in the flat Minkowski space, this formula becomes simply eq. (16).

In the differential form language, the Hodge duality (S.68) is denoted by the Hodge
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star ?:

for G = Gµ1,...,µp′ dx
µ1 · · · dxµp′ , we define ? G = G̃ν1,...,νq′ dx

ν1 · · · dxνq′ , (S.69)

where the Gµ1, . . . , µp′ and the G̃ν1,...,νq′ tensors are defined exactly as in eq. (S.68). It is this

Hodge star which allows us to write the the field equations for all kinds of antisymmetric

tensor fields in a very compact form.

Indeed, take a p-index antisymmetric tensor field Cµ1,...,µp(x); as we saw in problem (3),

its tension tensor Gµ1,...,µp+1(x) satisfies the differential identity

∂[µGν1,...,νp+1] = 0 (S.48)

and the Euler–Lagrange equation

∂µ1G
µ1,µ2...,µp+1 = 0. (S.47)

In the differential form language the tension tensor is G = dC, the differential identity (S.48)

becomes dG = 0, but the Euler–Lagrange equation (S.47) takes extra care. Fortunately, in

problem 4(b) we saw that the Euler–Lagrange equation for the original tension tensor G is

equivalent to the differential identity for the dual tensor G̃; in the differential form language,

this means that the Hodge-dual tension form ?G obeys d ?G = 0. Thus altogether, the field

equations for the tension form G = dC of a free p-form field C are

dG = 0 and d ? G = 0. (S.70)

In particular, in 4 Minkowski dimensions the Maxwell eqs. for the free EM tension field

Fµν(x) in the differential form language become

dF = 0 and d ? F = 0. (S.71)

In presence of an electric current Jµ(x) 6= 0, these equations become

dF = 0 and d ? F = ?J, (S.72)

where ?J is a 3-form dual to the 1-form J = Jµ(x) dxµ. Note that it this 3-form we should
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integrate over the 3D space to obtain the net electric charge

Q =

∫
3D space

?J. (S.73)

Finally, when both electric and magnetic charges and currents are present, the Maxwell

equations become

dF = ?Jmag and d ? F = Jel , (S.74)

and since dF 6= 0 we may no longer write F = dA for a 1-form potential Aµ(x) dxµ.

Likewise in problem 4(c) we have a duality between a free 2-form field B and a free

massless scalar field φ(x) which we may treat as a 0-form φ. The corresponding tension

forms H = dB and v = dφ are Hodge-dual to each other (in 4D), H = ?v and v = ?H, and

obey field equations

dH = d ? v = 0 and d ? H = dv = 0. (S.75)

As the last subject of this mathematical supplement, consider the Lagrangians for the

various p-form fields. Let’s start with the EM field in 4 Minkowski dimensions and consider

the wedge product

F ∧ (?F ) = Fκλ dx
α ∧ dxλ ∧ F̃µν dxµ ∧ dxν . (S.76)

In 4D, a wedge product of four dxα’s amounts to

dxα ∧ dxλ ∧ dxµ ∧ dxν = −εκλµν × dx0 ∧ dx1 ∧ dx2 ∧ dx3 =
−εκλµν√
−g

× V (S.77)

where V =
√
−gd4x is the 4D volume form. (The factor

√
−g allows for a curved spacetime,
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if you ever care for the EM fields in such a background.) Consequently,

F ∧ (?F ) = V × −ε
κλµν

√
−g

Fκλ F̃µν (S.78)

where

−εκλµν√
−g

Fκλ F̃µν =
−εκλµν√
−g

Fκλ × 1
2

√
−gεµνσρF σρ

= Fκλ F
σρ ×

[
(−1

2)εκλµνεµνσρ = +δ[κσδ
λ]
ρ

]
= +2FκλF

κλ.

(S.79)

Altogether, we have

F ∧ (?F ) = 2FκλF
κλ × V = −8LEM × V, (S.80)

which allows us to write the EM Lagrangian L = −1
4FκλF

κλ — or rather the action integral

S =

∫
spacetime

L ×
(
V =

√
g d4x

)
(S.81)

as

S =

∫
spacetime

−1

8
F ∧ (?F ). (S.82)

Likewise, for a p-form C in D Minkowski dimensions, let’s take a wedge product of the

(p+ 1) form G = dC and its Hodge-dual (q + 1 = D − p− 1) form ?G:

G ∧ (?G) = Gµ1,...,µp+1 dx
µ1 ∧ · · · ∧ dxµp+1 ∧ G̃ν1,...,νq+1 dx

ν1 ∧ · · · ∧ dxνq+1 , (S.83)

and since (p+ 1) + (1 + 1) = D, we have

dxµ1 ∧ · · · ∧ dxµp+1 ∧ dxν1 ∧ · · · ∧ dxνq+1 =
(−1)D−1√
−g

εµ1,... µp+1,ν1,...,νq+1 × V (S.84)

17



where V =
√
−g dDx is the D-dimensional spacetime volume form. Consequently,

G ∧ (?G) = V × (−1)D−1√
−g

εµ1,... µp+1,ν1,...,νq+1 Gµ1,...,µp+1 G̃ν1,...,νq+1

= V × (−1)D−1√
−g

εµ1,... µp+1,ν1,...,νq+1 Gµ1,...,µp+1 ×

×
√
−g

(p+ 1)!
εν1,...,νq+1,λ1,...,λp+1

Gλ1,...λp+1

= V × (−1)D−1

(p+ 1)!
×Gµ1,...,µp+1 G

λ1,...,λp+1 ×

× (−1)D−1(−1)(p+1)(q+1)(q + 1)! δ
[λ1
µ1 · · · δ

λp+1]
µp+1

= V × (−1)(p+1)(q+1) (q + 1)!

(p+ 1)!
δ
[λ1
µ1 · · · δ

λp+1]
µp+1 ×Gµ1,...,µp+1 G

λ1,...,λp+1

= V × (−1)(p+1)(q+1) (q + 1)!×Gµ1,...,µp+1 G
µ1,...,µp+1 .

(S.85)

Comparing this formula to the Lagrangian density (12) for the p-form field C and its tension

G,

L(C,G) =
(−1)p

2(p+ 1)!
Gµ1,...,µp+1 G

µ1,...,µp+1 , (12)

we see that

G ∧ (?G) = V × L× 2(p+ 1)!(q + 1)!(−1)p+(p+1)(q+1). (S.86)

Therefore, the action integral becomes

S =

∫
spacetime

L × V =
±1

2(p+ 1)!(q + 1)!

∫
spacetime

G ∧ (?G) (S.87)

where the overall sign is

±1 = (−1)p+(p+1)(q+1) =

{−1 for even D,

(−1)p for odd D.
(S.88)

In particular, for the free EM field in D dimensions

S =
−1

4(D − 2)!

∫
spacetime

F ∧ (?F ), (S.89)
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while for the 2-form B and its tension H = dB,

S =
(−1)D−1

12(D − 3)!

∫
spacetime

H ∧ (?H). (S.90)

Even a free massless scalar field φ(x) fits the pattern since we may treat it as a zero-form φ

with a 1-form tension v = dφ, thus

S =
(−1)D−1

2(D − 1)!

∫
spacetime

dφ ∧ (?dφ). (S.91)
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