PHY-396 K. Solutions for homework set #3.

Problem 1(a):
In the previous homework set#2, problem 4(d), we saw that (in the Schrédinger picture and
in the box normalization)
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cf. eq. (58) on page 12 of the polutions to set#9. Consequently, the vector field A(X) expands

into the creation and annihilation operators as
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Next, let’s go to the infinite volume limit and hence continuous momenta. In the infinite-

space but non-relativistic normalization, eq. (S.1) becomes
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Finally, in the relativistic normalization
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and likewise for the creation operators &IT{ )~ Consequently, eq. (S.2) becomes
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Eq. (1) applies in the Schrédinger picture where all the operators — including the cre-
ation and annihilation operators for all the models as well as the quantum fields — are
time-independent. In the Heisenberg picture, all operators become time-dependent, but
the algebraic relation between different operators at equal times remain the same as in the

Schrodinger picture, thus

Quod erat demonstrandum

Problem 1(b):
In the Heisenberg picture, the time-dependence of the quantum field A(x, t) follows from

the time-dependence of the creation and annihilation operators,
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In the previous homework (problem 4(d)) we wrote the Hamiltonian of the free vector field

as

= Zwde)\dk)\ + const (S.5)
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for the box normalization of creation and annihilation operators. In the infinite-space rela-



tivistic normalization of the operators, this Hamiltonian becomes
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Consequently,
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similar to the scalar creation and annihilation operators we have studied in class. Plug-
ging these relations into the Heisenberg equations (S.4) for the creation and annihilation

operators, we get
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which give us the time dependence of the creation/annihilation operators:
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Consequently, substituting this time dependence into eq. (2) for the vector field, we

arrive at
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precisely as in eq. (3).



Problem 1(c):
Proceeding exactly as in part (a), we find that in the Schrédinger picture and the box

normalization of the creation and annihilation operators, the electric field becomes
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Going to the infinite space limit and then to the relativistic normalization of the operators,

we turn this formula to
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In the Heisenberg picture, this formula becomes
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Finally, the AO(:U) field obtains from the electric field and eq. (4). Applying this identity
to eq. (S.13), we obtain
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In this formula
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in the helicity basis, and likewise
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Thus, only the A = 0 modes contribute to the scalar potential (S.14). Specifically,
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Problem 1(d):
In light of obvious similarity between eqs. (2) and (S.18), we may immediately combine them

into
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— precisely as in eq. (5) — for
k
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Problem 1(e):

It is easy to see that the polarization 4-vectors f*(k, ) obey k,f*(k,A) = 0. Indeed, for
the transverse polarizations A = %1, eq. (S.21) tells us that f© = 0 while the space part
f = e(A = +£1) is transverse to the 3-vector k, hence k,f* = 0. As to the longitudinal
polarization A = 0, in light of eq. (S.22)
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Consequently, the quantum field A“(x) obeys the classical equation 8H/W = 0. Indeed,

each plane wave factor in the expansion (24) obeys this equation:
Gﬂ(e_ikmf“(k, N) = e (—iky) f1(k,A) = 0 {(because k, f*(k,A\) =0)), (5.24)

and likewise
O (e ik, N)) = TR x (+iky) f**(k, ) = 0 (S.25)

because k, f** = (k,f*)* = 0. And therefore, by linearity, the whole quantum field obeys



this equation,
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Likewise, thanks to ky = +wyx — and hence k,k# = wﬁ — k?> = m? — in every plane
wave factor in the decomposition (24) of the quantum field, every plane wave factor obeys

the Klein—-Gordon equation
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Hence, by linearity, the whole quantum field obeys this equation,
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Problem 2(a):
The Hamiltonian (7) of a free relativistic particle — and hence the evolution operator

exp(—it]:] ) — are functions of the momentum operator p, so they diagonalize in the mo-

mentum basis. In the non-relativistic normalization of |k) states,
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exp(=illt) = [555 )exp(—itl10) (],

where t = ¢ — 20 and w(k) = Vk2+ M2. In the same non-relativistic normalization



(x|k) = exp(ik - k), therefore
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= /éSTl){g exp (i(y —x) - k — itw(k)).

precisely as in eq. (9).

By the way, this non-relativistically normalized evolution kernel U(z — y) is related to

the

3
D(x —y) def /(27:5%% exp (i(y —x) -k — i(y" — xo)wk) (S.31)

we have used in class (in the context of relativistic causality and also of Feynman propagators)

as
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Indeed,
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where the 2wy factor cancels the similar denominator of the relativistic measure, thus
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Now let’s simplify the 3D integral on the RHS of eq. (9) by integrating over the directions
of the k vector. In spherical coordinates (k, 6, ¢) where k = |k| and 6 is the angle between

k and y — x,
Bk = dkk*dcosfdp, k- (y —x) = rk cosb, (S.35)
hence
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Consequently, for any symmetric function f(k) = f(—k) we have
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In particular, for the f(k) = e "®) = f(—k) we have
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precisely as in eq. (11).  Quod erat demonstrandum

Problem 2(c):

As explained in [ny nofes on the saddle poinl method, integrals of the form

I :/dzf(z)eAg(z)

T

in the large A limit become
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(S.38)

(S.39)

(S.40)

In general, f and g are complex analytic functions of a complex variable z which is integrated

over some contour I'; quite often I is the real axis, but one should allow for its deformation in

the complex plane. In eq. (S.40), 2¢ is a saddle point of g(z) where the derivative ¢'(zg) = 0;

this saddle point does not have to lie on the original integration contour I' — if it does not,

we deform the contour I' — I so that I does go through the zy. If several saddle points


http://web2.ph.utexas.edu/~vadim/Classes/2024f-qft/saddle.pdf

are present near the contour I', the point with the largest Reg dominates the integral.
Finally, 7 is the direction dz of the I'" at the saddle point zg; it should be chosen such that
Re(—n2¢"(20)) > 0, which assures that I crosses zyp as a mountain path, from a valley to

the lowest crossing point to another valley.

For the integral (11) at hand, we identify

A=t gk = z%k —iw(k),  f(k) = (S.41)
o =i — i =i —i= =0, (S.42)

For r < t this equation has a real solution, namely

T t
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and the direction of the integration contour at kg should be in the fourth quadrant of the
complex plane, arg(n) between 0 and —m/2; the real-axis contour is marginally OK. Substi-

tuting all these data into eq. (S.40) gives us
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and therefore
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in accordance with eq. (13).
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Problem 2(d):
Again, we use the saddle point method to evaluate the integral (11). That is, we identify
A, g(k), and f(k) according to eq. (S.41), and solve eq. (S.42) to find the saddle point. But
this time, for r > ¢ the saddle point is imaginary
tMr 1Mt

kO = /—T’2 — 2 ) w(kO) = /—7"2 — 2 ) (847)
so the integration contour must be deformed away from the real axis. At the saddle
point (S.47),

Ag(ko) = irky — itw(ko) = —M X /12 — 2,
M 1
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—it M? (r2 —2)3/2
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all being real, and the deformed contour should cross kg in the imaginary direction, arg(n) =

5 £ 7. Consequently, in eq. (S.40)
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in accordance with eq. (14).

Note that the exponential factor here decays as one goes further outside the future light
cone. In other words, the probability of a relativistic particle moving faster than light is
exponentially small. But tiny as it is, this probability does not vanish, and this violates the

relativistic causality.

11



