PHY-396 K. Solutions for homework set #2.

Problem 1(a):

By the Leibniz rule for the commutators
[ahag,al] = al[agal] + [af,al]

g =

and likewise

alag,as] = al[aga;] + [al,a;)ay = @l x 0 + (=0as) X a5 = —basiy.

Consequently, applying the Leibniz rule once again we get

allalag, as] + [ahag, allas
a
= Opylhiy — Oasliy.

Finally,
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Problem 2(a):
In 3D notations (but 2 = ¢ = 1 units), the Lagrangian density (3) for the massive vector

field is

L

1(E* — B?) + Im?(A] — A?) — Jodo + J-A
X (S.5)
2

(A —VA)? + LV xA? + Im? (A} — A?) — Jodo + T-A.

Note that only the first term on the last line contains any time derivatives at all, and it does
not contain the Ag but only the A. Consequently, 0L/ Ay = 0 and the scalar potential
Ap(x) does not have a canonical conjugate field. On the other hand, the vector potential
A (x) does have a canonical conjugate, namely

oL oL

ARG = DAL, = (AR - Vi) = ~Be) (3.6)

Problem 2(b):

In terms of the Hamiltonian and Lagrangian densities, eq. (4) means
H=—-AE - L. (5)

Expressing all fields in terms A, E, and Ag, we get

A = —E — VA,,
~A-E = E? + E-VA,, (S.7)
L= 3(E—(VxA?)+ Im?(A - A?) — (AgJy—A-J),

and consequently,
H =3E* + E-VA) — §m*A} + Aodo + 3(Vx AP + Im®A* — A-J. (S8)

Taking the [ d®x integral of this density and integrating by parts the E-V Aq term, we arrive

at the Hamiltonian (5).  Quod erat demonstrandum.



Problem 2(c):

Evaluating the derivatives of H in eq. (6) gives us

SH OH K ) |
_ v, 9 2Ay 4 J — VER S.9
SA0) — oAy Va0V Ay m Ao + Jo =V (5.9)

Were there a canonical conjugate m(x, t) of the Ag(x,t), its time derivative dmy /0t would be
given by the right hand side of eq. (S.9). But the Ag(x,t) does not have a canonical conjugate,
so instead of a Hamilton equation of motion we have a time-independent constraint (6),

namely

m?Ay = Jo — V-E. (S.10)

In the massless EM case, a similar constraint gives rise to the Gauss Law V - E = Jy. But
the massive vector field does not obey the Gauss Law; instead, eq. (S.10) gives us a formula

for the scalar potential Ag in terms of E and Jj.

On the other hand, the Hamilton equations for the vector fields A and E are honest

equations of motion. Specifically, evaluating the derivatives of H in eq. (7), we find

SH oM oM ‘
. E . — e e———— = ¢ /i 9 .].1
B - aEy - Vo - T Vi (8-11)

which leads to Hamilton equation

%A(x,t) _ _E(x,{) — VAo(x, ). (8.12)

Similarly, in eq. (8) we have

0H oH OH 9 1 : i N
' = —— — Vg = m A = J — V(' A S.13
JA(x) O(A?) Vi B(V; Ai) m J V(e (V x A)Y) (S.13)

and hence Hamilton equation

%E(x,t) = m2A — J + Vx(VxA). (S.14)



Problem 2(d):
In 3D notations, the Euler-Lagrange field equations (9) or 9,F* +m?A” = J” become

V-E + m2A° = J° (S.15)
~E + VxB + m?A = 7J, (S.16)
where
EX _A - vA (S.17)
B ¥ vxA. (S.18)

Clearly, eq. (S.15) is equivalent to eq. (S.10) while eq. (S.16) is equivalent to eq. (S.14)
(provided B is defined as in eq. (S.18)). Finally, eq. (S.17) is equivalent to eq. (S.12),
although their origins differ: In the Lagrangian formalism, eq. (S.17) is the definition of the
E field in terms of Ay, A and their derivatives, while in the Hamiltonian formalism, E is an
independent conjugate field and eq. (S.12) is the dynamical equation of motion for the A.

Quod erat demonstrandum.

Problem 3:
Let start with the [A, H | commutator. In light of eq. (13) for the Hamiltonian, we have

Ai(x), 1] = /d3y

N ~ 1 ~ ~ ~ ~ a A
Al(x), (%EQ + 53 ~V-E)? + J(VxA)? + 1m?A? - J-A)@ ]
y
(S.19)
where all operators are at the same time ¢ as the A’(x,t). Since all the A’(x) operators

commute with each other at equal times, the last three terms in the Hamiltonian density do

not contribute to the commutator (S.19). But for the first term we have

A

[A'(x), 5B (y)] = {E(y), [A'(x), E(y)]}
— MBI (y),—i676® (x — y)} (S.20)

= —id®(x —y) x E'(y),

DO



while for the second term we have
lix) (J : _ Viix) B = 1isii 0 53)
A6, (oly) = VBE))| = 0 = 5ol AG), B)] = 407 55600 —y) (5:21)
and hence
N 1 /. . 2 1 /. . 9
i - _ V. - _ V. sif Y 8(3) (4 _
A (ly) = E®) | = () = V) %415 L0 y)
= Ay x i L 5O —y)

oyt
(S.22)

where the second equality follows from eq. (12). Plugging these all these commutators into

eq. (S.19) and integrating over y, we obtain

[Al(x), H] = /d3y (—i5(3)(x —y) x El(y) + A%(y) x ia%(s(i’))(x ~y)+0+0+ 0>
((integrating by parts ))

= [y sy x (B + 5 d)

Y
= =i(B0 + 5 d).

(S.23)

In other words, [A(x), H] = —iE(x) —iVA(x) and consequently in the Heisenberg picture,
0 ia - A -0

g Ax,t) = —i[A(x),H] = —-E(x,t) — VA"(x,1). (S.24)

Clearly, this Heisenberg equation is the quantum equivalent of the classical Hamilton equa-

tion (S.12).
Now consider the [E, H | commutator. Similarly to eq.(S.19), we have
[E'(x, 1), H] = /d?’y [E”'(x, t), (%E? + Im242 + 1B? 4 1m?A? - j-A) <y,t>} (S.25)

where m2A° = JO — V.E according to eq. (12) and B © T« A At equal times, the E(x)

operator commutes with all the £7(y) and hence with the E2(y), and also with the Ag(y)



and hence with the A%(y); this eliminates the first two terms in the Hamiltonian density

from the commutator (S.25). For the remaining three terms we have

E(x), (-3-A)y)| = T y) x [F ), Al(y)]
= —Ji(y) x +i6750) (x — y)
= —id®(x —y) x J'(y),

B(x), 5m?A%(y)| = +im?6P (x - y) x Al(y),

(B, B3] = o (B0, A

_ Ejkfa_yk <+Z-51€6(3) (X . y)> (826)

9 ..
= —z'ejkza—ka] (y) x 0¥ (x —y) + a total derivative

= +i(Vx B)i(y) x 6®(x—y) + a total derivative.

A ~ A

[E(x), ﬁ(y)] = i0®) (x—y) x <V x B(y) + m?A(y) — J(y)>+ a total derivative, (S.27)

+ a total derivative

. 1] = [ (z’6<3><x ~y) x (V< Bly) + m?A(y) 3<y>))
(S.28)

— i(v x B(x) + m?A(x) — 3(X)> )

and therefore in the Heisenberg picture

%E(x,t) = —i [E(x, t),ﬁ} = 4V x B(x) + m?A(x) — J(x). (S.29)

Again, this Heisenberg equation is the quantum equivalent of the classical Hamilton equa-

tion (S.14).



Problem 4(a):
The relations AL N = —/ALk’ 2 EIT{ \ = —E,k’ ) follow from the hermiticity of the quantum

fields A (x) and E(x), and also from the convention
e,(=k) = —ey(+k) (16.c)

for the polarization vectors. Indeed, taking the hermitian conjugate of eq. (18) for the flk, A

we get

) . ) f . A
AL N = (/dgx L7312 x ox () A(x)> = /d3x L732¢7kx g, (k) - Af(x)

(S.30)
= /d3xL—3/2@+i<—k>x (—er(—k))-Ax) = —A 4,
and likewise for the Ek, A
. . A\ . .
B, = ( /di"xL—?’/?e“kXe;(k)-E(x)) = /d3xL_3/Ze_lkxe)\(k)-ET(X) so)
31

= /dSXL_3/2e+i(_k)x (—ei(~k)) -E(x) = —E i

As to the equal-time commutation relations for the /Alk’ \ and Ek’ » modes, they follow
directly from eqs. (11): Since all A’s commute with each other and all E’s commute with

each other, we obviously have
[Ak)\,fik/’)\/] = 0 and [EAkA,Ek/’)\/] = 0. (8.32)

And the commutators between the A modes and the £ modes obtains from egs. (18):

A A~

Ao B ) = L7 /d3x /d3yeik><(e§(k))" % MY (0, () x [A¥(x), B (y)
= L3 /d3x /d?’ye_ikx(ej(k))i x Y (e, (K)) x (—i)6®) (x — y)5¥
= —iL73 / dOx e DX o (3 (K) - ey (K))
box
= —Z'(Sk’k/ X (ei(k) ~e/\,(k))

= —ilkk X Ox\ N,
(5.33)



or equivalently,

[Ax\, B v] = Fi0kqir,0 X O\

Problem 4(b):

In the absence of the current J#, the Hamiltonian (13) reduces to 4 terms,

. 1 1 1 R m? .
_ [ 3 2 - - 2 A2
H dx(2E + 2m2(v )2 2(V><A) + 5

(S.34)

(S.35)

Let’s re-express each of the 4 terms here in terms of the field-mode operators /Alk7 ) and Ek, 2

For the first term, we have

JixB ) = [ixBie - Bx)

:/ ZL 3/2 —ik-x * Elt)\ ZL 3/2 +ik’- X g ( )Ek’)\’

k’, N

- Z Z EIE,AEAk/7,\/ X Lig /d3X eix'(klik) (ei(k) c €y (k/))

Kbk’ AN’ box

where

L3 /d?’xeix‘(k/k) = Okk

box

and then for k' =k

ex(k)-ey(kK'=k) = 6.

Plugging this into the bottom line of eq. (S.36), we get

/d3xE2 = YN Bl By xSy = Y Bl By

kk" A\ k,A

In exactly the same way, for the fourth term in the Hamiltonian (S.35) we have

/ d*x A?%(x Z Al Ay

(S.36)

(S.37)

(S.38)

(.39)

(S.40)



Next, consider the second term in the Hamiltonian (S.35). It involves

VBx) = V- | Y L3k (k) Eyy | = Y L732 (Veix'k-e/\(k)> By (SAl)
kA kA
where
Vexk — eixkik (S.42)
and
k-ey(k) = [k[6ro (S.43)

because in the helicity basis eg(k) points in the direction of the k while ex; L k. Conse-

quently

V-Bx) = ) ik L2 By, (S.44)
k

which involves only the longitudinal modes with A = 0. Therefore,
/d3x(V B(x))? = /d3x (V-El(x)- (V- E(x))
= /d3x (Z (—i)|k| L™3/2e kX E110> - (Z (i) K| L3/ x Ek,,o)

k k’

= > Ikl x K| x Bf (Byg x [ L7 / Px KX — 5
k k’

box
— Z ‘k’Q X EILOEI{’,O .
k

(S.45)

Finally, in the magnetic third term in the Hamiltonian (S.35), we have

Bx) = VxAx) = Y Vx (L—3/Qeik-XeA(k)> A

k,\
where

V x (eik'xe)\(k)> = *X (k) x ey(k) = KX Ak|ey(k). (S.46)

Note that due the factor of A, only the transverse modes /Alk7 » with A = 41 contribute to



the magnetic field

B(x) = Y L 32 )\k[e*%ey(k) Ay (S.47)
k,\

but the longitudinal modes with A = 0 do not contribute. Consequently, the magnetic term

in the Hamiltonian (S.35) becomes
/d3x1§2(x) - /dSXBT(x) . B(x)

_ /d3x S L2 \k| e hxe (k)AL

kA
ST LN etE ey (K) Ay
k/7X
= Y S AKIVIKAL Ay x L—3/d3xei*<k’—k> x (e (k) - ey (K))
kK AN

box

{(where L™3 [d3x eix(K-k) — Sk k' )
((and e}(k) - e,,(k') = 0y n for k =k’))
k,A
(S.48)
Altogether, the 4 terms in the Hamiltonian (S.35) add up to
- 1 k? ot o m? + A%k
H = Z (5 <1 —+ Wé)\’O) X EIT(,)\Ek,)\ + T X AIT(,)\Ak,)\) . (S49)
kX

Taking a closer look at the coefficients here and comparing them to the wy and CY ) in

eq. (19.b—c), we see that

. k2 5 1 for A = £1 c
+ 5 X0y = —
m2 " M wi/m? for A =10 o

while

2 _ 2
m? + \2k% = {“k for A = il} =k (S.50)
m2 forA=0

10



thus the Hamiltonian (S.49) amounts to

: Cer o ot 2 W it
H =3 ( 5 < BB 20 Aoy |
kA !

precisely as in eq. (19.a).

Problem 4(c):

(S.51)

Given the definitions (20) of the creation and the annihilation operators and the commutation

relations eqgs. (S.32) and (S.34) of the field modes flk, » and EAk7 A, We obtain

A~ A~ . Ck’,ka ~ N ‘
[akak’ak’,/\’] B _Z\/% <[Ak,/\7Ek’,X] = (+Z)5k+k/,05)\,)\’>
Ck AWK/ N R .
— 1 T E 7A ' = (1 5 ’ 6 ,)
Z\/@O ke h At ] = (=9)0k41e,0000
o v |Gk ] G
k+k’,000,) 40k \wi/ 4C ywi

=0
because for k' + k = 0 and X' = X we have wy = wy and Cys y = Ci .

Likewise, [le( \ dL N

On the other hand,

A~ AT - . Ck’,)\’wk N . _ ‘
[ak,>\7ak/,)\/] - _Z\/% <[Ak,A7Ek/’)\/] = (+Z)5k,k’5)\7)\’>
. Ok AWK/ N R -
——— (| Ex., A x| = (—1) 0k 0 />
+ zm([ kA A ] = (=) 0k e 0a\
Crr vwi Cr Wi
- 5 /(S 1 X ) + )
kk'OX A <\/4Ck,)\wk’ 4Ck’,)\’wk

= OOy n X 1

because for k =k and \ = \
Cir vwk N Crawie
4Cx Wi/ 4Cyr ywi

11
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(S.52)

(S.53)

(S.54)



Quod erat demonstrandum.

Problem 4(d):
Lets compare the first eq. (20) for the annihilation operator and the second eq. (20) for
the creation operators for the two modes with opposite momenta +k. For the annihilation

operator we have
\/2wka7)\dk7)\ = WkAk,)\ — Z'Ck)\Ek’)\ (S.55)

while for the creation operator

\/2w,kC,k’)\dT_k’>\ = w,k/ﬂ_k’/\ + ink,)\EA’T_k’)\ = —w,kflk’)\ - iC—k,AEk,A (856)

and hence
\/2wk0k,)\dT_k’)\ = _WkAk,)\ - Z.Ok7,\EA'k,)\ (857)

because w_x = wyg and C_g y = Ck . Egs. (S.55) and (S.57) involve the same field-mode

operators Ak’ \ and Ek7 A, S0 adding and subtracting them from each other gives us

~ 1 Wk . .
Eya = \/%—m(ak,AjL“Tk,A)v

(S.58)

Now let’s plug egs. (S.58) into the Hamiltonian (19). For the first term inside the

integral /sum, we have

% EIJL,)\Ek)\ = % (&L,A + &fk,/\) (&k,)\ + &fk,)\) (5.59)
= % (&L,/\dk,/\ + &k,/\dik,/\ +a_y \ay T+ a_pal ),
while for the second term we have
A . el —a ) (g, —al )
2y A A 1 \ex — Aogen) ey = Gy (5.60)
Wi /.t

O B SO ot
1 (ak,)\ak,)\ A \C_ye \ = Ak ATk 2 +a—kzla—kl)7

12



so altogether

Cip ot 7 Wk At Wk oot -
_ Wkt et '
=5 (Gg rlep + @ g G g\ +1).

Consequently, the net Hamiltonian (19) amounts to

A Ck,)\ AT A w12( A.|. ~
"= Z( 2 Ek’)‘Ek’)‘ + ZCkAAk’)‘Ak’A
k) ;

A

w . G
= Z 7k (aL,)\ak,)\ + aT—k,)\a—k,)\ +1)

k,\
1 d oo a1y 4 L AT 1
=5 Zwk(ak,/\ak,/\ +3) + 5 Zwk(afk,)\a—k,)\ +32)
k,\ k,A

{((renaming the summation variable in the second term only from k to —k))

1 o 1 I
=35 Zwk(aLAak,A +3) + B Z W—k(aL,Aak,A +3)
KA KA
{(by k «+» —k symmetry of the summation range and thanks to w_jx = wy ))

((the two terms here are equal ))

= Zwk(&l];)\&k)\ +3).

k,\
(S.62)
Problem 4(e):
As explained in class — c¢f. my nofes on identical bosond, — Hamiltonians of the form
H = Zwadgda + const (S.63)

«

for some family of creation and the annihilation operators dL and a, (obeying the bosonic

commutation relations) describe theories of arbitrary numbers of identical bosons. Specifi-
cally, each boson has an independent 1-particle Hamiltonian with eigenstates |«) and eigen-

values w, labeled by the same index « as in the sum (S.63).

13


http://web2.ph.utexas.edu/~vadim/Classes/2024f-qft/bosons.pdf

In our case of the Hamiltonian (21), the ‘index’ o becomes (k, A) where the momentum
k has a discrete but dense spectrum corresponding to a particle living in a large L3 box
with periodic boundary conditions, while the helicity A\ takes 3 discrete values —1,0,+1.
Physically, this means that the Hamiltonian (21) describes the Fock space of identical bosons,
where each boson has a basis of 1-particle states |k, ) parametrized by the in-box momentum

k and the helicity A\, with single-particle energies

wx = +Vk2+m?2 (8.64)

(in the i = ¢ = 1 units). Thus, each boson is a free relativistic particle of mass m. Moreover,
for each particular momentum k, the boson has 3 degenerate states with different helicities

A=—1,0,+1. Quod erat demonstrandum.

PS: For the purpose of this problem, A is just a label distinguishing the 3 distinct polarization
states of the relativistic boson. Later in class we shall see that A\ happens to be the boson’s

helicity, that is the component of its spin along the direction of it’s motion.
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