
PHY–396 K. Solutions for homework set #4.

Problem 1(a):

Let’s start with the transverse polarizations — λ = ±1 in the helicity basis — For which

the polarization 3-vectors ek,λ are ⊥ k and hence ⊥ to the boost velocity v = k/ωk to the

moving particle’s frame. Consequently, the 4-vector (0, ek,λ) is invariant under the Lorentz

boosts in this direction, thus

Bµ
ν(0, ek,λ)

ν = same(0, ek,λ)
ν = by the top eq. (2) = fµ

k,λ
. (S.1)

OOH, for the longitudinal polarization λ = 0, the polarization vector ek,λ points in the

direction of k and hence of the Lorentz boost. Consequently, in 2 dimensions spanning the

time and the boost direction, the boosted 4-vector becomes

(
γ βγ

βγ γ

)(
0

1

)
=

(
βγ

γ

)
, (S.2)

hence in 4D notations

(
boosted (0, ek,λ)

)0
= βγ,

(
boosted (0, ek,λ)

)i
= γni

k . (S.3)

For the boost in question, the velocity is k/ωk, hence

γ =
ωk

m
, βγ =

|k|
m

, (S.4)

and therefore

for λ = 0 :
(
boosted (0, ek,λ)

)
=

( |k|
m

,
ωknk

m

)
, (S.5)

exactly as the fµ
k,λ

on second line of eq. (2). Thus altogether, for all 3 polarizations

fµ
k,λ

=
(
boosted (0, ek,λ)

)µ
. (S.6)

Quod erat demonstrandum.
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Now consider the normalization equations (4). In the rest frame of the particle — where

fµk,λ = (0, ek,λ) — the product of two polarization vectors (for the same k but different

λ′ 6= λ) is obviously

(0, ek,λ)
∗ · (0, e′k,λ) = 0 − e∗k,λ · ek,λ′ = −δλ,λ′ (S.7)

since the 3 complex unit vectors ek,λ form an orthonormal basis.

As we just saw, the polarization vectors fµk,λ for k 6= 0 obtain by Lorentz boosting the

(0, ek,λ) 4-vectors to the moving particle’s frame. But since fµk,λ and fµ
k,λ′ have the same

k, they are both Lorentz-boosted by the same velocity, so their scalar product remains the

same:

gµνf
µ∗
k,λ

fν
k,λ′ = (0, ek,λ)

∗ · (0, e′k,λ) = −δλ,λ′ . (S.8)

Quod erat demonstrandum.

Problem 1(b):

We may prove Lemma 2 by a direct calculation using eqs. (2) for the fµ
k,λ

, but it’s easier to

use Lemma 1 rephrased as

fµk,λ = Bµ
ν

(
eνk,λ = (0, ek,λ)

ν
)

for the same boost Bµ
ν as kµ = Bµ

ν

(
kνrest = (m, 0)ν

)
.

(S.9)

Consequently, it’s enough to prove that in the rest frame of the quantum

∑

λ

eµk,λe
∗ν
k,λ = −gµν +

kµrestk
ν
rest

m2
. (S.10)

Indeed, eq. (12) immediately follows from eqs. (S.10) via the Lorentz boost (S.9) of both

sides of the equation.

So let’s verify eq. (S.10). On its LHS, the three 3-vectors eλ(k) for λ = −1, 0,+1 form
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an orthonormal basis of the 3D space, which means

eλ(k) · e∗λ′(k) = δλ,λ′ (S.11)

and also
∑

λ

eiλ(k)e
∗j
λ
(k) = δij . (S.12)

In terms of the purely-spatial 4-vectors eµ
k,λ

= (0, ek,λ), eq. (S.12) becomes

∑

λ

eµ
k,λ

e∗νk,λ =

{
1 for µ = ν = 1, 2, 3,

0 for all other µ, ν,
(S.13)

or in matrix form

∑

λ

eµ
k,λ

e∗νk,λ =




0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




. (S.14)

At the same time, on the RHS of eq. (S.10)

kµrestk
ν
rest

m2
=

{
1 for µ = ν = 0,

0 otherwise,
(S.15)

and therefore

−gµν +
kµrestk

ν
rest

m2
=




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




+




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




=




0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




. (S.16)

By inspection, this is the same matrix as in eq. (S.14), which verifies

∑

λ

eµ
k,λ

e∗νk,λ − gµν +
kµrestk

ν
rest

m2
(S.10)

and hence the Lemma 2
∑

λ

fµk,λf
∗ν
k,λ = −gµν +

kµkν

m2
. (5)
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Problem 1(c):

In the operator product Âµ(x)Âν(y), both factors are linear combinations of the creation

and annihilation operators according to the expansion (1). Therefore, the product comprises

terms of the form ââ, â†â†, â†â, and ââ†. The first three kinds of terms have zero zero matrix

elements between vacuum states,

〈0| ââ |0〉 = 〈0| â†â† |0〉 = 〈0| â†â |0〉 = 0, (S.17)

while for the fourth kind

〈0| â
k,λ

â†
k′,λ′ |0〉 = 2ωk(2π)

3δ(3)(k− k′)δλ,λ′ . (S.18)

Consequently,

〈0| Âµ(x)Âν(y) |0〉 =

∫
d3k

(2π)3
1

2ωk

∑

λ

∫
d3k′

(2π)3
1

2ω′
k

∑

λ′

e−ikx+ik′yfµ
k,λ

f∗νk′,λ′ ×

×
(
〈0| â

k,λ
â†
k′,λ′ |0〉 = 2ωk(2π)

3δ(3)(k− k′)δλ,λ′

)

=

∫
d3k

(2π)3
1

2ωk

∑

λ

[
e−ik(x−y) fµk,λf

∗ν
k,λ

]
k0=+ωk

=

∫
d3k

(2π)3
1

2ωk

[(
−gµν +

kµkν

m2

)
e−ik(x−y)

]

k0=+ωk

=

(
−gµν − 1

m2

∂

∂xµ

∂

∂xν

)∫
d3k

(2π)3
1

2ωk

[
e−ik(x−y)

]
k0=+ωk

≡
(
−gµν − 1

m2

∂

∂xµ

∂

∂xν

)
D(x− y),

(S.19)

precisely as in eq. (6).

Problem 1(d):

Let Φ̂(x) be a free scalar field of the same mass m as the vector field in question. In class
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we saw that

Gscalar
F (x− y)

def
= 〈0|TΦ̂(x)Φ̂(y) |0〉 =

{
D(x− y) when x0 > y0,

D(y − x) when x0 < y0.
(S.20)

We also saw that

∂0∂0Gscalar
F (x− y) = 〈0|T

(
∂0∂0Φ̂(x)

)
Φ̂(y) |0〉 − iδ(4)(x− y) (S.21)

while the single time derivative of the propagator does not have a δ–singularity. The space

derivatives also do not produce δ–singularities, thus for the second-order differential operator

Zµν def
= −gµν − ∂µ∂ν

m2
(S.22)

we have

Zµν
x Gscalar

F (x− y) = 〈0|T
(
ZµνΦ̂(x)

)
Φ̂(y) |0〉 +

i

m2
δµ,0δν,0δ(4)(x− y). (S.23)

For the first term on the RHS here, we have two possibilities, depending on the sign of

x0 − y0. When x0 > y0,

〈0|T
(
ZµνΦ̂(x)

)
Φ̂(y) |0〉 = 〈0|

(
ZµνΦ̂(x)

)
Φ̂(y) |0〉

= Zµν
x 〈0| Φ̂(x)Φ̂(y) |0〉

= Zµν
x D(x− y)

= 〈0| Âµ(x)Âν(y) |0〉

(S.24)

where the last equality follows from eq. (6). Likewise, when x0 < y0 we have

〈0|T
(
ZµνΦ̂(x)

)
Φ̂(y) |0〉 = 〈0| Φ̂(y)

(
ZµνΦ̂(x)

)
|0〉

= Zµν
x 〈0| Φ̂(y)Φ̂(x) |0〉

= Zµν
x D(y − x)

= Zνµ
y D(y − x)

= 〈0| Âν(y)Âµ(x) |0〉 .

(S.25)
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Altogether, we may summarize both cases as

〈0|T
(
ZµνΦ̂(x)

)
Φ̂(y) |0〉 = 〈0|TÂµ(x)Âν(y) |0〉 . (S.26)

Plugging eq. (S.26) into eq. (S.23) and spelling out the Zµν operator, we immediately

arrive at

(
−gµν − 1

m2

∂

∂xµ

∂

∂xν

)
Gscalar

F (x−y) = 〈0|TÂµ(x)Âν(y) |0〉 + i

m2
δµ,0δν,0δ(4)(x−y). (8)

Quod erat demonstrandum.

Problem 1(e):

In light of eqs. (8), (9), and (10), we can immediately relate the vector field’s Feynman

propagator to the scalar propagator of the same mass,

Gµν
F (x− y) =

(
−gµν − 1

m2

∂

∂xµ

∂

∂xν

)
Gscalar

F (x− y). (S.27)

Meanwhile, in class we have derived the momentum-integral formula for the scalar Feynman

propagator,

Gscalar
F (x− y) =

∫
d4k

(2π)4
ie−ik(x−y)

k2 −m2 + i0
. (S.28)

Plugging this formula into the relation (S.27), we obtain

Gµν
F (x− y) =

(
−gµν − 1

m2

∂

∂xµ

∂

∂xν

)
Gscalar

F (x− y)

=

(
−gµν − 1

m2

∂

∂xµ

∂

∂xν

)∫
d4k

(2π)4
ie−ik(x−y)

k2 −m2 + i0

=

∫
d4k

(2π)4

(
−gµν +

kµkν

m2

)
× ie−ik(x−y)

k2 −m2 + i0
.

(11)

Quod erat demonstrandum.
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Problem 1(f):

The free massive vector field has classical Lagrangian density

L = −1
4 FνµF

νµ + 1
2m

2AµA
µ

= −1
4(∂νAµ − ∂µAν)(∂

νAµ − ∂µAν) + 1
2m

2AµA
µ

= −1
2(∂νAµ)(∂

νAµ) + 1
2(∂νAµ)(∂

µAν) + 1
2m

2AµA
µ

= 1
2∂ν(Aµ∂

νAµ) + 1
2Aµ∂

2Aµ − 1
2∂ν(Aµ∂

µAν) − 1
2Aµ∂ν∂

µAν + 1
2m

2AµA
µ

= ∂ν(stuff) + 1
2AµDµνAν ,

(S.29)

where

Dµν = (∂2 +m2)gµν − ∂µ∂ν . (13)

When we integrate
∫
d4x the Lagrangian density (S.29) to obtain the classical action, the

total derivative term on the RHS integrates to zero, which leaves us with

S =

∫
d4xL = 1

2

∫
d4xAµDµνAµ , (S.30)

precisely as in eq. (12).

Now let’s verify that the Feynman propagator (11) for the massive vector field is a

Green’s function of the differential operator (13). Using eq. (S.27) for the vector propagator

in terms of the scalar propagator and acting on it with the operator Dµν , we obtain

DµνGF
νλ(x− y) =

(
(∂2 +m2) gµν − ∂µ∂ν

)(
−gνλ − 1

m2
∂ν∂λ

)
Gscalar

F (x− y)

=




− δµλ × (∂2 +m2) + ∂µ∂λ

− ∂2 +m2

m2
× ∂µ∂λ + ∂µ × ∂2

m2
× ∂λ


×Gscalar

F (x− y)

=
(
−δµ

λ
× (∂2 +m2) + 0× ∂µ∂λ

)
×Gscalar

F (x− y)

= −δµλ ×
(
(∂2 +m2)Gscalar

F (x− y) = −iδ(4)(x− y)
)

= +iδµλδ
(4)(x− y)

(S.31)

in accordance with eq. (14). This means that the Feynman propagator of the massive vector

fields is indeed a Green’s function of the differential operator (13).
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Problem 2(a):

For the classocal Lagrangian density (15),

∂L
∂(∂µΦa)

= ∂µΦa ,
∂L
∂Φa

= −m2Φa − λ

6

(
∑

c

Φ2
c

)
× Φa , (S.32)

hence Euler–Lagrange field equations

∀a : ∂2Φa +

(
m2 +

λ

6

∑

c

Φ2
c

)
× Φa = 0. (S.33)

For convenience, let me rewrite this equation as

∀a : ∂2Φ(x) = −T (x)Φa(x) = 0 (S.34)

where

T (x)
def
= m2 +

λ

6

∑

c

Φ2
c(x), same for all a. (S.35)

Now consider the currents (16) and their divergences:

∂µJ
µ
ab = ∂µ

(
Φa∂

µΦb − Φb∂
µΦa

)

= ∂µΦa × ∂µΦb + Φa × ∂2Φb − ∂µΦb × ∂µΦa − Φb × ∂2Φa

= Φa × ∂2Φb − Φb × ∂2Φc

〈〈 by the Euler–Lagrange eqs. (S.34) 〉〉

= Φa ×
(
−TΦb

)
− Φb ×

(
−TΦa

)

〈〈 for the same T as in eq. (S.35) in both terms 〉〉

= T ×
(
−ΦaΦb + ΦbΦa

)
= 0.

(S.36)

Thus, as long as the field obey their Euler–Lagrange equations, all the currents (16) are

conserved. Quod erat demonstrandum.
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Problem 2(b):

Classically, for each scalar field Φa(x, t) there is a canonically conjugate field

Πa(x, t) =
δL

δΦ̇a(x)

∣∣∣∣
t

= Φ̇a(x, t). (S.37)

Consequently, the classical Hamiltonian density is

H =
∑

a

ΠaΦ̇a − L =
1

2

∑

a

Π2
a +

1

2

∑

a

(
∇Φa

)2
+

m2

2

∑

a

Φ2
a +

λ

24

(
∑

a

Φ2
a

)2

(S.38)

while the Poisson brackets involve
∑

a as well as
∫
d3x:

[[
A,B

]]
=

∫
d3x

∑

a

(
δA

δΦa(x)

δB

δΠa(x)
− δA

δΠa(x)

δB

δΦa(x)

)
. (S.39)

In particular,

[[
Φa(x),Φb(y)

]]
= 0,

[[
Πa(x),Πb(y)

]]
= 0,

[[
Φa(x),Πb(y)

]]
= δabδ

(3)(x−y). (S.40)

Consequently, in the quantum theory the corresponding quantum fields Φ̂a(x, t) and Π̂a(x, t)

obey similar equal-time commutation relations:

[
Φ̂a(x, t), Φ̂b(y, same t)

]
= 0,

[
Π̂a(x, t), Π̂b(y, same t)

]
= 0,

[
Φ̂a(x, t), Π̂b(y, same t)

]
= iδabδ

(3)(x− y).

(S.41)

And the Hamiltonian operator of the quantum theory follows from the classical Hamilto-

nian (S.38):

Ĥ =

∫
d3x Ĥ(x, t) where

Ĥ(x, t) =
1

2

∑

a

Π̂2
a(x, t) +

1

2

∑

a

(
∇Φ̂a(x, t)

)2

+
m2

2

∑

a

Φ̂2
a(x, t) +

λ

24

(
∑

a

Φ̂2
a(x, t)

)2

.

(S.42)
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Problem 2(c):

Applying the Leibniz rule to the equal-time commutators (S.41), we have

[
Φ̂a(y, t)Π̂b(y, t), Φ̂c(x, t)

]
= Φ̂a(y, t)

[
Π̂b(y, t), Φ̂c(x, t)

]
+
[
Φ̂a(y, t), Φ̂c(x, t)

]
Π̂b(y, t)

= Φ̂a(y, t)× (−i)δbcδ
(3)(y − x) + 0× Π̂b(y, t)

= −iδbcΦ̂a(y)× δ(3)(y − x)
(S.43)

and likewise

[
Φ̂b(y, t)Π̂a(y, t), Φ̂c(x, t)

]
= −iδacΦ̂b(y, t)× δ(3)(y − x). (S.44)

Hence, for the net charge operator Q̂ab as in eq. (18),

[
Q̂ab(t), Φ̂c(x, t)

]
=

∫
d3y

[
Φ̂a(y, t)Π̂b(y, t)− Φ̂b(y, t)Π̂a(y, t), Φ̂c(x, t)

]

=

∫
d3y

(
−iδbcΦ̂a(y, t) + iδacΦ̂b(y, t)

)
× δ(3)(y − x)

= −iδbcΦ̂a(x, t) + iδacΦ̂b(x, t).

(S.45)

Similarly,

[
Φ̂a(y, t)Π̂b(y, t), Π̂c(x, t)

]
= Φ̂a(y, t)

[
Π̂b(y, t), Π̂c(x, t)

]
+
[
Φ̂a(y, t), Π̂c(x, t)

]
Π̂b(y, t)

= Φ̂a(y, t)× 0 + iδacδ
(3)(y − x)× Π̂b(y, t)

= +iδacΠ̂b(y, t)× δ(3)(y− x)
(S.46)

and likewise

[
Φ̂b(y, t)Π̂a(y, t), Π̂c(x, t)

]
= +iδbcΠ̂a(y, t)× δ(3)(y − x), (S.47)

hence

[
Q̂ab(t), Π̂c(x)

]
=

∫
d3y

[
Φ̂a(y, t)Π̂b(y, t)− Φ̂b(y, t)Π̂a(y, t), Π̂c(x, t)

]

=

∫
d3y

(
+iδacΠ̂b(y, t) − iδbcΠ̂a(y, t)

)
× δ(3)(y − x)

= −iδbcΠ̂a(x, t) + iδacΠ̂b(x, t).

(S.48)

Quod erat demonstrandum.
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Problem 2(d):

The Hamiltonian operator (S.42) is SO(N) invariant — in fact, each of the 4 terms compris-

ing the Hamiltonian density Ĥ(x, t) is separately SO(N) invariant — and that makes them

commute with all the Q̂ab charges. Indeed, suppose some N operators V̂c satisfy commutation

relations similar to eqs. (19), namely

[
Q̂ab(t), V̂c(same t)

]
= −iδbcV̂a(t) + iδacV̂b(t) ; (S.49)

then the
∑

c V̂
2
c operator commutes with all the charges Q̂ab (at equal times). Here is the

proof:
[
Q̂ab,

∑
c
V̂ 2
c

]
=
∑

c

[
Q̂ab, V̂

2
c

]
=
∑

c

{
V̂c,
[
Q̂ab, V̂c

]}

=
∑

c

{
V̂c,
(
−iδbcV̂a + iδacV̂b

)}

= −i
{
V̂b, V̂a

}
+ i

{
V̂a, V̂b

}

= 0.

(S.50)

In particular, letting V̂c = Π̂c(x), or V̂c = Φ̂c(x), or V̂c = ∇Φ̂c(x) — which also satisfy

[
Q̂ab(t),∇Φ̂c(x, t)

]
= ∇

[
Q̂ab(t), Φ̂c(x, t)

]
= −iδbc∇Φ̂a(x, t) + iδac∇Φ̂b(x, t) (S.51)

— we immediately obtain

[
Q̂ab(t),

∑
c
Π̂2
c(x, t)

]
= 0,

[
Q̂ab(t),

∑
c
∇Φ̂2

c(x, t)
]

= 0,
[
Q̂ab(t),

∑
c
Φ̂2
c(x, t)

]
= 0,

(S.52)

hence also
[
Q̂ab(t),

(∑
c
Φ̂2
c(x, t)

)2]
= 0, (S.53)

and therefore
[
Q̂ab(t), Ĥ

]
= 0. Quod erat demonstrandum.
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Problem 2(e):

The commutations relations (20) between the charges follow from expanding Q̂cd into quan-

tum fields according to eq. (18) and then using the commutators (19) of those fields with

the Q̂ab charge:

[
Q̂ab, Q̂cd

]
=

[
Q̂ab,

∫
d3x

(
Φ̂c(x)Π̂d(x) − Φ̂d(x)Π̂c(x)

)]

=

∫
d3x

[
Q̂ab,

(
Φ̂c(x)Π̂d(x) − Φ̂d(x)Π̂c(x)

)]

=

∫
d3x

(
Φ̂c(x)

[
Q̂ab, Π̂d(x)

]
+
[
Q̂ab, Φ̂c(x)

]
Π̂d(x)

− Φ̂d(x)
[
Q̂ab, Π̂c(x)

]
−
[
Q̂ab, Φ̂d(x)

]
Π̂c(x)

)

=

∫
d3x

(
Φ̂c

(
−iδbdΠ̂a + iδadΠ̂b

)
+
(
−iδbcΦ̂a + iδacΦ̂b

)
Π̂d

− Φ̂d

(
−iδbcΠ̂a + iδacΠ̂b

)
−
(
−iδbdΦ̂a + iδadΦ̂b

)
Π̂c

)
@x

= −iδbd ×
∫
d3x

(
Φ̂cΠ̂a − Φ̂aΠ̂c

)
@x + iδad ×

∫
d3x

(
Φ̂cΠ̂b − Φ̂bΠ̂c

)
@x

+ iδbc ×
∫
d3x

(
Φ̂dΠ̂a − Φ̂aΠ̂d

)
@x − iδac ×

∫
d3x

(
Φ̂dΠ̂b − Φ̂bΠ̂d

)
@x

= −iδbd × Q̂ca + iδad × Q̂cb + iδbc × Q̂da − iδac × Q̂db

= −iδbc × Q̂ad + iδac × Q̂bd + iδbd × Q̂ac − iδad × Q̂bc .
(S.54)

Quod erat demonstrandum.

Note: since the charges are time independent, the fields in the above formulae may be

evaluated at any time t, as long as it’s the same time for all the operators.

Problem 3(a):

In class, we have expanded a single free scalar fields Φ̂(x) and its canonical conjugate Π̂(x)

into creation and annihilation operators â†p and âp, see my notes for details. In the present

N -field case, we may proceed exactly like in class, except that the creation and annihilation

operators are labeled by the species index a = 1, . . . , N in addition to the momentum mode

12
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p, thus

Φ̂a(x) =

∫
d3k

(2π)32ωk

(
e−ikxâ

k,a
+ e+ikxâ†

k,a

)k0=+ωk

,

Π̂a(x) = ∂0Φ̂a(x) =

∫
d3k

(2π)32ωk

(
−iωk e

−ikxâk,a + iωk e
+ikxâ†k,a

)k0=+ωk

.

(S.55)

Given this expansion of the quantum fields, we may expand integrals of fields bilinears into

sums of ââ, ââ†, â†â, and â†â† operators. In particular,

∫
d3x Φ̂a(x, t)Π̂b(same x, same t) =

=

∫
d3x

∫
d3k

(2π)32ωk

∫
d3p

2(2π)3

(
e−ikxâ

k,a
+ e+ikxâ†

k,a

)(
−ie−ipyâ

p,b
+ ie+ipyâ†

p,b

)

=

∫
d3k

(2π)32ωk

∫
d3p

2(2π)3




−iâk,aâp,b ×
∫
d3x ei(k+p)x−i(ωk+ωp)t

+iâk,aâ
†
p,b ×

∫
d3x ei(k−p)x−i(ωk−ωp)t

−iâ†
k,a

â
p,b

×
∫
d3x ei(−k+p)x−i(−ωk+ωp)t

+iâ†k,aâ
†
p,b ×

∫
d3x ei(−k−p)x−i(−ωk−ωp)t




=

∫
d3k

(2π)32ωk

∫
d3p

2(2π)3




−iâk,aâp,b × (2π)3δ(3)(k+ p)e−2iωkt

+iâ
k,a

â†
p,b

× (2π)3δ(3)(k− p)

−iâ†
k,a

â
p,b

× (2π)3δ(3)(−k + p)

+iâ†
k,a

â†
p,b

× (2π)3δ(3)(−k− p)e+2iωkt




=

∫
d3k

(2π)32ωk

1

2

(
iâ

k,aâ
†
k,b − iâ†

k,aâk,b

)

+

∫
d3k

(2π)32ωk

1

2

(
−iâk,aâ−k,b × e−2itωk + iâ†k,aâ

†
−k,b × e+2itωk

)
,

(S.56)
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and likewise

∫
d3x Φ̂b(x, t)Π̂a(same x, same t) =

=

∫
d3k

(2π)32ωk

1

2

(
iâk,bâ

†
k,a − iâ†k,bâk,a

)

+

∫
d3k

(2π)32ωk

1

2

(
−iâk,bâ−k,a × e−2itωk + iâ†k,bâ

†
−k,a × e+2itωk

)
.

(S.57)

It is easy to see that the bottommost lines of eqs. (S.57) and (S.56) are exactly the same, —

indeed

[from eq. (S.57)] =

∫
d3k

(2π)32ωk

1

2

(
−iâk,bâ−k,a × e−2itωk + iâ†k,bâ

†
−k,a × e+2itωk

)
=

〈〈 changing integration variable from k to −k 〉〉

=

∫
d3k

(2π)32ωk

1

2

(
−iâ−k,bâk,a × e−2itωk + iâ†−k,bâ

†
k,a × e+2itωk

)

〈〈 commuting â−k,b
with â

k,a
and â†−k,b

with â†
k,a

〉〉

=

∫
d3k

(2π)32ωk

1

2

(
−iâ

k,aâ−k,b × e−2itωk + iâ†
k,aâ

†
−k,b × e+2itωk

)

= [from eq. (S.56)],
(S.58)

— so they cancel out from the difference

Q̂ab =

∫
d3x

(
Φ̂a(x, t)Π̂b(x, t) − Φ̂b(x, t)Π̂a(x, t)

)
. (S.59)

Consequently, the expansion of the charges (S.59) into the creation and the annihilation

operators comes solely from the second-from-the-bottom lines of eqs. (S.56) and (S.57), thus

Q̂ab =

∫
d3k

(2π)32ωk

1

2

(
iâ

k,a
â†
k,b

− iâ†
k,a

â
k,b

)
−
∫

d3k

(2π)32ωk

1

2

(
iâ

k,b
â†
k,a

− iâ†
k,b

â
k,a

)

=

∫
d3k

(2π)32ωk

1

2

(
iâk,aâ

†
k,b + iâ†k,bâk,a − iâ†k,aâk,b − âk,bâ

†
k,a

)

=

∫
d3k

(2π)32ωk

1

2

(
2iâ†k,bâk,a + i[âk,a, â

†
k,b] − 2iâ†k,bâk,a − i[âk,b, â

†
k,a]
)
.

(S.60)

On the last line here, the two commutators vanish for a 6= b, while for a = b they cancel
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each other. Either way, we may drop them from eq. (S.60), which leaves us with

Q̂ab =

∫
d3k

(2π)32ωk

(
iâ†

k,b
â
k,a

− iâ†
k,b

â
k,a

)
. (21)

Quod erat demonstrandum.

Problem 3(b):

Reversing eqs. (23), we have

âk,1 =
â
k
+ b̂

k√
2

, âk,2 =
−iâ

k
+ ib̂

k√
2

,

â†k,1 =
â†
k
+ b̂†

k√
2

, â†k,2 =
iâ†

k
− ib̂†

k√
2

.

(S.61)

Consequently, in the integrand of eq. (20) for the Q̂21 we get

−iâ†k,2âk,1 + iâ†k,1âk,2 =
−i

2
(iâ†k − ib̂†k)(âk + b̂k) +

i

2
(â†k + b̂†k)(−iâk + ib̂k)

=
1

2

(
â†
k
â
k
+ â†

k
b̂
k
− b̂†

k
â
k
− b̂†

k
b̂
k

)

+
1

2

(
â†
k
â
k
+ b̂†

k
â
k
− â†

k
b̂
k
− b̂†

k
b̂
k

)

= â†kâk − b̂†kb̂k

(S.62)

and therefore

Q̂21 =

∫
d3k

(2π)32ωk

(
â†
k
â
k
− b̂†

k
b̂
k

)
= N̂particles − N̂antiparticles . (24)

Quod erat demonstrandum.
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Problem 3(c):

First, let’s verify eqs. (25). Plugging a = 2, b = 1 and (c = 1 or c = 2) into eq. (19), we get

[Q̂21, Φ̂1(x)] = −iΦ̂2(x) + i0, [Q̂21, Φ̂2(x)] = −i0 + iΦ̂1(x), (S.63)

and consequently

[Q̂21, Φ̂(x)] =
[Q̂21, Φ̂1(x)] + i[Q̂21, Φ̂2(x)]√

2
=

−iΦ̂2(x) − Φ̂1(x)√
2

= −Φ̂(x),

[Q̂21, Φ̂
†(x)] =

[Q̂21, Φ̂1(x)] − i[Q̂21, Φ̂2(x)]√
2

=
−iΦ̂2(x) + Φ̂1(x)√

2
= +Φ̂†(x),

(25)

Now let’s use the Campbell identity:

exp(iθQ̂21)Φ̂(x) exp(−iθQ̂21) =
∞∑

n=0

(iθ)n

n!
[Q̂21, [· · · [Q̂21, Φ̂(x)] · · ·]]n times

= Φ̂(x) + iθ[Q̂12, Φ̂(x)] +
(iθ)2

2
[Q̂21, [Q̂21, Φ̂(x)]] + · · · .

(25)

From eq. (24) for the Φ̂, it’s obvious that the multiple commutators of Φ̂(x) with the charge

Q̂21 amount to ±Φ̂(x), specifically

[Q̂21, [· · · [Q̂21, Φ̂(x)] · · ·]]n times = (−1)nΦ̂(x), (S.64)

hence by the Campbell identity

exp(iθQ̂21)Φ̂(x) exp(−iθQ̂21) =
∞∑

n=0

(iθ)n

n!
(−1)nΦ̂(x) = exp(−iθ)× Φ̂(x). (27.a)

Likewise, all multiple commutators of the Φ̂†(x) with the charge Q̂21 amount to +Φ̂†(x),

[Q̂21, [· · · [Q̂21, Φ̂
†(x)] · · ·]]n times = +Φ̂†(x), (S.65)
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hence by the Campbell identity

exp(iθQ̂21)Φ̂
†(x) exp(−iθQ̂21) =

∞∑

n=0

(iθ)n

n!
[Q̂21, [· · · [Q̂21, Φ̂

†(x)] · · ·]]n times

=

∞∑

n=0

(iθ)n

n!
× Φ̂†(x) = exp(+iθ)× Φ̂†(x).

(27.b)

Quod erat demonstrandum.

Problem 3(d):

First of all, let’s check that the charge operators Q̂ab are Hermitian for any a 6= b: Since the

classical fields Φa(x) and Πa(x) are real, their quantum counterparts Φ̂a(x) and Φ̂a(x) are

Hermitian. Moreover, at equal times the fields Φ̂a(x) and Π̂b(x) with a 6= b commute with

each other, and likewise Φ̂b(x) commutes with the Π̂a(x). Consequently, in the integrand of

eq. (18)

(
Φ̂a(x)Π̂b(x)

)†
= Π̂†

b(x)Φ̂
†
a(x) = Π̂b(x)Φ̂a(x) = Φ̂a(x)Π̂b(x) 〈〈 for a 6= b 〉〉, (S.66)

and likewise

(
Φ̂b(x)Π̂a(x)

)†
= Φ̂b(x)Π̂a(x) 〈〈 for a 6= b 〉〉. (S.67)

Thus the whole integrand of eq. (18) is Hermitian, so the integral is Hermitian too. And

this establishes the Hermiticity of all the charge operators Q̂ab.

Next, for any real coefficients Aab the combination of the Hermitian charge operators

V̂ =
1

2

∑

a,b

AabQ̂ab (S.68)

is itself a Hermitian operator. Consequently, the exponent Û = exp(−iV̂ ) is a unitary

operator.
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Problem 3(e):

By the Campbell identity (25), for Û = exp(−iV̂ )

Û Φ̂a(x)Û
† = e−iV̂ Φ̂a(x)e

+iV̂ =

∞∑

n=0

(−i)n

n!
[V̂ , [· · · [V̂ , Φ̂(x)]]]n times , (S.69)

so let’s calculate the multiple commutators of the V̂ operator (S.68) with the quantum field

Φa(x). The first commutator follows from eq. (19):

[V̂ , Φ̂a(x)] =
1

2

∑

bc

Abc[Q̂bc, Φ̂a(x)]

〈〈 note indices a, b, c different from eq. (19) 〉〉

=
1

2

∑

bc

Abc ×
(
−iδcaΦ̂b(x) + iδbaΦ̂c(x)

)

=
−i

2

∑

b

AbaΦ̂b(x) +
i

2

∑

c

AacΦ̂c(x)

〈〈 by antisymmetry Aba = −Aab 〉〉

= +i
∑

c

AacΦ̂c .

(S.70)

The second commutator follows by iterating this formula:

[V̂ , [V̂ , Φ̂a(x)] =

[
V̂ , i

∑

c

AacΦ̂c(x)

]
= i

∑

c

Aac[V̂ , Φ̂c(x)]

= i
∑

c

Aac × i
∑

d

AcdΦ̂d(x) = i2
∑

d

(A2)adΦ̂d(x),

(S.71)

where A2 is the matrix square of A. From this formula, it’s clear how further iterations for

the higher multiple commutators work — they use the higher powers of the matrix A,

[V̂ , [· · · [V̂ , Φ̂a(x)]]]n times = in
∑

b

(An)abΦ̂b(x). (S.72)

As written, this formula works for all non-negative integers n, even for n = 0 where

A0 = 1N×N =⇒ (A0)ab = δab =⇒

=⇒ [V̂ , [· · · [V̂ , Φ̂a(x)]]]0 times = i0
∑

b

δabΦ̂b(x) = Φ̂a(x).
(S.73)
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Finally, let’s plug all the commutators (S.72) into the Campbell identity (S.69):

ÛΦ̂a(x)Û
† =

∞∑

n=0

(−i)n

n!
in
∑

b

(An)abΦ̂b(x)

=
∑

b

(
∞∑

n=0

1

n!
(An)ab

)
× Φ̂b(x)

=
∑

b

(
exp(A)

)
ab
Φ̂b(x)

(S.74)

where exp(A) is the matrix exponential of A. Moreover, we have chosen the antisymmetric

matrix A such that its matrix exponential is precisely the desired SO(N) matrix R, thus

eq. (S.74) amounts to the SO(N) symmetry transform in the field space,

ÛΦ̂a(x)Û
† =

∑

b

RabΦ̂a(x). (29)

Quod erat demonstrandum.

Problem 3(f):

All the SO(N) charges Q̂ab commute with the Hamiltonian and also with the net momentum

operator P̂net. Consequently, the symmetry operators Û also commutes with the Hamil-

tonian and with the net momentum operator. Consequently, when Û acts on a quantum field

Φ̂a(x) as in eq. (29), it cannot mix the creation and the annihilation operators comprising

the Φ̂a(x) with each other unless they carry exactly the same energies and momenta. In

particular, Û cannot mix the creation operators with the annihilation operators since they

have opposite signs of energies. Instead, all Û can do is change the species index of the

creation and the annihilation operators, thus

Û â†p,aÛ
† = linear combination of â†p,b for the same p,

Û âp,aÛ
† = linear combination of â

p,b
for the same p.

(S.75)

In light of eqs. (28) for the quantum fields themselves, the coefficients of these linear combi-

nations must be Rab, thus

Û â†p,aÛ
† =

∑

b

Rabâ
†
p,b

, Û âp,aÛ
† =

∑

b

Rabâp,b . (30)
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Problem 3(g):

Eq. (31) follows from eq. (30) for the creation operators and from the way any n-particle

state obtains from acting with the creation operators on the vacuum state,

|n : (p1, a1), . . . , (pn, an)〉 = â†p1,a1
· · · â†pn,an

|0〉 . (S.76)

Strictly speaking, if some of the n particles have exactly the same momenta and also are of

the same species, we would need some extra normalization factors in this formula. Although

eq. (31) holds true even when such normalization factors are taken into account, proving it

would take some extra afforst to deal with those factors. So to keep our life simple, we note

that in the infinite space exactly equal momenta of several particles are extremely unlikely

to happen (probability = 0), so we assume that all the momenta is distinct. Consequently,

none of the n particles are in exactly the same quantum state, so the normalization factor

in eq. (S.76) is simply 1.

In light of eq. (21) for the charges, they all annihilate the vacuum state |0〉, hence

Û |0〉 = |0〉. Consequently, for the one-particle states â†p,a |0〉 we have

Û â†p,a |0〉 =
(
Û â†p,aÛ

†
)
×Û |0〉 =

∑

b

Rabâ
†
p,b×|0〉 =⇒ Û |1(p, a)〉 =

∑

b

Rab |1(p, b)〉 .

(S.77)

In other words, Û rotates the species index of the particle by R but leaves its momentum

unchanged.

Likewise, for any n–particle state

Û
∣∣n :(p1, a1), (p2, a2), . . . , (pn, an)

〉
=

= Û â†p1,a1
â†p2,a2

· · · â†pn,an

|0〉

=
(
Û â†p1,a1

Û†
)
×
(
Û â†p2,a2

Û†
)
× · ×

(
Û â†p2,a2

Û†
)
× Û |0〉

=
∑

b1

Ra1,b1 â
†
p1,b1

×
∑

b2

Ra2,b2 â
†
p2,b2

× · · · ×
∑

bn

Ran,bn â
†
pn,bn

× |0〉

=
∑

b1,b2,...,bn

Ra1,b1Ra2,b2 · · ·Ran,bn × â†
p1,b1

â†
p2,b2

· · · â†
pn,bn

|0〉

=
∑

b1,b2,...,bn

Ra1,b1Ra2,b2 · · ·Ran,bn × |n : (p1, b1), (p2, b2), . . . , (pn, bn)〉 .

(30)
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Again, for each particle in the n–particle state its species index is rotated by R but the

momentum stays unchanged. Quod erat demonstrandum.
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