
PHY–396 K. Solutions for homework set #2.

Problem 1(a):

By the Leibniz rule for the commutators

[
â†αâβ, â

†
γ

]
= â†α

[
âβ, â

†
γ

]
+
[
â†α, â

†
γ

]
âβ = â†α × δβγ + 0× âβ = δβγ â

†
α (S.1)

and likewise

[
â†αâβ, âδ

]
= â†α

[
âβ, âδ

]
+
[
â†α, âδ

]
âβ = â†α × 0 +

(
−δαδ

)
× âβ = −δαδâβ . (S.2)

Consequently, applying the Leibniz rule once again we get

[
â†αâβ, â

†
γ âδ
]

= â†γ
[
â†αâβ, âδ

]
+
[
â†αâβ, â

†
γ

]
âδ

= â†γ ×
(
−δαδâβ

)
+
(
+δβγ â

†
α

)
âδ

= δβγ â
†
αâδ − δαδâ

†
γ âβ .

(S.3)

Finally,

[
â†αâ

†
β âγ âδ, â

†
µâν
]

= â†αâ
†
β âγ ×

[
âδ, â

†
µâν
]

+ â†αâ
†
β ×

[
âγ , â

†
µâν
]
× âδ

+ â†α ×
[
â†β, â

†
µâν
]
× âγ âδ +

[
â†α, â

†
µâν
]
× â†β âγ âδ

= â†αâ
†
β âγ ×

(
+δδµâν

)
+ â†αâ

†
β ×

(
+δγµâν

)
× âδ

+ â†α ×
(
−δβν â†µ

)
× âγ âδ +

(
−δαν â†µ

)
× â†β âγ âδ

= +δδµâ
†
αâ
†
β âγ âν + δγµâ

†
αâ
†
β âν âδ − δβν â

†
αâ
†
µâγ âδ − δαν â

†
µâ
†
β âγ âδ .

(S.4)
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Problem 2(a):

In 3D notations (but h̄ = c = 1 units), the Lagrangian density (3) for the massive vector

field is

L = 1
2

(
E2 − B2

)
+ 1

2m
2
(
A2
0 − A2

)
− J0A0 + J ·A

= 1
2(−Ȧ−∇A0)

2 + 1
2(∇×A)2 + 1

2m
2
(
A2
0 − A2

)
− J0A0 + J ·A .

(S.5)

Note that only the first term on the last line contains any time derivatives at all, and it does

not contain the Ȧ0 but only the Ȧ. Consequently, ∂L/∂Ȧ0 = 0 and the scalar potential

A0(x) does not have a canonical conjugate field. On the other hand, the vector potential

A(x) does have a canonical conjugate, namely

δL

δȦ(x)
=

∂L
∂Ȧ

∣∣∣∣
x

= −(−Ȧ(x) − ∇A0(x)) = −E(x). (S.6)

Problem 2(b):

In terms of the Hamiltonian and Lagrangian densities, eq. (4) means

H = −Ȧ · E − L . (5′)

Expressing all fields in terms A, E, and A0, we get

Ȧ = −E − ∇A0,

−Ȧ · E = E2 + E · ∇A0,

L = 1
2

(
E2 − (∇×A)2

)
+ 1

2m
2(A2

0 −A2) − (A0J0 −A · J),

(S.7)

and consequently,

H = 1
2E

2 + E · ∇A0 − 1
2m

2A2
0 + A0J0 + 1

2(∇×A)2 + 1
2m

2A2 − A · J. (S.8)

Taking the
∫
d3x integral of this density and integrating by parts the E ·∇A0 term, we arrive

at the Hamiltonian (5). Quod erat demonstrandum.
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Problem 2(c):

Evaluating the derivatives of H in eq. (6) gives us

δH

δA0(x)
≡ ∂H

∂(A0)
− ∇i

∂H
∂(∇iA0)

= −m2A0 + J0 − ∇iEi. (S.9)

Were there a canonical conjugate π0(x, t) of the A0(x, t), its time derivative ∂π0/∂t would be

given by the right hand side of eq. (S.9). But the A0(x, t) does not have a canonical conjugate,

so instead of a Hamilton equation of motion we have a time-independent constraint (6),

namely

m2A0 = J0 − ∇ · E . (S.10)

In the massless EM case, a similar constraint gives rise to the Gauss Law ∇ · E = J0. But

the massive vector field does not obey the Gauss Law; instead, eq. (S.10) gives us a formula

for the scalar potential A0 in terms of E and J0.

On the other hand, the Hamilton equations for the vector fields A and E are honest

equations of motion. Specifically, evaluating the derivatives of H in eq. (7), we find

δH

δEi(x)
≡ ∂H

∂(Ei)
− ∇j

∂H
∂(∇jEi)

= Ei + ∇iA0, (S.11)

which leads to Hamilton equation

∂

∂t
A(x, t) = −E(x, t) − ∇A0(x, t). (S.12)

Similarly, in eq. (8) we have

δH

δAi(x)
≡ ∂H

∂(Ai)
− ∇j

∂H
∂(∇jAi)

= m2Ai − J i − ∇j(εjik(∇×A)k) (S.13)

and hence Hamilton equation

∂

∂t
E(x, t) = m2A − J + ∇× (∇×A). (S.14)
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Problem 2(d):

In 3D notations, the Euler–Lagrange field equations (9) or ∂µF
µν +m2Aν = Jν become

∇ · E + m2A0 = J0, (S.15)

−Ė + ∇×B + m2A = J, (S.16)

where

E
def
= −Ȧ − ∇A0, (S.17)

B
def
= ∇×A. (S.18)

Clearly, eq. (S.15) is equivalent to eq. (S.10) while eq. (S.16) is equivalent to eq. (S.14)

(provided B is defined as in eq. (S.18)). Finally, eq. (S.17) is equivalent to eq. (S.12),

although their origins differ: In the Lagrangian formalism, eq. (S.17) is the definition of the

E field in terms of A0, A and their derivatives, while in the Hamiltonian formalism, E is an

independent conjugate field and eq. (S.12) is the dynamical equation of motion for the Ȧ.

Quod erat demonstrandum.

Problem 3:

Let start with the [Â, Ĥ] commutator. In light of eq. (13) for the Hamiltonian, we have

[Âi(x), Ĥ] =

∫
d3y

[
Âi(x),

(
1
2Ê

2 +
1

2m2
(Ĵ0 −∇·Ê)2 + 1

2(∇× Â)2 + 1
2m

2Â2 − Ĵ·Â
)
@y

]
(S.19)

where all operators are at the same time t as the Âi(x, t). Since all the Âi(x) operators

commute with each other at equal times, the last three terms in the Hamiltonian density do

not contribute to the commutator (S.19). But for the first term we have

[Âi(x), 12Ê
2(y)] = 1

2{Ê
j(y), [Âi(x), Êj(y)]}

= 1
2{Ê

j(y),−iδijδ(3)(x− y)}

= −iδ(3)(x− y)× Êi(y),

(S.20)
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while for the second term we have

[
Âi(x),

(
Ĵ0(y) − ∇·Ê(y)

)]
= 0 − ∂

∂yj
[Âi(x), Êj(y)] = +iδij

∂

∂yj
δ(3)(x− y) (S.21)

and hence[
Âi(x),

1

2m2

(
Ĵ0(y) − ∇·Ê(y)

)2]
=

1

m2

(
Ĵ0(y) − ∇·Ê(y)

)
×+iδij

∂

∂yj
δ(3)(x− y)

= Â0(y)× i ∂
∂yi

δ(3)(x− y)

(S.22)

where the second equality follows from eq. (12). Plugging these all these commutators into

eq. (S.19) and integrating over y, we obtain

[Âi(x), Ĥ] =

∫
d3y

(
−iδ(3)(x− y)× Êi(y) + Â0(y)× i ∂

∂yi
δ(3)(x− y) + 0 + 0 + 0

)
〈〈 integrating by parts 〉〉

=

∫
d3y (−i)δ(3)(x− y)×

(
Êi(y) +

∂

∂yi
Â0(y)

)
= −i

(
Êi(x) +

∂

∂xi
Â0(x)

)
.

(S.23)

In other words, [Â(x), Ĥ] = −iÊ(x)− i∇Â0(x) and consequently in the Heisenberg picture,

∂

∂t
Â(x, t) = −i [Â(x), Ĥ] = −Ê(x, t) − ∇Â0(x, t). (S.24)

Clearly, this Heisenberg equation is the quantum equivalent of the classical Hamilton equa-

tion (S.12).

Now consider the [Ê, Ĥ] commutator. Similarly to eq.(S.19), we have

[Êi(x, t), Ĥ] =

∫
d3y

[
Êi(x, t),

(
1
2Ê

2 + 1
2m

2Â2
0 + 1

2B̂
2 + 1

2m
2Â2 − Ĵ·Â

)
(y, t)

]
(S.25)

where m2Â0 = Ĵ0 −∇·Ê according to eq. (12) and B̂
def
= ∇× Â. At equal times, the Êi(x)

operator commutes with all the Êj(y) and hence with the Ê2(y), and also with the Â0(y)
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and hence with the Â2
0(y); this eliminates the first two terms in the Hamiltonian density

from the commutator (S.25). For the remaining three terms we have[
Êi(x), (−Ĵ·Â)(y)

]
= −Ĵj(y)×

[
Êi(x), Âj(y)

]
= −Ĵj(y)×+iδijδ(3)(x− y)

= −iδ(3)(x− y)× Ĵ i(y),[
Êi(x), 12m

2Â2(y)
]

= +im2δ(3)(x− y)× Âi(y),[
Êi(x), B̂j(y)

]
= εjk`

∂

∂yk

[
Êi(x), Â`(y)

]
= εjk`

∂

∂yk

(
+iδi`δ(3)(x− y)

)
= +iεjki

∂

∂yk
δ(3)(x− y),[

Êi(x), 12B̂
2(y)

]
= B̂j(y)×+iεjki

∂

∂yk
δ(3)(x− y)

= −iεjki ∂
∂yk

B̂j(y)× δ(3)(x− y) + a total derivative

= +i(∇× B̂)i(y)× δ(3)(x− y) + a total derivative.

(S.26)

Thus[
Ê(x), Ĥ(y)

]
= iδ(3)(x−y)×

(
∇× B̂(y) + m2Â(y) − Ĵ(y)

)
+ a total derivative, (S.27)

hence

[
Ê(x), Ĥ

]
=

∫
d3y

 iδ(3)(x− y)×
(
∇× B̂(y) + m2Â(y) − Ĵ(y)

)
+ a total derivative


= i

(
∇× B̂(x) + m2Â(x) − Ĵ(x)

)
,

(S.28)

and therefore in the Heisenberg picture

∂

∂t
Ê(x, t) = −i

[
Ê(x, t), Ĥ

]
= +∇× B̂(x) + m2Â(x) − Ĵ(x). (S.29)

Again, this Heisenberg equation is the quantum equivalent of the classical Hamilton equa-

tion (S.14).
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Problem 4(a):

The relations Â†k,λ = −Â−k,λ, Ê†k,λ = −Ê−k,λ follow from the hermiticity of the quantum

fields Â(x) and Ê(x), and also from the convention

eλ(−k) = −e∗λ(+k) (16.c)

for the polarization vectors. Indeed, taking the hermitian conjugate of eq. (18) for the Âk,λ

we get

Â†k,λ =

(∫
d3xL−3/2e+ikx e∗λ(k) · Â(x)

)†
=

∫
d3xL−3/2e−ikx eλ(k) · Â†(x)

=

∫
d3xL−3/2e+i(−k)x

(
−e∗λ(−k)

)
· Â(x) = −Â−k,λ

(S.30)

and likewise for the Êk,λ:

Ê†k,λ =

(∫
d3xL−3/2e+ikx e∗λ(k) · Ê(x)

)†
=

∫
d3xL−3/2e−ikx eλ(k) · Ê†(x)

=

∫
d3xL−3/2e+i(−k)x

(
−e∗λ(−k)

)
· Ê(x) = −Ê−k,λ

(S.31)

As to the equal-time commutation relations for the Âk,λ and Êk,λ modes, they follow

directly from eqs. (11): Since all Â’s commute with each other and all Ê’s commute with

each other, we obviously have

[Âk,λ, Âk′,λ′ ] = 0 and [Êk,λ, Êk′,λ′ ] = 0. (S.32)

And the commutators between the Â modes and the Ê modes obtains from eqs. (18):

[Âk,λ, Ê
†
k′,λ′ ] = L−3

∫
d3x

∫
d3y e−ikx

(
e∗λ(k)

)i × e+ik′y
(
eλ′(k′)

)j × [Âi(x), Êj(y)]

= L−3
∫
d3x

∫
d3y e−ikx

(
e∗λ(k)

)i × e+ik′y
(
eλ′(k′)

)j × (−i)δ(3)(x− y)δij

= −iL−3
∫
box

d3x e−i(k−k
′)x ×

(
e∗λ(k) · eλ′(k′)

)
= −iδk,k′ ×

(
e∗λ(k) · eλ′(k)

)
= −iδk,k′ × δλ,λ′ ,

(S.33)

7



or equivalently,

[Âk,λ, Êk′,λ′ ] = +iδk+k′,0 × δλ,λ′ . (S.34)

Problem 4(b):

In the absence of the current Ĵµ, the Hamiltonian (13) reduces to 4 terms,

Ĥ =

∫
d3x

(
1

2
Ê2 +

1

2m2
(∇ · Ê)2 +

1

2
(∇× Â)2 +

m2

2
Â2

)
. (S.35)

Let’s re-express each of the 4 terms here in terms of the field-mode operators Âk,λ and Êk,λ.

For the first term, we have∫
d3x Ê2(x) =

∫
d3x Ê†(x) · Ê(x)

=

∫
d3x

∑
k,λ

L−3/2e−ik·x e∗λ(k)Ê†k,λ

 ·
∑

k′,λ′

L−3/2e+ik
′·x eλ′(k′)Êk′,λ′


=
∑
k,bk′

∑
λ,λ′

Ê†k,λÊk′,λ′ × L−3
∫
box

d3x eix·(k
′−k) (e∗λ(k) · eλ′(k′)

)
(S.36)

where

L−3
∫
box

d3x eix·(k
′−k) = δk,k′ (S.37)

and then for k′ = k

e∗λ(k) · eλ′(k′ = k) = δλ,λ′ . (S.38)

Plugging this into the bottom line of eq. (S.36), we get∫
d3x Ê2(x) =

∑
k,k′

∑
λ,λ′

Ê†k,λÊk′,λ′ × δk,bk′δλ,λ′ =
∑
k,λ

Ê†k,λÊk,λ . (S.39)

In exactly the same way, for the fourth term in the Hamiltonian (S.35) we have∫
d3x Â2(x) =

∑
k,λ

Â†k,λÂk,λ . (S.40)

8



Next, consider the second term in the Hamiltonian (S.35). It involves

∇ · Ê(x) = ∇ ·

∑
k,λ

L−3/2eix·keλ(k)Êk,λ

 =
∑
k,λ

L−3/2
(
∇eix·k · eλ(k)

)
Êk,λ (S.41)

where

∇eix·k = eix·k ik (S.42)

and

k · eλ(k) = |k|δλ,0 (S.43)

because in the helicity basis e0(k) points in the direction of the k while e±1 ⊥ k. Conse-

quently

∇ · Ê(x) =
∑
k

i|k|L−3/2eik·x Êk,0 , (S.44)

which involves only the longitudinal modes with λ = 0. Therefore,∫
d3x (∇ · Ê(x))2 =

∫
d3x (∇ · Ê†(x)) · (∇ · Ê(x))

=

∫
d3x

(∑
k

(−i)|k|L−3/2e−ik·x Ê†k,0

)
·

(∑
k′

(+i)|k′|L−3/2eik
′·x Êk′,0

)

=
∑
k,k′

|k| × |k′| × Ê†k,0Êk′,0 ×

L−3 ∫
box

d3x ei(k
′−k)x = δk,k′


=
∑
k

|k|2 × Ê†k,0Êk′,0 .

(S.45)

Finally, in the magnetic third term in the Hamiltonian (S.35), we have

B̂(x) = ∇× Â(x) =
∑
k,λ

∇×
(
L−3/2eik·xeλ(k)

)
Âk,λ

where

∇×
(
eik·xeλ(k)

)
= eik·x (ik)× eλ(k) = eik·x λ|k| eλ(k). (S.46)

Note that due the factor of λ, only the transverse modes Âk,λ with λ = ±1 contribute to

9



the magnetic field

B̂(x) =
∑
k,λ

L−3/2 λ|k| eik·xeλ(k) Âk,λ (S.47)

but the longitudinal modes with λ = 0 do not contribute. Consequently, the magnetic term

in the Hamiltonian (S.35) becomes∫
d3x B̂2(x) =

∫
d3x B̂†(x) · B̂(x)

=

∫
d3x

∑
k,λ

L−3/2 λ|k| e−ik·xe∗λ(k)Â†k,λ

 ·
·

∑
k′,λ′

L−3/2 λ′|k′| e+ik
′·xeλ′(k′)Âk′,λ′


=
∑
k,k′

∑
λ,λ′

λ|k|λ′|k′| Â†k′,λ′Âk,λ × L−3
∫
box

d3x eix·(k
′−k) ×

(
e∗λ(k) · eλ′(k′)

)
〈〈where L−3

∫
d3x eix·(k

′−k) = δk,k′ 〉〉

〈〈 and e∗λ(k) · eλ′(k′) = δλ,λ′ for k = k′ 〉〉

=
∑
k,λ

λ2|k|2 Â†k′,λ′Âk,λ

(S.48)

Altogether, the 4 terms in the Hamiltonian (S.35) add up to

Ĥ =
∑
k,λ

(
1

2

(
1 +

k2

m2
δλ,0

)
× Ê†k,λÊk,λ +

m2 + λ2k2

2
× Â†k,λÂk,λ

)
. (S.49)

Taking a closer look at the coefficients here and comparing them to the ωk and Ck,λ in

eq. (19.b–c), we see that

1 +
k2

m2
× δλ,0 =

{
1 for λ = ±1

ω2
k/m

2 for λ = 0

}
= Ck,λ

while

m2 + λ2k2 =

{
ω2
k for λ = ±1

m2 for λ = 0

}
=

ω2
k

Ck,λ
, (S.50)
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thus the Hamiltonian (S.49) amounts to

Ĥ =
∑
k,λ

(
Ck,λ

2
× Ê†k,λÊk,λ +

ω2
k

2Ck,λ
× Â†k,λÂk,λ

)
, (S.51)

precisely as in eq. (19.a).

Problem 4(c):

Given the definitions (20) of the creation and the annihilation operators and the commutation

relations eqs. (S.32) and (S.34) of the field modes Âk,λ and Êk,λ, we obtain

[âk,λ, âk′,λ′ ] = −i

√
Ck′,λ′ωk
4Ck,λωk′

(
[Âk,λ, Êk′,λ′ ] = (+i)δk+k′,0δλ,λ′

)
− i

√
Ck,λωk′

4Ck′,λ′ωk

(
[Êk,λ, Âk′,λ′ ] = (−i)δk+k′,0δλ,λ′

)
= δk+k′,0δλ,λ′ ×

(√
Ck′,λ′ωk
4Ck,λωk′

−

√
Ck,λωk′

4Ck′,λ′ωk

)
= 0

(S.52)

because for k′ + k = 0 and λ′ = λ we have ωk′ = ωk and Ck′,λ′ = Ck,λ.

Likewise, [â†k,λ, â
†
k′,λ′ ] = 0.

On the other hand,

[âk,λ, â
†
k′,λ′ ] = −i

√
Ck′,λ′ωk
4Ck,λωk′

(
[Âk,λ, Êk′,λ′ ] = (+i)δk,k′δλ,λ′

)
+ i

√
Ck,λωk′

4Ck′,λ′ωk

(
[Êk,λ, Âk′,λ′ ] = (−i)δk,k′δλ,λ′

)
= δk,k′δλ,λ′ ×

(√
Ck′,λ′ωk
4Ck,λωk′

+

√
Ck,λωk′

4Ck′,λ′ωk

)
= δk,k′δλ,λ′ × 1

(S.53)

because for k′ = k and λ′ = λ√
Ck′,λ′ωk
4Ck,λωk′

+

√
Ck,λωk′

4Ck′,λ′ωk
= 1. (S.54)
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Quod erat demonstrandum.

Problem 4(d):

Lets compare the first eq. (20) for the annihilation operator and the second eq. (20) for

the creation operators for the two modes with opposite momenta ±k. For the annihilation

operator we have √
2ωkCk,λâk,λ = ωkÂk,λ − iCk,λÊk,λ (S.55)

while for the creation operator

√
2ω−kC−k,λâ

†
−k,λ = ω−kÂ

†
−k,λ + iC−k,λÊ

†
−k,λ = −ω−kÂk,λ − iC−k,λÊk,λ (S.56)

and hence √
2ωkCk,λâ

†
−k,λ = −ωkÂk,λ − iCk,λÊk,λ (S.57)

because ω−k = ωk and C−k,λ = Ck,λ. Eqs. (S.55) and (S.57) involve the same field-mode

operators Âk,λ and Êk,λ, so adding and subtracting them from each other gives us

Êk,λ =
i
√
ωk√

2Ck,λ

(
âk,λ + â†−k,λ

)
,

Âk,λ =

√
Ck,λ√
2ωk,λ

(
âk,λ − â

†
−k,λ

)
.

(S.58)

Now let’s plug eqs. (S.58) into the Hamiltonian (19). For the first term inside the

integral/sum, we have

Ck,λ

2
Ê†k,λÊk,λ =

ωk
4

(
â†k,λ + â−k,λ

)(
âk,λ + â†−k,λ

)
=

ωk
4

(
â†k,λâk,λ + â†k,λâ

†
−k,λ + â−k,λâk,λ + â−klâ

†
−kl
)
,

(S.59)

while for the second term we have

ω2
k

2Ck,λ
Â†k,λÂk,λ =

ωk
4

(
â†k,λ − â−k,λ

)(
âk,λ − â

†
−k,λ

)
=

ωk
4

(
â†k,λâk,λ − â

†
k,λâ

†
−k,λ − â−k,λâk,λ + â−klâ

†
−kl
)
,

(S.60)
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so altogether

Ck,λ

2
Ê†k,λÊk,λ +

ω2
k

2Ck,λ
Â†k,λÂk,λ =

ωk
4

(
2â†k,λâk,λ + 2â−k,λâ

†
−k,λ

)
=

ωk
2

(
â†k,λâk,λ + â†−k,λâ−k,λ + 1

)
.

(S.61)

Consequently, the net Hamiltonian (19) amounts to

Ĥ =
∑
k,λ

(
Ck,λ

2
Ê†k,λÊk,λ +

ω2
k

2Ck,λ
Â†k,λÂk,λ

)
=
∑
k,λ

ωk
2

(
â†k,λâk,λ + â†−k,λâ−k,λ + 1

)
=

1

2

∑
k,λ

ωk(â†k,λâk,λ + 1
2) +

1

2

∑
k,λ

ωk(â†−k,λâ−k,λ + 1
2)

〈〈 renaming the summation variable in the second term only from k to −k 〉〉

=
1

2

∑
k,λ

ωk(â†k,λâk,λ + 1
2) +

1

2

∑
−k,λ

ω−k(â†k,λâk,λ + 1
2)

〈〈 by k↔ −k symmetry of the summation range and thanks to ω−k = ωk 〉〉

〈〈 the two terms here are equal 〉〉

=
∑
k,λ

ωk(â†k,λâk,λ + 1
2).

(S.62)

Problem 4(e):

As explained in class — cf. my notes on identical bosons, — Hamiltonians of the form

Ĥ =
∑
α

ωαâ
†
αâα + const (S.63)

for some family of creation and the annihilation operators â†α and âα (obeying the bosonic

commutation relations) describe theories of arbitrary numbers of identical bosons. Specifi-

cally, each boson has an independent 1-particle Hamiltonian with eigenstates |α〉 and eigen-

values ωα labeled by the same index α as in the sum (S.63).
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In our case of the Hamiltonian (21), the ‘index’ α becomes (k, λ) where the momentum

k has a discrete but dense spectrum corresponding to a particle living in a large L3 box

with periodic boundary conditions, while the helicity λ takes 3 discrete values −1, 0,+1.

Physically, this means that the Hamiltonian (21) describes the Fock space of identical bosons,

where each boson has a basis of 1-particle states |k, λ〉 parametrized by the in-box momentum

k and the helicity λ, with single-particle energies

ωk = +
√
k2 +m2 (S.64)

(in the h̄ = c = 1 units). Thus, each boson is a free relativistic particle of mass m. Moreover,

for each particular momentum k, the boson has 3 degenerate states with different helicities

λ = −1, 0,+1. Quod erat demonstrandum.

PS: For the purpose of this problem, λ is just a label distinguishing the 3 distinct polarization

states of the relativistic boson. Later in class we shall see that λ happens to be the boson’s

helicity, that is the component of its spin along the direction of it’s motion.
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