
PHY–396 K. Solutions for problem set #5.

Problem 1(a):

In the Noether’s formula (1) for the stress-energy tensor, the φa stand for independent

fields or field components, however they might be labeled. In the electromagnetic case, the

independent fields are components of the 4–vector Aλ(x), hence

T µν
Noether(EM) =

∂L
∂(∂µAλ)

∂νAλ − gµν L

= −F µλ ∂νAλ + 1
4
gµν FκλF

κλ.

(S.1)

While the second term here is clearly both gauge invariant and symmetric in µ ↔ ν, the

first term is neither.

Problem 1(b):

Let Kλµ,ν = −F λµAν as in eq. (5). Then

∂λKλµ,ν = −
(
∂λF

λµ
)
Aν − F λµ

(
∂λA

ν
)

= −JµAν + F µλ
(
∂λA

ν
)
, (S.2)

where the first term on the RHS vanishes for the free EM fields (i.e., when Jµ = 0). Conse-

quently, for the free EM fields

T µν
phys

= T µν
Noether

+ ∂λKλµ,ν

= −F µλ
(
∂νAλ

)
+ 1

4
gµν FκλF

κλ + F µλ
(
∂λA

ν
)

= −F µλ
(
∂νAλ − ∂λA

ν
)

+ 1
4
gµν FκλF

κλ

= −F µλF ν
λ + 1

4
gµν FκλF

κλ,

(S.3)

exactly as in eq. (4).
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Problem 1(c):

Let’s start with the Lagrangian (3). In component form,

F i0 = −F 0i = Ei, F ij = −ǫijkBk. (S.4)

Therefore, F i0Fi0 = F 0iF0i = −EiEi where the minus sign comes from raising one space

index. Likewise, F ijFij = +ǫijkBkǫijℓBℓ = +2BkBk where the plus sign comes from raising

two space indices at once. Thus,

L = −1
4

(
F µνFµν = F i0Fi0 + F 0iF0i + F ijFij

)
= 1

2

(
E2 − B2

)
. (S.5)

Now let’s work out the stress-energy tensor (4) in components. For the energy density

component T 00, we have

U ≡ T 00 = −F 0iF 0
i − L = +E2 − 1

2

(
E2 −B2

)
= 1

2

(
E2 +B2

)
(S.6)

in agreement with the standard electromagnetic formulæ (in the rationalized c = 1 units).

Likewise, the energy flux and the momentum density are

Si ≡ T i0 = T 0i = −F 0jF i
j = −(−Ej)(+ǫijkBk) = +ǫijkEjBk = (E×B)i, (S.7)

in agreement with the Poynting vector S = E×B (again, in the rationalized c = 1 units).

Finally, the (3–dimensional) stress tensor is

T ij
EM = −F iλF j

λ − gijL = −F i0F j
0 − F ikF j

k + δijL

= −EiEj + ǫikℓBℓ ǫjkmBm + 1
2
δij
(
E2 −B2

)

= −EiEj +
(
δijBℓBℓ − BiBj

)
+ 1

2δ
ij
(
E2 −B2

)

= −EiEj − BiBj + 1
2
δij
(
E2 +B2

)
.

(S.8)

Again, this is the well-known Maxwell stress tensor for the EM fields (in the rationalized

c = 1 units), except for the overall sign convention: In our convention, positive EM stress is
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compression rather than tension, thus EM pressure

P = +1
3
T ii = +1

2

(
E2 +B2

)
, (S.9)

while most EM books define positive stress to be tension rather than compression, hence

T ij
EM = +EiEj + BiBj − 1

2
δij
(
E2 +B2

)
(S.10)

but P = −1
3
T ii = +1

2

(
E2 +B2

)
. (S.11)

Problem 1(d):

In a sense, eq. (7) follows from part (b), but it is just as easy to derive it directly from the

Maxwell equations. Starting with eq. (4), we immediately have

∂µ T
µν
EM = −

(
∂µF

µλ
)
F ν

λ − F µλ
(
∂µF

ν
λ

)
+ 1

2
Fκλ

(
∂νF κλ

)
, (S.12)

where the last two terms cancel each other. Indeed, we may rewrite the second term here as

second term = −F µλ × ∂µF
ν
λ = −Fµλ × ∂µF νλ

〈〈 exchanging summation indices µ ↔ λ 〉〉

= −Fλµ × ∂λF νµ = +Fµλ × ∂λF νµ

= average of
(
+Fµλ × ∂λF νµ , −Fµλ × ∂µF νλ

)

= 1
2
Fµλ

(
∂λF νµ + ∂µF λν

)
,

(S.13)

hence combining the second and the third term on the RHS of eq. (S.12) gives us

second term + third term = 1
2
Fµλ

(
∂λF νµ + ∂µF λν

)
+ 1

2
Fκλ

(
∂νF κλ

)

〈〈 renaming the summation index κ→ µ in the third term 〉〉

= 1
2Fµλ

(
∂λF νµ + ∂µF λν + ∂νF µλ

)

= 0
(S.14)

thanks to the homogeneous Maxwell equation

∂λF νµ + ∂µF λν + ∂νF µλ = 0. (S.15)

Thus, on the RHS of eq. (S.12) the second and the the third term cancel each other and we
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are left with the first term only:

∂µ T
µν
EM = −

(
∂µF

µλ
)
F ν

λ = − Jλ F ν
λ (S.16)

where the second equality comes from the inhomogeneous Maxwell equation ∂µF
µλ = Jλ.

This proves eq. (7). Finally, eq. (8) follows from eq. (7) and the net stress-energy conserva-

tion (6). Quod erat demonstrandum.

Problem 1(e):

For ν = 0, on the LHS of eq. (7) we have

∂µT
µ0 = ∂0T

00 + ∂iT
i0 =

∂U
∂t

+ ∇ · S, (S.17)

while on the RHS of eq. (7) we have

−JλF 0λ = +J iF 0i = −J · E. (S.18)

Thus, eq. (7) for ν = 0 is the Poynting theorem

∂U
∂t

+ ∇ · S = −J · E, (S.19)

which is the local form of the work-energy theorem for the EM fields: The rate of the EM

energy’s non-conservation is equal to the power expended by the EM forces on the electric

current J.

Now consider eq. (7) for ν = i = 1, 2, 3. On the LHS, we have

∂µT
µi = ∂0T

0i + ∂jT
ji =

∂Si

∂t
+ ∇jT

ji, (S.20)

which is the local non-conservation of the ith component of the EM momentum. Indeed, the

Poynting vector S = E×B gives not only the flux of the EM energy but also the density

of the EM momentum, while the stress-tensor T ij (in our sign convention) gives the flux of
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the EM momentum. Physically, this non-conservation is due to mechanical forces between

the EM fields and the currents, so we should have

∂Si

∂t
+ ∇jT ji = −f i, (S.21)

where f is the density of the net EM forces on the charges and the currents,

f = ρE + J×B. (S.22)

And indeed, on the RHS of eq. (7) for ν = i we have

−JλF iλ = −J0F i0 + JjF ij = −ρEi − ǫijkJjBk = −
(
ρE + J×B

)i
= −f i, (S.23)

in perfect agreement with eq. (S.21). In other words, the ν = 1, 2, 3 components of eq. (7)

give the local form of the momentum-impulse theorem for the EM field.

Problem 2(a):

As discussed in class — see my notes on gauge symmetries (pages 5–6), — for the EM field

coupled to any kinds of charged scalars with a Lagrangian density

L = −1
4
FµνF

µν +
∑

a

(DµΦ
∗

a)(D
µΦa) − V (scalars), (S.24)

the Euler–Lagrange equations for the charged fields are

DµDµΦa +
∂V

∂Φ∗

a

= 0, DµDµΦ
∗

a +
∂V

∂Φa

= 0, (S.25)

while the electric current is

Jµ =
∑

a

(
−iqaΦaD

µΦ∗

a + iqaΦ
∗

aD
µΦa

)
. (S.26)

In particular, for the theory at hand there is only one charged scalar field Φ (and its conjugate

Φ∗), the Lagrangian density is as in eq. (9), so the Euler–Lagrange equations for the charged
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fields are

DµD
µΦ + m2Φ = 0 = DµD

µΦ∗ + m2Φ∗, (S.27)

while the electric current is simply

Jµ = −iqΦDµΦ∗ + iqΦ∗DµΦ. (S.28)

This current is manifestly gauge invariant, and is conserved, ∂µJ
µ = 0 when the scalar fields

obey their equation of motion (S.27). Indeed, by the Leibniz rule for the covariant derivatives

∂µ
(
ΦDµΦ∗) = (DµΦ)(D

µΦ∗) + Φ(DµD
µΦ∗)

〈〈 by eq. (S.27) 〉〉 = (DµΦ)(D
µΦ∗) + Φ(−m2Φ∗), (S.29)

∂µ
(
Φ∗DµΦ) = (DµΦ

∗)(DµΦ) + Φ∗(DµD
µΦ)

〈〈 by eq. (S.27) 〉〉 = (DµΦ
∗)(DµΦ) + Φ∗(−m2Φ), (S.30)

hence

∂µJ
µ = − iq(DµΦ)(D

µΦ∗) + iqm2ΦΦ∗ + iq(DµΦ
∗)(DµΦ) − iqm2Φ∗Φ = 0. (S.31)

Problem 2(b):

According to the Noether theorem,

T µν
Noether

=
∂L

∂(∂µAλ)
∂νAλ +

∂L
∂(∂µΦ)

∂νΦ +
∂L

∂(∂µΦ∗)
∂νΦ∗ − gµν L

= T µν
Noether(EM) + T µν

Noether(matter)

(S.32)

where

T µν
Noether

(EM) = −F µλ ∂νAλ + 1
4
gµνFκλF

κλ (S.33)

similar to the free EM fields, and

T µν
Noether

(matter) = DµΦ∗ ∂νΦ + DµΦ ∂νΦ∗ − gµν
(
DλΦ∗DλΦ − m2Φ∗Φ

)
. (S.34)

Both terms on the second line of eq. (S.32) lack µ↔ ν symmetry and gauge invariance and

thus need ∂λKλµ,ν corrections for some Kλµν = −Kµλν . We would like to show that the
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same Kλµ,ν = −F λµAν we used to improve the free electromagnetic stress-energy tensor will

now symmetrize both the T µν
EM and T µν

mat at the same time!

Indeed, we saw in problem 1(b) that

∂λKλµ,ν = −JµAν + F µλ
(
∂λA

ν
)

(S.2)

where the second term symmetrizes the EM stress-energy tensor,

T µν
Noether(EM) + (second term in eq. (S.2)) = T µν

phys(EM) = T νµ
phys(EM). (S.3)

At the same time, the first term in eq. (S.2) — namely the −JµAν term — happens to

symmetrize the matter stress-energy tensor. Indeed, consider the difference

∆T µν
matter ≡ T µν

phys(matter) − T µν
Noether(matter)

= DµΦ∗(DνΦ− ∂νΦ) + DµΦ(DνΦ∗ − ∂νΦ∗)

= DµΦ∗(iqAνΦ) + DµΦ(−iqAνΦ∗)

= −Aν ×
(
iqΦ∗DµΦ − iqΦDµΦ∗

)

= −AνJµ = first term in eq. (S.2),

(S.35)

which immediately tells us that

T µν
Noether(matter) + (first term in eq. (S.2)) = T µν

phys(matter) = T νµ
phys(matter). (S.36)

Altogether, the divergence of the Kλµ,ν as in eq. (2) symmetrizes the net stress-energy

tensor (12), quod erat demonstrandum.

Problem 2(c):

Since the fields Φ(x) and Φ∗(x) have opposite electric charges, their product is neutral and
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therefore

∂µ(Φ
∗Φ) = Dµ(Φ

∗Φ) = (DµΦ
∗)Φ + Φ∗(DµΦ). (S.37)

In a similar manner

∂µ ((D
µΦ∗) (DνΦ)) = (DµD

µΦ∗) (DνΦ) + (DµΦ∗) (DµD
νΦ)

=
(
D2Φ∗

) (
DνΦ) +

(
DµΦ

∗
) (
DµDνΦ = DνDµΦ + [Dµ, Dν ]Φ

)

〈〈 using equation of motion D2Φ∗ = −m2Φ∗ for the first term 〉〉

〈〈 and [Dµ, Dν ]Φ = iqF µνΦ for the second term 〉〉

=
(
−m2Φ∗

) (
DνΦ

)
+
(
DµΦ

∗
) (
DνDµΦ

)
+
(
DµΦ

∗
) (
iqF µνΦ

)
,

(S.38)

and likewise

∂µ ((D
µΦ) (DνΦ∗)) = (DµD

µΦ) (DνΦ∗) + (DµΦ) (DµD
νΦ∗)

=
(
−m2Φ

) (
DνΦ∗

)
+
(
DµΦ

) (
DνDµΦ∗

)
+
(
DµΦ

) (
−iqF µνΦ∗

)
.

(S.39)

Finally,

∂µ

[
−gµν

(
DλΦ

∗DλΦ − m2 Φ∗Φ
)]

= −∂ν
(
DλΦ

∗DλΦ
)

+ m2∂ν (Φ∗Φ)

= − (DνDµΦ∗) (DµΦ) − (DµΦ
∗) (DνDµΦ)

+ m2Φ (DνΦ∗) + m2Φ∗ (DνΦ) .
(S.40)

Together, the left hand sides of eqs. (S.38), (S.39) and (S.40) comprise ∂µT
µν
mat —

cf. eq. (13). On the other hand, totaling up the right hand sides of these three equations

results in massive cancellation of all terms except those containing the gauge field strength

tensor F µν . Therefore,

∂µT
µν
mat = (DµΦ

∗) (iqF µνΦ) + (DµΦ) (−iqF µνΦ∗) + massive cancellation

= F µν (iqΦDµΦ
∗ − iqΦ∗DµΦ)

= F µν × (−Jµ) = +F νλJλ

(S.41)

in accordance with eq. (15).
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Finally, combining this formula with eq. (7) immediately shows us that the net stress-

energy tensor (13) is conserved,

∂µT
µν
tot = ∂µT

µν
tot + ∂µT

µν
EM = 0. (S.42)

Quod erat demonstrandum.

Problem 3(a):

Classically,

d

dt
Lmech = v × ~π + x× F = 0 + x× F (S.43)

where F is the net force on the charged particle. In presence of the EM fields (16), this force

is

F = qE +
q

c
v ×B =

qQ

r2
n +

qM

cr2
v × n, (S.44)

hence

d

dt
Lmech = (x = rn)× F = 0 +

qM

cr
n× (v× n) =

qM

cr

(
v − (v · n)n

)
. (S.45)

At the same time,

d

dt
JEM = −qM

c

dn

dt
= −qM

c

v − (v · n)n
r

. (S.46)

By inspection of the last two formulae, the separate angular momenta Lmech and JEM are

not conserved, but the net angular momentum (17) is conserved,

d

dt
Jnet =

d

dt
Lmech +

d

dt
JEM = 0. (S.47)

Quod erat demonstrandum.
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Problem 3(b):

Let’s start by verifying eq. (22). Since the 3 coordinate operators x̂i commute with each

other, we have

[x̂i, Ĵ
EM
j ] = 0 (S.48)

and therefore

[x̂i, Ĵj ] = [x̂i, L̂j ]

= [x̂i, ǫjkℓx̂kπ̂ℓ] = ǫjkℓx̂k[x̂i, π̂ℓ]

= ǫjkℓx̂k × ih̄δiℓ = ih̄ǫjkix̂k

= ih̄ǫijkx̂k .

(S.49)

Verifying eq. (23) takes more work. First,

[π̂i, L̂j ] = [π̂i, ǫjkℓx̂kπ̂ℓ]

= ǫjkℓ[π̂i, x̂k]× π̂ℓ + ǫjkℓx̂k × [π̂i, π̂ℓ]

= ǫjkℓ ×−ih̄δik × π̂ℓ + ǫjkℓx̂k ×
iqMh̄

c
ǫiℓm

x̂m
r̂3

= −ih̄ǫjiℓπ̂ℓ +
iqMh̄

c
(δjmδki − δjiδmk)

x̂kx̂m
r̂3

= +ih̄ǫijℓπ̂ℓ +
iqMh̄

c

n̂in̂j − δij
r̂

(S.50)

where n̂i
def
= x̂i/r̂. On the bottom line of this formula, the first term is precisely what we

want in eq. (23), but the second term is something we do not want. Fortunately, this second

term is canceled by the commutator of π̂i with the other part of the net angular momentum,

[π̂i, Ĵ
EM
j ] = −qM

c
[π̂i, n̂j ]

= −qM
c

×−ih̄ ∂̂nj
∂xi

= +
ih̄qM

c
× δij − n̂in̂j

r̂
.

(S.51)

Thus altogether,

[π̂i, Ĵ
net
j ] = [π̂i, L̂j] + [π̂i, Ĵ

EM
j ] = +ih̄ǫijℓπ̂ℓ + 0, (S.52)

precisely as in eq. (23).
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Finally, eq. (24) follows from eqs. (22) and (23). Indeed, eq. (22) implies that r̂2 = x̂ix̂i

and hence r̂ commute with the Ĵj , and therefore

[ĴEM
i , Ĵj] = −qM

c

[
x̂i
r̂
, Ĵj

]
= −qM

c

1

r̂
[x̂i, Ĵj ] = −qM

c

1

r̂
×ih̄ǫijkx̂k = ih̄ǫijkĴ

EM
k . (S.53)

At the same time, eqs. (22) and (23) together lead to

[L̂i, Ĵj] = [ǫikℓx̂kπ̂ℓ, Ĵj]

= ǫikℓx̂k ×
(
[π̂ℓ, Ĵj] = ih̄ǫℓjmπ̂m

)
+ ǫikℓ

(
[x̂k, Ĵj] = ih̄ǫkjnx̂n

)
× π̂ℓ

= ih̄x̂nπ̂m ×
(
δknǫikℓǫℓjm + δℓmǫikℓǫkjn

)
(S.54)

where

δknǫikℓǫℓjm + δℓmǫikℓǫkjn =
(
δijδnm − δimδnj

)
+
(
δmjδni − δjiδmn

)

= δmjδni − δimδnj

= ǫijkǫknm ,

(S.55)

hence

[L̂i, Ĵj ] = ih̄x̂nπ̂m × ǫijkǫknm

= ih̄ǫijk × ǫknmx̂nπ̂m

= ih̄ǫijk × L̂k .

(S.56)

Finally, combining eqs. (S.53) and (S.56), we arrive at

[Ĵi, Ĵj ] = [L̂j , Ĵj] + [ĴEM
i , Ĵj ] = ih̄ǫijkL̂k + ih̄ǫijkĴ

EM
k = ih̄ǫijkĴk , (S.57)

precisely as in eq. (24). Quod erat demonstrandum.

Problem 3(c):

Eqs. (22–24) imply that the x̂, ~̂π, and Ĵ operators act as vectors under the space rotations

generated by the angular momenta Ĵj . Consequently, all the scalar combinations made

from these operators act as scalars under such rotations and therefore commute with the

Ĵj . In particular, eq. (22) implies that r̂2 = x̂ix̂i commutes with all the Ĵj and hence the
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r̂ and the 1/r̂ operators also commute with all the Ĵj . In the same way, eq. (8) implies

that the ~̂π
2
= π̂iπ̂i operator also commutes with all the Ĵj . Thus, both terms in eq. (25)

for the Hamiltonian commute with the angular momenta Ĵj , so the whole Hamiltonian also

commutes with them,

[Ĥ, Ĵj ] = 0. (S.58)

Therefore, in the Heisenberg picture of QM, the angular momentum operators Ĵj are time-

independent. In other words, the Ĵj are conserved operators.

Problem 3(d):

By definition

Ĵ = x̂× ~̂π + ĴEM = x̂× p̂ − q

c
x̂×A(x̂) − qM

c
n̂ . (S.59)

In this formula

x×A = rn×M
±1 − cos θ

r sin θ
eφ = M

±1− cos θ

sin θ

(
n× eφ = −eθ

)
(S.60)

where

eθ = (+ cos θ cosφ,+cos θ sin φ,− sin θ) (S.61)

is the unit vector in the θ direction. Focusing on the z component Ĵz of the angular momen-

tum, we have

[x×A]z = M
±1− cos θ

sin θ
(+ sin θ) = M (±1 − cos θ), (S.62)

hence
[
−q
c
x×A(x) − qM

c
n

]

z

= −Mq

c
(±1 − cos θ) − qM

c
cos θ = ∓Mq

c
(S.63)

and therefore

Ĵz = [x̂× p̂]z ∓ Mq

c
. (S.64)

Finally, in the polar coordinate basis, the [x̂× p̂]z operator acts as −ih̄∂/∂φ, thus altogether

Ĵzψ(r, θ, φ) = −ih̄∂ψ
∂φ

∓ Mq

c
× ψ, (S.65)

precisely as in eq. (27).
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Problem 3(e):

According to eqs. (S.60) and (S.61),

[x×A]x ±′ i[x×A]y = −M ±1 − cos θ

sin θ
cos θ exp(±′iφ) (S.66)

where ± denotes the gauge choice (Northern vs. Southern hemisphere) while ±′ is a separate

sign choice, same on both sides of this equation. Likewise,

nx ±′ iny = sin θ exp(±′iφ), (S.67)

hence

[
−q
c
(x×A) − qM

c
n

]

x

±′ i

[
−q
c
(x×A) − qM

c
n

]

y

=

=
qM

c
exp(±′iφ)×

(
(±1 − cos θ) cos θ

sin θ
− sin θ

)

=
qM

c
exp(±′iφ)× ± cos θ − 1

sin θ
.

(S.68)

Also, in the spherical coordinates

[x̂× p̂]x ±′ i[x̂× p̂]y = h̄ exp(±′iφ)

(
±′

∂

∂θ
+ i coth θ

∂

∂φ

)
; (S.69)

you can find this formula in any undergraduate QM textbook. Thus altogether, plugging

the last two formulae into eq. (S.59) for the net angular momentum, we get

Ĵx ±′ iĴy = h̄ exp(±′iφ)

(
±′

∂

∂θ
+ i coth θ

∂

∂φ
+
qM

h̄c

± cos θ − 1

sin θ

)
, (S.70)

in perfect agreement with eqs. (28). Quod erat demonstrandum.
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Problem 3(f):

Because of the spherical symmetry of the quantum system in question, we expect all the

eigenstates to have wavefunctions of the form

ψ(r, θ, φ) = f(r)× g(θ)× h(φ). (S.71)

Moreover, in light of eq. (27), the states of definite m should have

h(φ) = exp(im′φ) for m′ = m ± qM

h̄c
. (S.72)

Or rather, in the Northern hemisphere gauge

hN (φ) = exp(imNφ) for mN = m +
qM

h̄c
, (S.73)

while in the Southern hemisphere gauge

hS(φ) = exp(imSφ) for mS = m − qM

h̄c
. (S.74)

Both hN and hs must be single-valued functions of the angle φ, so both mN and mS must

be integer. Consequently:

1. qM/h̄c must be integer or half-integer — this is the Dirac’s charge quantization con-

dition.

2. For integer qM/h̄c, the eigenvalue m of the Ĵz must be integer, and hence j must also

be integer. But for a half-integer qM/h̄c, the eigenvalue m must be half-integer, and

hence j must also be half-integer.

Now consider a multiplet of states |j,m〉 of definite j and all possible m ranging from

−j to +j by 1. In this multiplet, the state with maximal m = +j must be annihilated by

the Ĵ+ operator,

(Ĵx + iĴy) |j,m = j〉 = 0. (S.75)

In polar coordinates, this operator acts as in the top eq. (26), so for a wave function of the
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form (S.71) with h(φ) as in eq. (S.72), we have

Ĵ+ψ(r, θ, φ) = h̄ exp(+iφ)f(r)h(φ)×




+
dg

dθ
−
(
m′ = m± qM

h̄c

)
coth θ × g(θ)

− qM

h̄c

1∓ cos θ

sin θ
× g(θ)




= h̄ exp(+iφ)f(r)h(φ)×
(
+
dg

dθ
−
(
m coth θ +

qM

h̄c

1

sin θ

)
× g(θ)

)
.

(S.76)

For the state with m = +j the LHS here must vanish, so the g(θ) function must obey the

differential equation

dg

dθ
=

(
m coth θ +

qM

h̄c

1

sin θ

)
× g. (S.77)

Consequently,

d log g(θ) =
dg

g
=

(
m coth θ +

qM

h̄c

1

sin θ

)
dθ

=

(
m − qM

h̄c

)
× cos θ − 1

2 sin θ
dθ +

(
m +

qM

h̄c

)
× cos θ + 1

2 sin θ
dθ

=

(
m − qM

h̄c

)
×
(− sin(θ/2)dθ

2 cos(θ/2)
= d log cos(θ/2)

)

+

(
m +

qM

h̄c

)
×
(
cos(θ/2)dθ

2 sin(θ/2)
= d log sin(θ/2)

)

(S.78)

and therefore

g(θ) = const×
(
cos(θ/2)

)n1 ×
(
sin(θ/2)

)n2

for n1,2 = (m = j) ∓ qM

h̄c
. (S.79)

To make this solution regular at both θ = 0 and θ = π, both n1 and n2 must be non-negative

integers. Consequently, we need

j =

∣∣∣∣
qM

h̄c

∣∣∣∣ + a non-negative integer, (S.80)

precisely as in eq. (29). Quod erat demonstrandum.
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Problem 3(g):

First,

Ĵ2 =

(
L̂ +

qM

c
n̂

)2

= L̂2 +

(
qM

c

)2

+
qM

c

(
n̂ · L̂ + L̂ · n̂

)
= L̂2 +

(
qM

c

)2

(S.81)

because

n̂ · L̂ = L̂ · n̂ = 0. (S.82)

Second,

L̂2 =
(
x̂× ~̂π

)2
= r̂2

(
~̂π
2 − π̂2r

)
, (S.83)

which obtains exactly as in QM of a particle in a central potential without the magnetic

field. To be safe, I’ll derive this formula for the present case in a moment. But once we have

this formula, eq. (30) follows immediately from eqs. (S.81) and (S.83).

Now let’s derive eq. (S.83). Classically, it follows from the basic vector algebra:

L2 = (x× ~π)2 = x2 ~π2 − (x · ~π)2 = r2
(
~π2 − (n · ~π)2

)
= r2

(
~π2 − π2r

)
. (S.84)

But in the quantum mechanics, we have to watch out for the commutators, thus

L̂2 =
(
ǫijkx̂j π̂k

) (
ǫiℓmx̂ℓπ̂m

)

= x̂j π̂kx̂ℓp̂m ×
(
ǫijkǫiℓm = δjℓδkm − δjmδkℓ

)

= x̂j π̂kx̂j π̂k − x̂j π̂kx̂kπ̂j ,

(S.85)

where

x̂j π̂kx̂j π̂k = x̂j x̂j π̂kπ̂k + x̂j
(
[π̂k, x̂j ] = −ih̄δjk

)
π̂k = r̂2 ~̂π

2 − ih̄x̂j π̂j , (S.86)

while

x̂j π̂kx̂kπ̂j = [x̂j , π̂k]x̂kπ̂j + π̂kx̂kx̂j π̂j

= [x̂j , π̂k]x̂kπ̂j + [π̂k, x̂k]x̂j π̂j + (x̂kπ̂k)(x̂j π̂j)

= ih̄δjkx̂kπ̂j − ih̄δkkx̂j π̂j + (x̂kπ̂k)
2

= ih̄(x̂ · ~̂π) − 3ih̄(x̂ · ~̂π) + (x̂ · ~̂π)2 = (x̂ · ~̂π)2 − 2ih̄(x̂ · ~̂π).

(S.87)
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Altogether, this gives us

L̂2 = r̂2 ~̂π
2 − (x̂ · ~̂π)2 + ih̄(x̂ · ~̂π). (S.88)

Now let’s compare the second and the third terms here to r̂2π̂2r . First,

π̂r
def
= 1

2

(
n̂iπ̂i + π̂in̂i

)
= n̂iπ̂i + 1

2
[π̂i, n̂i] = n̂iπ̂i + 1

2
(−ih̄)

(
∂ni
∂xi

=
2

r

)
= n̂iπ̂i − ih̄

r̂
.

(S.89)

Second,

r̂2π̂2r = r̂π̂rr̂π̂r + r̂[r̂, π̂r]π̂r (S.90)

where

[r̂, π̂r] = [r̂, n̂iπ̂i] = n̂i[r̂, π̂i] = n̂i

(
ih̄
∂̂r

∂xi
= ih̄n̂i

)
= ih̄. (S.91)

Consequently,

r̂2π̂2r = (r̂π̂r)
2 + ih̄(r̂π̂r) = (x̂iπ̂i − ih̄)2 + ih̄(x̂iπ̂i − ih̄) = (x̂iπ̂i)

2 − ih̄(x̂iπ̂i), (S.92)

and comparing this formula to the RHS of eq. (S.88), we immediately see that

L̂2 = r̂2 ~̂π
2 − r̂2π̂2r , (S.93)

precisely as in eq. (S.83).

This completes our derivation of eq. (S.83) and hence eq. (30)
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Problem 3(h):

In light of eq. (30), the Hamiltonian of the charged particle orbiting a dyon can be written

as

Ĥ =
π̂2r
2m

+
Ĵ2 − (qM/c)2

2mr̂2
− qQ

r̂
. (S.94)

In the coordinate basis

π̂r = −ih̄
(
∂

∂r
+

1

r

)
, π̂2r = −h̄2

(
∂2

∂r2
+

2

r

∂

∂r

)
, (S.95)

so the radial wave function f(r) (cf. eq. (S.71)) of a bound state |nr, j,m〉 of energy E < 0

and angular momentum j obeys the radial Schrödinger equation

h̄2

2m

(
−f ′′(r) − 2

r
f ′(r) +

j(j + 1)− (qM/h̄c)2

r2
f(r)

)
− qQ

r
f(r) = Ef(r). (S.96)

This equation looks exactly like the radial Schrödinger equation for the hydrogen atom —

except for having

λ(λ+ 1)
def
= j(j + 1) − (qM/h̄c)2 (18)

instead of ℓ(ℓ+1) — and it can be solved in exactly the same way. You can find a solution —

and there are many different way to solve eq. (S.96) — in any undergraduate QM textbook;

but since λ is generally non-integral while many textbook solutions make use of ℓ being an

integer, let me write down a solution of my own.

First, let me introduce a couple of parameters:

κ =
1

h̄

√
−2mE (S.97)

for a bound state of negative energy E < 0, and

ν =
qQm

h̄2κ
. (S.98)

In terms of these parameters (as well as λ), eq. (S.96) becomes

f ′′ +
2

r
× f ′ − λ(λ+ 1)

r2
× f +

2νκ

r
× f = κ2 × f. (S.99)

Now let’s take the asymptotic limits r → ∞ and r → 0. For r → ∞, we may crudely
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approximate eq. (S.99) as

f ′′ ≈ κ2f, (S.100)

so the normalizable solution behaves as f(r) ∼ exp(−κr). In the opposite limit of r → 0,

we approximate eq. (S.99) as

f ′′ +
2

r
× f ′ − λ(λ+ 1)

r2
× f ≈ 0, (S.101)

with the normalizable solution being f ∼ rλ. In light of these asymptotic limits, we let

f(r) = rλ × exp(−κr)× Φ(r) (S.102)

for some (hopefully) regular function Φ(r). Following eq. (S.102), we have

f ′(r) = rλ exp(−κr)×
(
Φ′ +

λ

r
Φ − κΦ

)
, (S.103)

f ′′(r) = rλ exp(−κr)×
(
Φ′′ +

(
2λ

r
− 2κ

)
Φ′ +

(
λ(λ− 1)

r2
− 2λκ

r
+ κ2

)
Φ

)
, (S.104)

and consequently eq. (S.99) becomes

Φ′′ + 2

(
λ+ 1

r
− κ

)
× Φ′ + 2

(ν − λ− 1)κ

r
× Φ. (S.105)

To solve this equation, we rewrite it as

r ×
(
Φ′′ − 2κΦ′

)
+ 2

(
(λ+ 1)Φ′ + (ν − λ− 1)κΦ

)
= 0 (S.106)

and then Laplace transform it to a first-order differential equation. Thus, we look for Φ(r)

in the form of a contour integral in the complex plane,

Φ(r) =

∫

Γ

dt etr × F (t) (S.107)

for some analytic function F (t) and some contour Γ. To allow integration by parts, Γ should

be either a closed contour, or else both ends should extend to ∞ in directions along which

the integrand dies off rapidly enough.
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Given the Laplace transform (S.107) of the Φ function itself, we have

dΦ

dr
=

∫

γ

dt etr × t× F (t), (S.108)

d2Φ

dr2
=

∫

γ

dt etr × t2 × F (t), (S.109)

while

r × Φ(r) =

∫

Γ

dt

(
retr =

∂etr

∂t

)
× F (t)

〈〈 by parts 〉〉 = −
∫

Γ

dt etr × dF

dt
,

(S.110)

and likewise

r ×
(
Φ′′ − 2κΦ′

)
= −

∫

Γ

dt etr × d

dt

(
t2F (t) − 2κtF (t)

)
. (S.111)

Plugging all these formulae into eq. (S.106), we may recast it as an equation for the F (t),

namely

− d

dt

(
(t2 − 2κt)F (t)

)
+ 2

(
(λ+ 1)t + (ν − λ− 1)κ

)
F (t) = 0. (S.112)

This is a fairly easy first-order differential equation. To solve, we rewrite it as

t(t− 2κ)× dF

dt
= 2(λt+ νκ− λκ)× F (t), (S.113)

hence

dF/dt

F
=

2λt+ 2κν − 2κλ

t(t− 2κ)
=

λ− ν

t
+

λ+ ν

t− 2κ
, (S.114)

d logF =
dF

F
= (λ− ν)

dt

t
+ (λ+ ν)

dt

t− 2κ
= (λ− ν)d log(t) + (λ+ ν)d log(t− 2κ), (S.115)
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F (t) = const× tλ−ν × (t− 2κ)λ+ν , (S.116)

and therefore

ψradial = f(r) = const× rλe−κr ×
∫

Γ

dt etr × tλ−ν × (t− 2κ)λ+ν . (S.117)

It remain to determine the integration contour Γ in this formula. For generic λ and ν,

the integrand in eq. (S.117) has two branch cuts, one from t = 0 to t = 2κ and the other

from t = 0 to t = ∞; let’s lay the combined branch cut along the real axis, from t = −∞
to t = +2κ. Since there are no other singularities, the integration contour must therefore

surround this cut, with both running to −∞ on two sides of the cut. Consequently, the

integral in eq. (S.117) becomes

2×
+2κ∫

−∞

dt ert × disc
[
tλ−ν × (t− 2κ)λ+ν

]
(S.118)

where ‘disc’ stands for the discontinuity of [· · ·] across the real axis.

For large r, the exponential ert grows rapidly with t, so the integral (S.118) is dominated

by its right end at t = 2κ, so asymptotically

for r → ∞ : the integral ∼ e+2κr × rsome power (S.119)

and therefore

ψrad(r) ∼ e+κr × rsome power. (S.120)

Such a radial wave function is un-normalizable, so there are no good solutions for generic λ

and ν.

To get a good, normalizable solution of the radial wave equation, we need the integrand

of eq. (S.117) to have a different geometry of singularities that would allow a different kind
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of an integration contour. Such geometry obtains when λ− ν is a negative integer, i.e.

ν = λ + nr, nr = 1, 2, 3, 4, . . . , (S.121)

hence

κ =
mqQ

νh̄2
=

mqQ

(λ+ nr)h̄
2

(S.122)

and the bound state energy

E = − h̄
2κ2

2m
= − m(qQ)2

2h̄2(λ+ nr)2
(S.123)

precisely as in eq. (17). Indeed, for λ− ν = −nr, the integrand

etr × tλ−ν × (t− 2κ)λ+ν (S.124)

has an isolated pole at t = 0 in addition to a branch cut from t = −∞ to t = +2κ. Let’s

reroute the branch cut so it lies away from the pole at t = 0. Then in addition to the

integration contour surrounding the branch cut, we have another option for the contour —

a small circle around the pole around t = 0. For such a contour, the integral extracts the

residue of this pole, hence

ψrad(r) = const× rλe−κr × Residue
@t=0

[
etr × (t− 2κ)2λ+nr

tnr

]
. (S.125)

As a function of r, the residue here is a polynomial of degree nr − 1, so

for r → ∞ ψrad ∼ e−κr × rsome power (S.126)

which makes for a normalizable radial wavefunction.
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