
PHY–396 K. Solutions for problem set #5.

Problem 1(a):

In N ×N matrix form, the local SU(N) symmetry acts on the adjoint matter field Φ(x) and

the gauge field Aµ(x) according to

Φ′(x) = U(x)Φ(x)U†(x), A′
µ(x) = U(x)Aµ(x)U

†(x) + i∂µU(x)U†(x). (S.1)

Consequently, the covariant derivatives (4) become

DµΦ(x) → D′
µΦ

′(x) = ∂µΦ(x) + i
[
A′

µ(x),Φ
′(x)

]
(S.2)

where the first term on the RHS expands to

∂µΦ
′ = ∂µ

(
UΦU†

)

= (∂µU)ΦU† + U(∂µΦ)U
† + UΦ

(
∂µU

†
)

= UU†(∂µU)ΦU† + U(∂µΦ)U
† − UΦU†(∂µU)U†

= U
(
(U†∂µU)Φ + ∂µΦ − Φ(U†∂µU)

)
U†

= U
(
∂µΦ +

[
U†∂µU,Φ

])
U†

(S.3)

while the second term expands to

[
A′

µ,Φ
′
]

=
[
UAµU

†, UΦU†
]
+

[
i(∂µU)U†, UΦU†

]

= U
([

Aµ,Φ
]
+ i

[
U†∂µU,Φ

])
U†

(S.4)

Combining the two expansions, we arrive at

D′
µΦ

′ = U
(
∂µΦ +

[
U†∂µU,Φ

]
+ i

[
Aµ,Φ

]
−

[
U†∂µU,Φ

])
U† = U

(
DµΦ

)
U†. (S.5)

Thus, the DµΦ(x) matrix transforms exactly like the Φ(x) matrix itself, which makes the

Dµ derivative (4) covariant. Quod erat demonstrandum.
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Problem 1(b):

Let’s start with the second line of eq. (6). In the matrix form, the adjoint multiplet Φ is

a matrix, the fundamental multiplet Ψ is a column vector, and their matrix product ΦΨ is

also a column vector. The covariant derivatives acts on these matrices and vectors as

DµΦ = ∂µΦ + i
[
Aµ,Φ

]
, DµΨ = ∂µΨ + iAµΨ, (S.6)

while

Dµ(ΦΨ)
def
= ∂µ(ΦΨ) + iAµ(ΦΨ)

= (∂µΦ)Ψ + Φ(∂µΨ) + i
[
Aµ,Φ

]
Ψ + iΦAµΨ

= (DµΦ)Ψ + Φ(DµΨ).

(S.7)

Likewise, on the third line of eq. (6), Ξ is a matrix, Ψ† is a row vector, and their matrix

product Ψ†Ξ is also a row vector. Therefore

DµΨ
† = ∂µΨ

† − iΨ†Aµ , DµΞ = ∂µΞ + i
[
Aµ,Ξ

]
, (S.8)

while

Dµ(Ψ
†Ξ)

def
= ∂µ(Ψ

†Ξ) − i(Ψ†Ξ)Aµ

= (∂µΨ
†)Φ + Ψ†(∂µΞ) − iΨ†AµΞ − iΨ†

[
Ξ,Aµ

]

= (DµΨ
†)Ξ + Ψ†(DµΞ).

(S.9)

Finally, on the first line of eq. (6), Φ and Ξ are both N ×N matrices and their product ΦΞ

is also a matrix. Consequently,

Dµ(ΦΞ)
def
= ∂µ(ΦΞ) + i

[
Aµ,ΦΞ

]

= (∂µΦ)Ξ + Φ(∂µΞ) + i
[
Aµ,Φ

]
Ξ + iΦ

[
Aµ,Ξ

]

= (DµΦ)Ξ + Φ(DµΞ).

(S.10)

Quod erat demonstrandum.
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Problem 1(c):

For the adjoint multiplet of fields Φ(x),

DµDνΦ = ∂µ(DνΦ) + i
[
Aµ, DνΦ

]

= ∂µ

(
∂νΦ + i

[
Aν ,Φ

])
+ i

[
Aµ,

(
∂νΦ + i

[
Aν ,Φ

])]

= ∂µ∂νΦ + i
[
∂µAν ,Φ

]
+ i

[
Aν , ∂µΦ

]
+ i

[
Aµ, ∂νΦ

]
−

[
Aµ,

[
Aν ,Φ

]]
(S.11)

where the blue marks terms that are symmetric WRT µ ↔ ν while the asymmetric terms

are marked in red. Only the red terms contribute to the difference

[
Dµ, Dν

]
Φ = DµDνΦ − DνDµΦ

= i
[
∂µAν ,Φ

]
−

[
Aµ,

[
Aν ,Φ

]]
− i

[
∂νAµ,Φ

]
+

[
Aν ,

[
Aµ,Φ

]]

= i
[
∂µAν − ∂νAµ,Φ

]
−

[[
Aµ,Aν

]
,Φ

]
(S.12)

where the second term on the bottom line follows from the Jacobi identity for the matrix

commutator:

−
[
Aµ,

[
Aν ,Φ

]]
+

[
Aν ,

[
Aµ,Φ

]]
= +

[
Aµ,

[
Φ,Aν

]]
+

[
Aν ,

[
Aµ,Φ

]]

= −
[
Φ,

[
Aν ,Aµ

]]
= −

[[
Aµ,Aν

]
,Φ

]
.

(S.13)

Altogether, we have

[
Dµ, Dν

]
Φ = i

[(
∂µAν − ∂νAµ + i[Aµ,Aν ]

)
,Φ

]
≡ i

[
Fµν ,Φ

]
= ig

[
Fµν ,Φ

]
(S.14)

where the second equality follows from the definition of the non-abelian Fµν and the third

equality from Fµν = gFµν . Finally, in components

ig
[
Fµν ,Φ

]
= igF b

µνΦ
c ×

[
λb

2
,
λc

2

]
= igF b

µνΦ
c × if bca

λc

2
(S.15)

and hence [Dµ, Dν ]Φ
a = −gfabcF b

µνΦ
c.
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Problem 1(d):

In matrix notations, the non-abelian gauge symmetries act on vector potentials Aµ(x) ac-

cording to

A′
µ(x) = U(x)Aµ(x)U

†(x) + i∂µU(x)U†(x). (S.16)

Taking

Fµν(x)
def
= ∂µAν(x) − ∂νAµ(x) + i [Aµ(x),Aν(x)] (S.17)

as the definition of the tension fields Fµν(x), we then have

F ′
µν(x) = ∂µA

′
ν(x) − ∂νA

′
µ(x) + i

[
A′

µ(x),A
′
ν(x)

]
, (S.18)

whatever that evaluates to. Specifically, the first term here evaluates to

∂µA
′
ν = ∂µ

(
UAνU

† + i(∂νU)U†
)

= U(∂µAν)U
† +

[
(∂µU)U†, UAνU

†
]

+ i(∂µ∂νU)U† − i(∂νU)U† × (∂µU)U†

(S.19)

where the second equality follows from

∂µ

(
UAνU

†
)

= U(∂µAν)U
† +

[
(∂µU)U†, UAνU

†
]

(S.20)

— cf. similar formula (S.3) — and

∂µ

(
(∂νU)U†

)
= (∂µ∂νU)U† + (∂νU)(∂µU

†) = (∂µ∂νU)U† − (∂νU)U†(∂µU)U†. (S.21)

Likewise

∂νA
′
µ = U(∂νAµ)U

† +
[
(∂νU)U†, UAµU

†
]
+ i(∂ν∂µU)U† − i(∂µU)U†×(∂νU)U† (S.22)

and hence

∂µA
′
ν − ∂νA

′
µ = U

(
∂µAν − ∂νAµ

)
U† +

[
(∂µU)U†, UAνU

†
]

−
[
(∂νU)U†, UAµU

†
]

+ 0 + i
[
(∂µU)U†, (∂νU)U†

]
.

(S.23)

4



At the same time, the commutator part of the tension field transforms into

i
[
A′

µ,A
′
ν

]
= i

[(
UAµU

† + i(∂µU)U†
)
,
(
UAνU

† + i(∂νU)U†
)]

= i
[
UAµU

†, UAνU
†
]

−
[
(∂µU)U†, UAνU

†
]

−
[
UAµU

†, (∂νU)U†
]

− i
[
(∂µU)U†, (∂νU)U†

]
,

(S.24)

Combining eqs. (S.23) and (S.24) leads to massive cancellation of 6 out of 8 terms on the

combined right hand side. Only the first terms on right hand sides of (S.23) and (S.24)

survive the cancellation, thus

∂µA
′
ν − ∂νA

′
µ + i

[
A′

µ,A
′
ν

]
= U

(
∂µAν − ∂νAµ

)
U† + i

[
UAµU

†, UAνU
†
]

= U
(
∂µAν − ∂νAµ + [Aµ,Aν ]

)
U†,

(S.25)

or in other words,

F ′
µν(x) = U(x)Fµν(x)U

†(x). (S.26)

Quod erat demonstrandum.

Problem 1(e):

There are two ways to prove the non-abelian differential identity (8): using part (b) and (c)

and Jacobi identity for the commutators, or the hard calculation based directly on eq. (S.17).

Let me start with the easier proof.

In part (b) we have proved the Leibniz rule for the covariant derivatives of a matrix

product of two adjoint fields Φ(x) and Ξ(x). Clearly, the same Leibniz rule also applies to

the commutator [Φ,Ξ]:

Dµ[Φ,Ξ] =
[
DµΦ,Ξ

]
+

[
Φ, DµΞ

]
. (S.27)

In particular, for Φ = Fµν and arbitrary Ξ, we have

Dλ([Fµν ,Ξ]) = [DλFµν ,Ξ] + [Fµν , DλΞ]. (S.28)
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On the other hand, in part (c) we saw that for any adjoint field Ξ(x) we have [Fµν ,Ξ] =

−i[Dµ, Dν ]Ξ. Likewise, for the DλΞ(x) we also have [Fµν , DλΞ] = −i[Dµ, Dν ]DλΞ. Conse-

quently, eq. (S.28) becomes

−iDλ[Dµ, Dν ]Ξ = [DλFµν ,Ξ] − i[Dµ, Dν ]DλΞ (S.29)

and hence

i[DλFµν ,Ξ] = [Dλ, [Dµ, Dν ]]Ξ. (S.30)

Now, let’s sum 3 such formulae, one for each cyclic permutations of the indices λ, µ, ν.

On the left hand side, this gives us

i
[(
DλFµν +DµFνλ +DνFλµ

)
,Ξ

]
= · · ·

while on the right hand side we obtain

· · · =
(
[Dλ, [Dµ, Dν ]] + [Dµ, [Dν , Dλ]] + [Dν , [Dλ, Dµ]]

)
Ξ = 0 (S.31)

due to Jacobi identity for the double commutators of the three covariant derivatives Dλ, Dµ,

and Dν . Consequently

[(
DλFµν +DµFνλ +DνFλµ

)
,Ξ

]
= 0,

and this must be true for any adjoint field Ξ(x). Moreover, for any x, λ, µ, ν, the N × N

matrix

DλFµν + DµFνλ + DνFλµ

is traceless, and the only way it may commute with all traceless hermitian matrices Ξ(x) is

by being zero, thus

DλFµν + DµFνλ + DνFλµ = 0. (S.32)

This is my first proof of the non-abelian differential identity (8).
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The second proof of the differential identity (8) follows directly from the definition (S.17) of

the non-abelian tension fields and the covariant derivatives (4). Let’s spell out DλFµν in

detail:

DλFµν = ∂λFµν + i[Aλ,Fµν ]

= ∂λ
(
∂µAν − ∂νAµ + i[Aµ,Aν ]

)
+ i

[
Aλ,

(
∂µAν − ∂νAµ + i[Aµ,Aν ]

)]

= ∂λ∂µAν − ∂λ∂νAµ + i[∂λAµ,Aν ] + i[Aµ, ∂λAν ]

+ i[Aλ, ∂µAν ] − i[Aλ, ∂νAµ] − [Aλ, [Aµ,Aν ]]

=
(
∂λ∂µAν − ∂λ∂νAµ

)
+ i

(
[∂λAµ,Aν ] − [∂µAν ,Aλ]

)

+ i
(
[Aµ, ∂λAν ] − [Aλ, ∂νAµ]

)
−

(
[Aλ, [Aµ,Aν ]]

)
.

(S.33)

On the bottom two lines here I have grouped terms in () so that after summing over cyclic

permutations of the indices λ, µ, ν, we get a zero sum separately for each group. Indeed,

(
∂λ∂µAν − ∂λ∂νAµ

)
+ cyclic =

(
∂λ∂µAν − ∂ν∂λAµ

)
+ cyclic

= 0 〈〈 by inspection 〉〉,
(
[∂λAµ,Aν ] − [∂µAν ,Aλ]

)
+ cyclic = 0 〈〈 by inspection 〉〉,

(
[Aµ, ∂λAν ] − [Aλ, ∂νAµ]

)
+ cyclic = 0 〈〈 by inspection 〉〉, and

[Aλ, [Aµ,Aν ]] + cyclic = 0 〈〈 by Jacobi identity 〉〉.

(S.34)

Therefore,

DλFµν + cyclic ≡ DλFµν + DµFνλ + DνFλµ = 0. (8)

Problem 1(f):

The Euler–Lagrange field equations follow from requiring zero first variation of the action S =
∫
L under infinitesimal variation of the independent fields Aµ(x). Let’s start by calculating

the variation of the tension fields Fµν :

δFµν ≡ δ
(
∂µAν − ∂νAµ + i[Aµ,Aν ]

)

= ∂µδAν − ∂νδAµ + i
[
δAµ,Aν

]
+ i

[
Aµ, δAν

]

=
(
∂µδAν + i

[
Aµ, δAν

])
−

(
∂νδAµ + i

[
Aν , δAµ

])

= DµδAν − DνδAµ

(S.35)
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where we treat the matrix-valued variations δAν(x) as adjoint fields so their covariant deriva-

tive work according to eq. (4), DµδAν ≡ ∂µδAν + i[Aµ, δAν ] and likewise for the DνδAµ.

In light of eq. (S.35), the trace in the Yang–Mills Lagrangian (9) varies by

δ tr
(
FµνFµν

)
= 2 tr

(
FµνδFµν

)
= 2 tr

(
Fµν

(
DµδAν −DνδAµ

))

= 4 tr
(
FµνDµδAν

)
〈〈 since Fµν = −Fνµ 〉〉

= −4 tr
((

DµF
µν
)
δAν

)
+ 4∂µ tr

(
FµνδAν

)
(S.36)

where the last equality follows from the Leibniz rule for the two adjoint fields Fµν and δAν :

tr
(
(DµF

µν)δAν

)
+ tr

(
Fµν(DµδAν)

)
=

= tr
(
Dµ(F

µνδAν)
)

= tr
(
∂µ(F

µνδAν)
)

+ i tr
([
Aµ, (F

µνδAν)
])

= ∂µ tr(F
µνδAν) + 0 〈〈 since trace of a commutator is zero 〉〉.

(S.37)

Thus,

δLYM =
2

g2
tr
(
(DµF

µν)δAν

)
− a total divergence (S.38)

so the net Yang-Mills action varies by

δS =
2

g2

∫
d4x tr

(
DµF

µν(x)δAν(x)
)

=
1

g2

∫
d4x

∑

a

DµF
aµν(x)× δAa

ν(x). (S.39)

To make this variation vanish for any infinitesimal δAa
ν(x) we need DµF

aµν(x) ≡ 0, and this

becomes the Euler–Lagrange equation for the Yang–Mills theory,

DµF
aµν = 0. (S.40)
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Problem 2(a):

In problem 1(f) we saw that under infinitesimal variations of the gauge fields, the YM

Lagrangian varies by

δLYM =
1

g2

∑

a

DµF
aµν × δAa

ν + ∂µ(· · ·) =
∑

a

DµF
aµν × δAa

ν + ∂µ(· · ·). (S.41)

Now let’s add the matter Lagrangian Lmat(φ,Dφ) for some matter fields in a non-trivial

multiplet (or multiplets) of the gauge symmetry. When we vary the gauge fields Aa
ν(x) while

keeping the matter fields φ(x) fixed, the covariant derivatives Dφ vary due to igAa
νt

aφ terms

in Dνφ, which leads to non-trivial variation

δLmat =
∑

a

∂Lmat

∂Aa
ν

× δAa
ν ≡ −

∑

a

Jaν × δAa
ν . (S.42)

Altogether, the net action of the theory varies by

δS =

∫
d4x

∑

a

(
DµF

aµν(x) − Jaν(x)
)
× δAa

ν(x). (S.43)

Requiring this variation to vanish for any δAa
ν(x) leads to the field equations

DµF
aµν = Jaν , (S.44)

or in matrix notationsDµF
µν = Jν . This is the non-abelian version of the Maxwell equations

∂µF
µν = Jν .

In the abelian EM theory, the equations ∂µF
µν = Jν require the electric current to be

conserved, ∂νJ
ν = ∂ν∂µF

µν = 0 since F µν = −F νµ and the derivatives commute with each

other. The non-abelian tension fields F µν are also antisymmetric in µ ↔ ν, but the covariant

derivatives do not commute, DµDν 6= DνDµ. Therefore,

DνJ
ν = DνDµF

µν = 1
2
[Dµ, Dν ]F

µν = i
2
[Fµν ,F

µν ] (S.45)

where the last equality works exactly as in problem 3(c) — the Faµν fields form an adjoint

multiplet of fields, and for any such multiplet packed into an hermitian N × N matrix Φ,
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[Dµ, Dν ]Φ = i[Fµν ,Φ]. However, unlike a generic matrix Φ which may commute or not

commute with the Fµν , for any µ and ν the Fµν matrix always commutes with itself. Thus,

[Fµν ,F
µν ] = 0 even before summing over µ and ν. (S.46)

Of course, after the summing over µ and ν we still have a zero, thus DνDµF
µν(x) ≡ 0.

Thus, consistency of the field equations (S.44) for the gauge fields requires the non-

abelian currents Jaµ to be covariantly conserved:

DνJ
ν = DµDνF

µν = 0, (S.47)

or in components

∂νJ
aν − fabcAb

νJ
cν = 0. (S.48)

Note: because of the covariantizing term here, we do not have conserved net charges; alas,

d

dt

∫
d3x Ja0(x, t) 6= 0. (S.49)

Problem 2(b):

The currents Ja
µ come from the covariant derivatives in the Lagrangian for the scalar fields

Lmat = DµΨ
†DµΨ − V (Ψ†Ψ). (S.50)

Expanding the covariant derivatives DµΨ
† and DµΨ in components of Ψi, Ψ∗

i , and Aa
µ, we

obtain

DµΨ
∗
i = ∂µΨ

∗
i −

ig

2
Aa
µΨ

∗
i

(
λa

)i
j
, DµΨi = ∂µΨi +

ig

2
Aaµ

(
λa

)i
j
Ψj , (S.51)

and hence

Ja
µ = −

∂Lmat

∂Aa
µ

= −DνΨ∗
i ×

∂DνΨ
i

∂Aa
µ

−
∂DνΨ

∗
i

∂Aa
ν

×DµΨi

=
g

2

(
−iDνΨ∗

i × δµν
(
λa

)i
j
Ψj + iδµνΨ

∗
j

(
λa

)j
i
×DνΨi

)

=
g

2

(
−i(DµΨ†)λaΨ + iΨ†λa(DµΨ)

)

= −g Im
(
Ψ†λaDµΨ

)
,

(S.52)

exactly as in eq. (16).
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Now let’s combine these component currents in the matrix Jµ = Ja
µ×

1
2
λa. Each term on

the RHS of eq. (16) has form Ψ†
1
λaΨ2 where either Ψ

†
1
= Ψ† while Ψ2 = DµΨ or Ψ1 = DµΨ

†

while Ψ2 = Ψ. For each of these combinations, the identity (17) leads to

∑

a

(
λa

)i
j
×

(
Ψ†

1λ
aΨ2

)
= 2Ψi

2Ψ
∗
1 j −

2

N

(
Ψ†

1Ψ2)× δij . (S.53)

Thus, altogether the matrix-valued SU(N) symmetry current Jµ has matrix elements

(
Jµ

)i
j

=
ig

2

(
(DµΨ)iΨ∗

j − Ψi(DµΨ
∗)j

)
−

ig

2N
δij ×

(
Ψ†DµΨ − (DµΨ

†)Ψ
)
, (S.54)

or in matrix form

Jµ
def
=

∑

a

Ja
µ × 1

2
λa =

ig

2

(
(DµΨ)⊗Ψ† − Ψ⊗DµΨ

†
)

−
ig

2N

(
Ψ†DµΨ − (DµΨ

†)Ψ
)
× 1N×N .

(18)

Quod erat demonstrandum.

Problem 2(c):

Under a local SU(N) symmetry U(x), the scalar fields Ψ(x) and Ψ†(x) and their covariant

derivatives DµΨ(x) and DµΨ
†(x) transform according to

Ψ(x) 7→ U(x)Ψ(x), Ψ†(x) 7→ Ψ†(x)U†(x),

DµΨ(x) 7→ U(x)DµΨ(x), DµΨ
†(x) 7→ (DµΨ

†(x))U†(x).
(S.55)

Consequently,

DµΨ
i(x)×Ψ∗

j (x) 7→ U i
k(x)DµΨ

k ×Ψ∗
ℓ(U

†(x))ℓj , (S.56)

or in the matrix form

DµΨ(x)⊗Ψ†(x) 7→ U(x)
(
DµΨ(x)⊗Ψ†(x)

)
× U†(x). (S.57)

Likewise,

Ψ(x)⊗DµΨ
†(x) 7→ U(x)

(
Ψ(x)⊗DµΨ

†(x)
)
× U†(x). (S.58)

The first term on the RHS of eq. (18) for the matrix-valued current combines these two
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expressions, so the whole first term transforms under the local symmetries as

(first term) 7→ U(x)× (first term)× U†(x). (S.59)

As to the second term on the RHS of eq. (18), it’s gauge invariant because

Ψ†(x)DµΨ(x) 7→ Ψ†(x)U†(x)U(x)DµΨ(x) = Ψ†(x)DµΨ(x) (S.60)

and likewise

DµΨ
†(x)Ψ(x) 7→ DµΨ

†(x)Ψ(x). (S.61)

However, for a unitary U(x) matrix we may treat the unit matrix as transforming according

to

1 7→ 1 = U(x)× 1× U†(x), (S.62)

so the gauge invariant second term on the RHS of eq. (18) can also be viewed as transforming

according to

(second term) 7→ U(x)× (second term)× U†(x). (S.63)

Altogether, combining eqs. (S.59) and (S.63), we find that the matrix-valued currents Jµ(x)

transform under the gauge symmetries as

Jµ(x) 7→ U(x)× Jµ(x)× U†(x), (S.64)

exactly as in eq. (12). Thus, the component currents Ja
µ(x) transform into each other as

members of the adjoint multiplet of the SU(N) group.
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Problem 2(d):

First, let’s derive the Leibniz rule for the adjoint multiplets of the form Qa = Ψ†λaΨ′:

Dµ

(
Ψ†λaΨ′

)
= DµΨ

†λaΨ′ + Ψ†λaDµΨ
′. (S.65)

Proof:

Dµ

(
Ψ†λaΨ′

)
≡ ∂µ

(
Ψ†λaΨ′

)
− gfabcAb

µ

(
Ψ†λcΨ′

)

= (∂µΨ
†)λaΨ′ + Ψ†λa(∂µΨ

′) − gAb
µΨ

†
(
fabcλc = − i

2
[λa, λb]

)
Ψ′

=
(
∂µΨ

† −
ig

2
Ab
µΨ

†λb
)
λaΨ′ + Ψ†λa

(
∂µΨ

′ +
ig

2
Ab
µλ

bΨ′
)

= DµΨ
†λaΨ′ + Ψ†λaDµΨ

′.

(S.66)

Thanks to this lemma, the non-abelian currents (S.52) satisfy

DµJ
aµ = −

ig

2
Dµ

(
Ψ†λaDµΨ − DµΨ†λaΨ

)

= −
ig

2

(
DµΨ

†λaDµΨ + Ψ†λaDµD
µΨ − DµD

µΨ†λaΨ − DµΨ†λaDµΨ
)

= g Im
(
Ψ†λaDµD

µΨ
)
.

(S.67)

Now let the scalar fields satisfy their covariant equations of motion

Dµ
∂L

∂(DµΨi)
=

∂L

∂Ψi
, Dµ

∂L

∂(DµΨ∗i)
=

∂L

∂Ψ∗i
. (S.68)

For the Lagrangian (3.13) these equations read

DµD
µΨ∗i = −

∂V

∂Ψi
= −Ψi∗ ×

(
m2 +

λ

2
Ψ†Ψ

)
,

DµD
µΨi = −

∂V

∂Ψ∗i
= −

(
m2 +

λ

2
Ψ†Ψ

)
×Ψi,

(S.69)

so for the fields obeying these equations

Ψ†λaDµD
µΨ = −

(
m2 +

λ

2
Ψ†Ψ

)
×Ψ†λaΨ = (real)× (real) (S.70)

for any hermitian matrix λa, and therefore

DµJ
aµ = g Im

(
Ψ†λaDµD

µΨ
)

= 0. (S.71)
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Problem 3(a):

[
Ĵ i, Ĵj

]
≡ 1

4
ǫikℓǫjmn

[
Ĵkℓ, Ĵmn

]
= 〈〈 by eq. (19) 〉〉

= 1
4
ǫikℓǫjmn

(
−igkmĴℓn + igknĴℓm + igℓmĴkn − gℓnĴkm

)

〈〈 by antisymmetry of the ǫ’s 〉〉

= ǫikℓǫjmn ×−igkmĴℓn

= iĴℓn ×
(
−gkmǫikℓǫjmn = +δkmǫikℓǫjmn = δijδℓn − δinδℓj

)

= 0 − iĴji = +iĴ ij

≡ +iǫijkĴk. (S.72)

[
Ĵ i, K̂j

]
≡ 1

2
ǫikℓ

[
Ĵkℓ, Ĵ0j

]
= 〈〈 by eq. (19) 〉〉

= 1
2
ǫikℓ

(
−igk0Ĵℓj + igkjĴℓ0 + igℓ0Ĵkj − igℓjĴk0

)

= 1
2
ǫikℓ

(
0 − iδkj Ĵℓ0 + 0 + iδℓj Ĵk0

)

≡ 1
2
ǫikℓ

(
+iδkjK̂ℓ − iδℓjK̂k

)

= 1
2
ǫijℓK̂ℓ − 1

2
ǫikjK̂j

= ǫijkK̂k, (S.73)

[
K̂i, K̂j

]
≡

[
Ĵ0i, Ĵ0j

]
= 〈〈 by eq. (19) 〉〉

= −ig00Ĵ ij + ig0j Ĵ i0 + igi0Ĵ0j − igij Ĵ00

= −iĴ ij + 0 + 0 + 0,

≡ −iǫijkĴk. (S.74)

Problem 3(b):

[
V̂ i, Ĵj

]
≡ 1

2
ǫjkℓ

[
V̂ i, Ĵkℓ

]
= 1

2
ǫjkℓ

(
igikV̂ ℓ − igiℓV̂ k

)

= 1
2
ǫjkℓ

(
−iδikV̂ ℓ + δiℓV̂ k

)
= − i

2
ǫjiℓV̂ ℓ + i

2
ǫjkiV̂ k

= iǫijkV̂ k, (S.75)
[
V̂ 0, Ĵj

]
= 1

2
ǫjkℓ

[
V̂ 0, Ĵkℓ

]
= 1

2
ǫjkℓ

(
ig0kV̂ ℓ − ig0ℓV̂ k

)

= 0, (S.76)

14



[
V̂ i, K̂j

]
=

[
V̂ i, Ĵ0j

]
= i\gi0V̂ j − igij V̂ 0

= +iδij V̂ 0, (S.77)
[
V̂ 0, K̂j

]
=

[
V̂ 0, Ĵ0j

]
= ig00V̂ j − i\g0j V̂ 0

= +iV̂ j . (S.78)

Note that the Hamiltonian of a relativistic theory is a member of a 4-vector multiplet P̂ µ =

(Ĥ, P̂) where P̂ is the net momentum operator. Applying the above equations to the P̂ µ

vectors, we obtain
[
P̂ i, Ĵj

]
= iǫijkP̂ k,

[
Ĥ, Ĵj

]
= 0,

[
P̂ i, K̂j

]
= +iδijĤ,

[
Ĥ, K̂j

]
= +iP̂ j.

(S.79)

In particular, the Hamiltonian Ĥ commutes with the three angular momenta Ĵj but it does

not commute with the three generators K̂k of the Lorentz boosts.

Problem 3(c):

In the ordinary quantum mechanics, it is often said that generators of continuous symmetries

must commute with the Hamiltonian operator. However, this is true only for the symmetries

that act in a time independent manner — for example, rotating the 3D space by the same

angle at all times t. But when the transformation rules of a symmetry depend on time, the

Hamiltonian must change to account for this time dependence.

In a Lorentz boost, the transform x → x′ obviously depends on time, which changes

the way the transformed quantum fields such as Φ̂′(x, t) depend on t. Consequently, the

Hamiltonian Ĥ of the theory must change so that the new Heisenberg equations would

match the new time dependence. In terms of the generators, this means that the boost

generators K̂i should not commute with the Hamiltonian.

Note that this non-commutativity is not caused by the Lorentz boosts affecting the time

itself, t′ = L0
µx

µ 6= t. Even in non-relativistic theories — where the time is absolute — the

generators of symmetries which affect the other variables in a time-dependent matter do not

commute with the Hamiltonian Ĥ .
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Indeed, consider a Galilean transform from one non-relativistic moving frame into an-

other, x′ = x+vt but t′ = t. This is a good symmetry of non-relativistic particles interacting

with each other but not subject to any external potential,

Ĥ =
∑

a

1

2Ma
p̂2
a + 1

2

∑

a 6=b

V (x̂a − x̂b). (S.80)

A unitary operator Ĝ realizing a Galilean symmetry acts on coordinate and momentum

operators as

Ĝx̂aĜ
† = x̂a + vt, Ĝp̂aĜ

† = p̂a + Mav, (S.81)

and it also transforms the Hamiltonian into

ĜĤĜ† = Ĥ + v · P̂tot + 1
2
Mtotv

2. (S.82)

In terms of the Galilean boost generators K̂G,

Ĝ = exp
(
−iv · K̂G

)
, (S.83)

so under an infinitesimal boost v = ~ǫ, various operators transform according to

Ô → Ô + δÔ, δÔ = −iǫi
[
K̂i

G, Ô
]
. (S.84)

Consequently, the commutation relations with the boost generators follow from the infinites-

imal boosts, for example

δx̂a = ~ǫ t =⇒
[
x̂ia, K̂

j
G

]
= iδij × t,

δp̂a = ~ǫMa =⇒
[
p̂ia, K̂

j
G

]
= iδij ×Ma,

δĤ = ~ǫ · P̂tot =⇒
[
Ĥ, K̂j

G

]
= iP̂ i

tot .

(S.85)

In particular, the Hamiltonian does NOT commute with the Galilean boost generators.
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Problem 4(a):

Consider a linear combination 1
2
Nµν Ĵ

µν of Lorentz generators with some generic coefficients

Nµν = −Nνµ. The infinitesimal Lorents transform

Lµ
ν = exp(iǫN)µν = δµν + iǫNµ

ν + O(ǫ2) (S.86)

preserves a given momentum pµ, Lµ
νP

ν = P µ if and only if

Nµ
νp

ν = 0. (S.87)

In 3D terms, N ij = ǫijkak and N0k = −Nk0 = bk for some 3-vectors a and b, the generator

in question is

1
2
Nµν Ĵ

µν = a · Ĵ + b · K̂, (S.88)

and

N0νpν = −N0jpj = −b · p,

N iνpν = −N ijpj + N i0p0 = −ǫijkpjak − biE,
(S.89)

so the condition (S.87) becomes

a× p − bE = 0 and b · p = 0. (S.90)

Actually, the second condition here is redundant, so the general solution is

any a, b = a×
p

E
(S.91)

and hence

1
2
Nµν Ĵ

µν = a · Ĵ +
(a× p) · K̂

E
=

a

E
·
(
EĴ + p× K̂

)
for any a. (S.92)

In other words, the Lorentz symmetries preserving the momentum pµ have 3 generators,

namely the components of the 3-vector

R̂ = E Ĵ + p× K̂ . (22)

Quod erat demonstrandum.
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Problem 4(b):

Consider a massive particle moving at a slower-than-light speed β in z direction, so the

energy is E = γm (where γ = 1/
√
1− β2) while the 3-momentum is p = (0, 0, βγm).

Consequently, the three components of the R̂ vector for this energy-momentum are

R̂x = γmĴx − βγmK̂y, R̂y = γmĴy + βγmK̂x, R̂z = γmĴz . (S.93)

These 3 operators generate the little group G(p) of the particle’s 4–momentum pµ = (E,p).

To see that this little group happens to be isomorphic to the 3D rotation group SO(3), we

need to find 3 linear combinations J̃x,y,z of the operators (S.93) which obey the angular-

momentum commutation relations

[
J̃ i, J̃j

]
= iǫijkJ̃k. (S.94)

My choice of the (properly normalized) generators J̃x,y,z is spelled out in eqs. (23). Let’s see

that they indeed obey the commutation relations (S.94):

[
Ĵz, J̃x

]
= γ

[
Ĵz, Ĵx

]
− βγ

[
Ĵz, K̂y

]
= γ × iĴy − βγ × (−iK̂x)

= i
(
γĵy + βγK̂x

)
= iJ̃y,

[
Ĵz, J̃y

]
= γ

[
Ĵz, Ĵy

]
+ βγ

[
Ĵz, K̂x

]
= γ × (−iĴx) + βγ × (+iK̂y)

= −i
(
γĴx − iβγK̂y

)
= −iJ̃x,

[
J̃x, J̃y

]
= γ2

[
Ĵx, Ĵy

]
− βγ2

[
K̂y, Ĵy

]
+ βγ2

[
Ĵx, K̂x

]
− β2γ2

[
K̂y, K̂x

]

= γ2 × iĴz − 0 + 0 − β2γ2 × iĴz

= iĴz ×
(
γ2(1− β2) = 1

)
= iĴz .

(S.95)

Quod erat demonstrandum.

Problem 4(c):

For a massless particle, we cannot rescale the little group generators as in eqs. (23) since

the 1/m factor for the J̃x,y generators would be infinite. Instead, the best we can do is to

use the 1/E factor for all three rescaled generators, hence eqs. (24) and (25). Consequently,
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instead of eqs. (S.95) for the commutators of the rescaled generators, we get

[
Ĵz , Îx

]
=

[
Ĵz, Ĵx

]
−

[
Ĵz, K̂y

]
= iĴy − (−iK̂x) = iÎy,

[
Ĵz , Îy

]
=

[
Ĵz, Ĵy

]
+

[
Ĵz, K̂x

]
= (−iĴx) − (+iK̂y) = −iÎx,

[
Îx, Îy

]
=

[
Ĵx, Ĵy

]
−

[
K̂y, Ĵy

]
+

[
Ĵx, K̂x

]
−

[
K̂y, K̂x

]

= iĴz − 0 + 0 − iĴz = 0,

(S.96)

precisely as in eq. (26).

The commutation relations (26) are different from the angular-momentum commutation

relations, and they cannot be brought to the form (S.94) by any finite rescaling of the

generators. Consequently, the little group of a light-like momentum pµ = (E, 0, 0, E) is

NOT isomorphic to the SO(3).

Instead, the commutation relations (26) are similar to the commutation relations between

the z component of the angular momentum and the x and y components of the linear

momentum,

[
Ĵz, P̂ x

]
= +iP̂ y,

[
Ĵz, P̂ y

]
= −iP̂ x,

[
P̂ x, P̂ y

]
= 0. (S.97)

The Ĵz operator generates rotations around the z axis, i.e., within the xy plane, while the

P̂ x and P̂ i operators generate translations in that plane. Together, they generate the group

ISO(2) of isometries — rotations and translations — in 2 space dimensions.

Thus, we see that the little group G(p) of a light-like momentum of a massless particle

is isomorphic to the ISO(2).

Problem 4(d):

Finally, consider a particle moving faster-than-light in the z direction, so its momentum

pµ = (p0, 0, 0, p3) has p3 > p0. Such a tachyon must have negative mass2, so let us denote

M2
i = −m2 = −pµp

µ > 0, γi =
p0

Mi
, β =

p3

p0
(S.98)

where the subscript i stands for ‘imaginary’ and β > 1 is the faster-than-light speed. In
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these notations, let us rescale the little group generators (22) according to

K̃x =
+1

Mi
R̂y = βγiK̂

x + γiĴ
y,

K̃y =
−1

Mi
R̂x = βγiK̂

y − γiĴ
x,

J̃z =
1

γiMi
R̂z = Ĵz, the helicity.

(S.99)

Consequently, the commutation relations of the rescaled operators become

[
Ĵz, K̃x

]
= βγi

[
Ĵz, K̂x

]
+ γi

[
Ĵz, Ĵy

]

= βγi(+iK̂y) + γi(−iĴx)

= +iK̃y, (S.100)

[
Ĵz, K̃y

]
= βγi

[
Ĵz, K̂y

]
− γi

[
Ĵz , Ĵx

]

= βγi(−iK̂y) + γi(+iĴx)

= −iK̃x, (S.101)

[
K̃x, K̃y

]
= β2γ2i

[
K̂x, K̂y

]
+ βγ2i

[
Ĵy, K̂y

]
− βγ2i

[
K̂x, Ĵx

]
− γ2i

[
Ĵy, Ĵx

]

= β2γ2i × (−iĴz) + βγ2i × 0 − βγ2i × 0 − γ2i × (−iĴz)

= −i(β2 − 1)γ2i × Ĵz

= −iĴz , (S.102)

where the last equality follows from the kinematic relation

(β2 − 1)× γ2i =
p23 − p20

p2
0

×
p20
M2

i

=
p23 − p20
M2

i

= 1 (S.103)

Altogether, the generators (S.99) obey the commutation relations

[
Ĵz, K̃x

]
= +iK̃y,

[
Ĵz, K̃y

]
= −iK̃x,

[
K̃x, K̃y

]
= −iĴz , (S.104)

which are exactly similar to the SO+(2, 1) commutation relations

[
Ĵz, K̂x

]
= +iK̂y,

[
Ĵz, K̂y

]
= −iK̂x,

[
K̂x, K̂y

]
= −iĴz . (S.105)

Therefore, the little group G(p) of a tachyonic momentum is isomorphic to the continuous

Lorentz group SO+(2, 1) in 2 + 1 dimensions.
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