
PHY–396 K. Solutions for homework set #3.

Problem 1(a):

In the previous homework set#2, problem 4(d), we saw that (in the Schrödinger picture and

in the box normalization)

Êk,λ =
i
√
ωk√

2Ck,λ

(
âk,λ + â†−k,λ

)
,

Âk,λ =

√
Ck,λ√
2ωk

(
âk,λ − â

†
−k,λ

)
,

(S2.58)

cf. eq. (58) on page 12 of the solutions to set#2. Consequently, the vector field Â(x) expands

into the creation and annihilation operators as

Â(x) =
∑
k,λ

L−3/2eikxeλ(k)Âk,λ

=
∑
k,λ

√
Ck,λ

L3/2
√

2ωk
eikxek, λ

(
âk,λ − â

†
−k,λ

)
=
∑
k,λ

√
Ck,λ

L3/2
√

2ωk
eikxek,λ âk,λ −

∑
k,λ

√
Ck,λ

L3/2
√

2ωk
eikxek,λ â

†
−k,λ

〈〈 change k→ −k in the second sum but not the first sum 〉〉

=
∑
k,λ

√
Ck,λ

L3/2
√

2ωk
eikxek,λ âk,λ −

∑
k,λ

√
C−k,λ

L3/2
√

2ω−k
e−ikxe−k,λ â

†
k,λ

=
∑
k,λ

√
Ck,λ

L3/2
√

2ωk
eikxek,λ âk,λ −

∑
k,λ

√
Ck,λ

L3/2
√

2ωk
e−ikx(−ek,λ)∗ â†k,λ

=
∑
k,λ

√
Ck,λ

L3/2
√

2ωk

(
e+ik·xek,λâk,λ + e−k·xe∗k,λâ

†
k,λ

)
.

(S.1)

Next, let’s go to the infinite volume limit and hence continuous momenta. In the infinite-

space but non-relativistic normalization, eq. (S.1) becomes

Â(x) =

∫
d3k

(2π)3

∑
λ

√
Ck,λ√
2ωk

(
e+ik·xek,λâk,λ + e−k·xe∗k,λâ

†
k,λ

)non rel.
. (S.2)
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Finally, in the relativistic normalization

(
âk,λ

)rel
=
√

2ωk
(
âk,λ

)non rel
=⇒ 1√

2ωk

(
âk,λ

)non rel
=

1

2ωk

(
âk,λ

)rel
(S.3)

and likewise for the creation operators â†k,λ. Consequently, eq. (S.2) becomes

Â(x) =

∫
d3k

(2π)3

1

2ωk

∑
λ

√
Ck,λ

(
e+ik·xek,λâk,λ + e−k·xe∗k,λâ

†
k,λ

)rel.
. (1)

Eq. (1) applies in the Schrödinger picture where all the operators — including the cre-

ation and annihilation operators for all the models as well as the quantum fields — are

time-independent. In the Heisenberg picture, all operators become time-dependent, but

the algebraic relation between different operators at equal times remain the same as in the

Schrödinger picture, thus

Â(x, t) =

∫
d3k

(2π)3 2ωk

∑
λ

√
Ck,λ

(
e+ik·xek,λâk,λ(t) + e−ik·xe∗k,λâ

†
k,λ(t)

)
. (2)

Quod erat demonstrandum

Problem 1(b):

In the Heisenberg picture, the time-dependence of the quantum field Â(x, t) follows from

the time-dependence of the creation and annihilation operators,

i
d

dt
âk,λ(t) = [âk,λ(t), Ĥ], i

d

dt
â†k,λ(t) = [â†k,λ(t), Ĥ]. (S.4)

In the previous homework (problem 4(d)) we wrote the Hamiltonian of the free vector field

as

Ĥ =
∑
k,λ

ωkâ
†
k,λâk,λ + const (S.5)

for the box normalization of creation and annihilation operators. In the infinite-space rela-
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tivistic normalization of the operators, this Hamiltonian becomes

Ĥ =

∫
d3k

(2π)3 2ωk

∑
λ

ωkâ
†
k,λâk,λ + const =

∫
d3k

2(2π)3

∑
λ

â†k,λâk,λ + const. (S.6)

Consequently,

[
âk,λ, Ĥ

]
=

∫
d3k′

2(2π)3

∑
λ′

([
âk,λ, â

†
k′,λ′ âk′,λ′

]
=
[
âk,λ, â

†
k′,λ′

]
âk′,λ′ + 0

)
=

∫
d3k′

2(2π)3

∑
λ′

(
+2ωk(2π)3δ(3)(k− k′)

)
âk′,λ′

= +ωkâk,λ ,[
â†k,λ, Ĥ

]
=

∫
d3k′

2(2π)3

∑
λ′

([
â†k,λ, â

†
k′,λ′ âk′,λ′

]
= 0 + â†k′,λ′

[
â†k,λ, âk′,λ′

])
=

∫
d3k′

2(2π)3

∑
λ′

â†k′,λ′

(
−2ωk(2π)3δ(3)(k− k′)

)
= −ωkâ†k,λ ,

(S.7)

similar to the scalar creation and annihilation operators we have studied in class. Plug-

ging these relations into the Heisenberg equations (S.4) for the creation and annihilation

operators, we get

d

dt
âk,λ(t) = −iωkâk,λ(t),

d

dt
â†k,λ(t) = +iωkâ

†
k,λ(t), (S.8)

which give us the time dependence of the creation/annihilation operators:

âk,λ(t) = exp(−iωkt)× âk,λ(0), â†k,λ(t) = exp(+iωkt)× â†k,λ(0). (S.9)

Consequently, substituting this time dependence into eq. (2) for the vector field, we

arrive at

Â(x, t) =

∫
d3k

(2π)3 2ωk

∑
λ

√
Ck,λ

(
e+ikx−iωktek,λ âk,λ(0) + e−ikx+iωkte∗k,λ â

†
k,λ(0)

)
=

∫
d3k

(2π)3 2ωk

∑
λ

√
Ck,λ

(
e−ikµx

µ

eλ(k) âk,λ(0) + e+ikµx
µ

e∗λ(k) â†k,λ(0)
)k0=+ωk

(S.10)

precisely as in eq. (3).

3



Problem 1(c):

Proceeding exactly as in part (a), we find that in the Schrödinger picture and the box

normalization of the creation and annihilation operators, the electric field becomes

Ê(x) =
∑
k,λ

L−3/2eikxeλ(k)Êk,λ

=
∑
k,λ

i
√
ωk

L3/2
√

2Ck,λ
eikxek, λ

(
âk,λ + â†−k,λ

)
=
∑
k,λ

i
√
ωk

L3/2
√

2Ck,λ
eikxek,λ âk,λ +

∑
k,λ

i
√
ωk

L3/2
√

2Ck,λ
eikxek,λ â

†
−k,λ

〈〈 change k→ −k in the second sum but not the first sum 〉〉

=
∑
k,λ

i
√
Ck,λ

L3/2
√

2ωk
eikxek,λ âk,λ +

∑
k,λ

i
√
ω−k

L3/2
√

2C−k,λ
e−ikxe−k,λ â

†
k,λ

=
∑
k,λ

i
√
ωk

L3/2
√

2Ck,λ
eikxek,λ âk,λ +

∑
k,λ

i
√
ωk

L3/2
√

2Ck,λ
e−ikx(−ek,λ)∗ â†k,λ

=
∑
k,λ

√
ωk

L3/2
√

2Ck,λ

(
ie+ik·xek,λâk,λ − ie−k·xe∗k,λâ

†
k,λ

)
.

(S.11)

Going to the infinite space limit and then to the relativistic normalization of the operators,

we turn this formula to

Ê(x) =

∫
d3k

(2π)3

∑
λ

√
ωk√

2Ck,λ

(
ie+ik·xek,λâk,λ − ie−k·xe∗k,λâ

†
k,λ

)non rel

=

∫
d3k

(2π)3

∑
λ

1

2
√
Ck,λ

(
ie+ik·xek,λâk,λ − ie−k·xe∗k,λâ

†
k,λ

)rel

=

∫
d3k

(2π)3 2ωk

∑
λ

ωk

2
√
Ck,λ

(
ie+ik·xek,λâk,λ − ie−k·xe∗k,λâ

†
k,λ

)rel
.

(S.12)

In the Heisenberg picture, this formula becomes
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Ê(x, t) =

∫
d3k

(2π)32ωk

∑
λ

ωk√
Ck,λ

(
ie+ik·xeλ(k)âk,λ(t) − ie−ik·xe∗λ(k)â†k,λ(t)

)
〈〈 using part (b) 〉〉

=

∫
d3k

(2π)32ωk

∑
λ

ωk√
Ck,λ

(
ie+ik·xeλ(k)e−iωktâk,λ − ie−ik·xe∗λ(k)e+iωktâ†k,λ

)
=

∫
d3k

(2π)32ωk

∑
λ

ωk√
Ck,λ

(
ie−ikµx

µ

eλ(k)âk,λ − ie+ikµx
µ

e∗λ(k)â†k,λ

)k0=+ωk

.

(S.13)

Finally, the Â0(x) field obtains from the electric field and eq. (4). Applying this identity

to eq. (S.13), we obtain

Â0(x, t) =
−1

m2
∇ · Ê(x, t)

=
−1

m2

∫
d3k

(2π)3 2ωk

∑
λ

iωk√
Ck,λ

(
e−iωkt ×

(
∇e+ikx · eλ(k)

)
× âk,λ

− e+iωkt ×
(
∇e−ikx · e∗λ(k)

)
× â†k,λ

)
.

(S.14)

In this formula

∇e+ikx · eλ(k) = e+ikx
(
ik · eλ(k)

)
= e+ikx × i|k|δλ,0 (S.15)

in the helicity basis, and likewise

∇e−ikx · e∗λ(k) = e−ikx × (−i)|k|δλ,0 . (S.16)

Thus, only the λ = 0 modes contribute to the scalar potential (S.14). Specifically,

Â0(x, t) =
−1

m2

∫
d3k

(2π)3 2ωk
× iωk√

Ck,0
× i|k|

(
e−iωkt+ikx × âk,0 + e+iωkt−ikx × â†k,0

)
(S.17)

where √
Ck,0 =

ωk
m

=⇒ −1

m2
× iωk√

Ck,0
× i|k| = +

|k|
m
.

Thus altogether,

Â0(x, t) =

∫
d3k

(2π)3 2ωk
× |k|
m
×
(
e−ikµx

µ

× âk,0 + e+ikµx
µ

× â†k,0
)k0=+ωk

. (S.18).
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Problem 1(d):

In light of obvious similarity between eqs. (2) and (S.18), we may immediately combine them

into

Âµ(x) =

∫
d3k

(2π)3 2ωk

∑
λ

(
e−ikx fµ(k, λ)× âk,0(0) + e+ikx fµ∗(k, λ)× â†k,0(0)

)
k0=+ωk

(S.19)

— precisely as in eq. (5) — for

f(k, λ) =
√
Ck,λ eλ(k) and f0(k, λ) =

|k|
m
δλ,0 . (S.20)

Specifically,

for λ = ±1, f = eλ(k), f0 = 0, (S.21)

while

for λ = 0, f =
ωk
m

k

|k|
, f0 =

|k|
m
. (S.22)

Problem 1(e):

It is easy to see that the polarization 4-vectors fµ(k, λ) obey kµf
µ(k, λ) = 0. Indeed, for

the transverse polarizations λ = ±1, eq. (S.21) tells us that f0 = 0 while the space part

f = e(λ = ±1) is transverse to the 3-vector k, hence kµf
µ = 0. As to the longitudinal

polarization λ = 0, in light of eq. (S.22)

kµf
µ = ωkf

0 − k · f = ωk
|k|
m
− k ·

(
ωk
m

k

|k|

)
=

ωk|k|
m

− ωkk
2

m|k|
= 0. (S.23)

Consequently, the quantum field Âµ(x) obeys the classical equation ∂µÂ
µ = 0. Indeed,

each plane wave factor in the expansion (24) obeys this equation:

∂µ
(
e−ikxfµ(k, λ)

)
= e−ikx × (−ikµ)fµ(k, λ) = 0 〈〈 because kµf

µ(k, λ) = 0 〉〉, (S.24)

and likewise

∂µ
(
e+ikxfµ∗(k, λ)

)
= e+ikx × (+ikµ)fµ∗(k, λ) = 0 (S.25)

because kµf
µ∗ = (kµf

µ)∗ = 0. And therefore, by linearity, the whole quantum field obeys
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this equation,

∂µÂ
µ(x) =

∫
d3k

(2π)3 2ωk

∑
λ

(
∂µ
(
e−ikxfµ(k, λ)

)
âk,λ + ∂µ(

(
e+ikxfµ∗(k, λ)

)
â†k,λ

)
= 0.

(S.26)

Likewise, thanks to k0 = +ωk — and hence kµk
µ = ω2

k − k2 = m2 — in every plane

wave factor in the decomposition (24) of the quantum field, every plane wave factor obeys

the Klein–Gordon equation

(∂2 +m2)
(
e−ikxfµ(k, λ)âk,λ

)
= (−k2 +m2)

(
e−ikxfµ(k, λ)âk,λ

)
= 0,

(∂2 +m2)
(
e+ikxfµ∗(k, λ)â†k,λ

)
= (−k2 +m2)

(
e+ikxfµ∗(k, λ)â†k,λ

)
= 0.

(S.27)

Hence, by linearity, the whole quantum field obeys this equation,

(∂2 +m2)Âµ(x) =

=

∫
d3k

(2π)3 2ωk

∑
λ

(
(∂2 +m2)

(
e−ikxfµ(k, λ)

)
âk,λ + (∂2 +m2)(

(
e+ikxfµ∗(k, λ)

)
â†k,λ

)
= 0.

(S.28)

Problem 2(a):

The Hamiltonian (7) of a free relativistic particle — and hence the evolution operator

exp(−itĤ) — are functions of the momentum operator p̂, so they diagonalize in the mo-

mentum basis. In the non-relativistic normalization of |k〉 states,

Ĥ =

∫
d3k

(2π)3
|k〉ω(k) 〈k| ,

exp(−iĤt) =

∫
d3k

(2π)3
|k〉 exp

(
−itω(k)

)
〈k| ,

(S.29)

where t = y0 − x0 and ω(k) =
√
k2 +M2. In the same non-relativistic normalization
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〈x|k〉 = exp(ik · k), therefore

U(x→ y) ≡ 〈y| exp(−iĤt) |x〉 =

∫
d3k

(2π)3
〈y|k〉 exp

(
−itω(k)

)
〈k|x〉

=

∫
d3k

(2π)3
exp (i(y − x) · k − itω(k)) .

(S.30)

precisely as in eq. (9).

By the way, this non-relativistically normalized evolution kernel U(x→ y) is related to

the

D(x− y)
def
=

∫
d3k

(2π)3 2ωk
exp

(
i(y − x) · k − i(y0 − x0)ωk

)
(S.31)

we have used in class (in the context of relativistic causality and also of Feynman propagators)

as

U(x→ y) = 2i
∂

∂t
D(y − x) 〈〈where t = y0 − x0 〉〉. (S.32)

Indeed,

2i
∂

∂t
exp (i(y − x) · k − itωk) = 2ωbk × exp (i(y − x) · k − itωk) (S.33)

where the 2ωk factor cancels the similar denominator of the relativistic measure, thus

2i
∂

∂t
D(y − x) =

∫
d3k

(2π)3
exp (i(y − x) · k − itω(k)) = U(x→ y). (S.34)

Now let’s simplify the 3D integral on the RHS of eq. (9) by integrating over the directions

of the k vector. In spherical coordinates (k, θ, φ) where k = |k| and θ is the angle between

k and y − x,

d3k = dk k2 d cos θ dφ, k · (y − x) = rk cos θ, (S.35)

hence

∫∫
d cos θ dφ eik(x−y) = 2π

+1∫
−1

d cos θ eikr×cos θ =
2π

irk

(
e+irk − e−irk

)
. (S.36)
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Consequently, for any symmetric function f(k) = f(−k) we have

∫
d3k

(2π)3
eik·(y−x) × f(|k|) =

1

4π2

∞∫
0

dk k2 1

irk

(
e+irk − e−irk

)
× f(k)

=
1

4π2i r

∞∫
0

dk k
(
e+irk × f(k) − e−irk ×

(
f(k) = f(−k)

))

=
1

4π2i r

+∞∫
−∞

dk k e+irk × f(k).

(S.37)

In particular, for the f(k) = e−itω(k) = f(−k) we have

U(x→ y) =

∫
d3k

(2π)3
eik·(y−x) × e−itω(k) =

1

4π2i r

+∞∫
−∞

dk k e+irk × e−itω(k). (S.38)

precisely as in eq. (11). Quod erat demonstrandum

Problem 2(c):

As explained in my notes on the saddle point method, integrals of the form

I =

∫
Γ

dz f(z) eAg(z) (S.39)

in the large A limit become

I = eAg(z0) ×
√

2πη f(z0)√
−η2Ag′′(z0)

×
(
1 + O(A−1)

)
. (S.40)

In general, f and g are complex analytic functions of a complex variable z which is integrated

over some contour Γ; quite often Γ is the real axis, but one should allow for its deformation in

the complex plane. In eq. (S.40), z0 is a saddle point of g(z) where the derivative g′(z0) = 0;

this saddle point does not have to lie on the original integration contour Γ — if it does not,

we deform the contour Γ → Γ′ so that Γ′ does go through the z0. If several saddle points
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are present near the contour Γ, the point with the largest Re g dominates the integral.

Finally, η is the direction dz of the Γ′ at the saddle point z0; it should be chosen such that

Re(−η2g′′(z0)) ≥ 0, which assures that Γ′ crosses z0 as a mountain path, from a valley to

the lowest crossing point to another valley.

For the integral (11) at hand, we identify

A = t, g(k) = i
r

t
k − iω(k), f(k) =

k

4π2i r
. (S.41)

The saddle point in the k plane follows from

dg

dk
≡ i

r

t
− i

dω

dk
≡ i

r

t
− i

k

ω
= 0. (S.42)

For r < t this equation has a real solution, namely

k0 = M × r√
t2 − r2

, ω(k0) = M × t√
t2 − r2

. (S.43)

At this point

Ag(k0) = irk0 − itω(k0) = iM
r2 − t2√
t2 − r2

= −iM ×
√
t2 − r2 ,

f(k0) =
−iM
4π2

1√
t2 − r2

,

Ag′′(k0) ≡ −itM
2

ω3(k0)
=

(t2 − r2)3/2

iMt2
,

(S.44)

and the direction of the integration contour at k0 should be in the fourth quadrant of the

complex plane, arg(η) between 0 and −π/2; the real-axis contour is marginally OK. Substi-

tuting all these data into eq. (S.40) gives us

√
2πη f(z0)√
−η2Ag′′(z0)

=

(
−iM
2π

)3/2

× t

(t2 − r2)5/4
(S.45)

and therefore

U(x→ y) = exp
(
−iM

√
t2 − r2

)
×
(
−iM
2π

)3/2

× t

(t2 − r2)5/4
×
(

1 + O

(
1

M
√
t2 − r2

))
(S.46)

in accordance with eq. (13).
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Problem 2(d):

Again, we use the saddle point method to evaluate the integral (11). That is, we identify

A, g(k), and f(k) according to eq. (S.41), and solve eq. (S.42) to find the saddle point. But

this time, for r > t the saddle point is imaginary

k0 =
iMr√
r2 − t2

, ω(k0) =
iMt√
r2 − t2

, (S.47)

so the integration contour must be deformed away from the real axis. At the saddle

point (S.47),

Ag(k0) = irk0 − itω(k0) = −M ×
√
r2 − t2 ,

f(k0) =
M

4π2

1√
r2 − t2

,

Ag′′(k0) ≡ −itM
2

ω3(k0)
= +

(r2 − t2)3/2

Mt2
,

(S.48)

all being real, and the deformed contour should cross k0 in the imaginary direction, arg(η) =

π
2 ±

π
4 . Consequently, in eq. (S.40)

√
πη f(z0)√
−η2Ag′′(z0)

=
+iM3/2

(2π)3/2
× t

(r2 − t2)5/4
(S.49)

and therefore

U(x−y; t) = exp
(
−M

√
r2 − t2

)
× iM3/2

(2π)3/2
× t

(r2 − t2)5/4
×
(

1 + O

(
1

M
√
r2 − t2

))
(S.50)

in accordance with eq. (14).

Note that the exponential factor here decays as one goes further outside the future light

cone. In other words, the probability of a relativistic particle moving faster than light is

exponentially small. But tiny as it is, this probability does not vanish, and this violates the

relativistic causality.
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