PHY-396 K. Solutions for problem set #5.

Problem 1(a):
In N x N matrix form, the local SU(N) symmetry acts on the adjoint matter field ®(x) and
the gauge field A, (x) according to

'(2) = Ux)®(z)U(z), A (z) = U(x)Au(2)UT(2) + i0,U(x) Ul (). (S.1)
Consequently, the covariant derivatives (4) become
Dy®(z) — D@ (x) = 0,®(x) + i[A,(z), ¥ (z)] (S.2)

where the first term on the RHS expands to

0,9 = 0,(UdU")
= (9,U)U" + U(9,2)U" + Ud(9,UT)
= vUt 0, 0)eU" + U0,0)U" — UUT(9,U)UT (5.3)
- U((UT@LU)@ + 9,0 — @(UTaNU)) Ut

= U0, + [U'9,0, 0] U
while the second term expands to

(AL @] = [UAUT,USUT] + [i(0,U)UT, USUT]

= U([Aw 2] + i[Utou, ] Ut (54)

Combining the two expansions, we arrive at

DL = U(9,® + [U8] + i[A,, 0] - [T d] Ut = U(D @)Ut (85)

Thus, the D, ®(x) matrix transforms exactly like the ®(x) matrix itself, which makes the

D,, derivative (4) covariant. Quod erat demonstrandum.



Problem 1(b):
Let’s start with the second line of eq. (6). In the matrix form, the adjoint multiplet ® is
a matrix, the fundamental multiplet ¥ is a column vector, and their matrix product ®V is

also a column vector. The covariant derivatives acts on these matrices and vectors as
D,® = 9,@ + i[A,,®], D,V = 9,V + iA,V, (S.6)

while

L 9,(T) + iA,(DT)

= (Ou®)V + ©(0,F) + i[Ay T + iDA,T (S.7)
= (D,®)¥ + ®(D,7).

D,(@0)

Likewise, on the third line of eq. (6), Z is a matrix, U is a row vector, and their matrix

product ¥T= is also a row vector. Therefore

D = 9,¥" — WA,  D,E = 9,E + i[Au.E], (S.8)
while
D, (U'E) ¥ 9,0'E) — i(TiE)A,
= (9,9N0 + ¥i(9,2) — UiAE — W[z 4,] (5.9)

= (D,NZ + vI(D,E).
Finally, on the first line of eq. (6), ® and = are both N x N matrices and their product ®=

is also a matrix. Consequently,

D, (®2) ¥ 0,(9) + i[A,, O]

= (@)= + P(9,Z) + i[Au, ®|E + iD[A,, ] (5.10)
= (D,®)= + B(D,Z).

Quod erat demonstrandum.



Problem 1(c):
For the adjoint multiplet of fields ®(x),

D,D,® = 0,(D,®) + i[Ay D,P]
= (00 + i[A,9]) + i A, (0.0 + i[A,2])] (8.11)
= 0, ® + i[0, A, 0] + i[A),0,0] + i[AL 0,0 — [AL [A, O]

where the blue marks terms that are symmetric WRT p <> v while the asymmetric terms

are marked in red. Only the red terms contribute to the difference

[D.,Dy]® = D,D,® — D,D,®
= i[0pAy, @] — [Au [A, @]] — i[O, AL @] + [A, [Au @]]  (S.12)
= i[0pAy — 0 AL @] — [[A A, 9

where the second term on the bottom line follows from the Jacobi identity for the matrix

commutator:

—[Au [Av @] A (A @] = A [0 A]] A (A @]

(S.13)
= o[ a)] = ~[[4.A4].0].

Altogether, we have
[Dy, D)@ = i[(p Ay — Ay + i[Ay, A]), @] = i[Fu, @] = ig[Fu,®] (S.14)

where the second equality follows from the definition of the non-abelian F,,,, and the third

equality from F,,, = gF},,. Finally, in components

b )\b ¢ b b ¢
ig[Fu, ®] = igF,,®° x [5,5} = igF,,®° x if Cag (S.15)

and hence [Dy, D,]®% = —gf"F}, &°.



Problem 1(d):
In matrix notations, the non-abelian gauge symmetries act on vector potentials A, (x) ac-

cording to

Al (2) = U@)Au()UN(2) + i0,U(x) U(x). (S.16)

Taking
Fur) € 0,A,(x) — 0,A,(x) + i[Au(x), Ay(z)] (S.17)

as the definition of the tension fields F,, (), we then have
}"L,/(x) = 9, A, (z) — 6VAL(x) + 1 [A/H(x),Af,(x)} , (S.18)
whatever that evaluates to. Specifically, the first term here evaluates to

OuA, = 8, (UAVUT + i(@VU)UT)

— U@, AU + [(@LU)UT,UAVUT] + i(9,0,0)UT — i(@,U)UT x (9,U)U
(S.19)

where the second equality follows from
0y (UAVUT) = U@,A)UT + [(6MU)UT,UAVUT (S.20)

— ¢f. similar formula (S.3) — and

0, (@U)UT) = (0,0,U)UT + (0,U)0,U") = (0,0,U)U" — (0,U) Ut (8,U)UT. (S.21)

Likewise

DA, = U0,A,)U + [(@VU)UT,UAHUT} +i(0,0,U)UT — i(0,U)UT % (8,U)U" (S.22)

and hence

oA, — 9,4, = U(0A, — 0,A)UT + [(GMU)UT,UAVUT] - [(aVU)UT,UAMUT]

+ 0+ i[(@uU)UT,(éyU)UT].
(5.23)



At the same time, the commutator part of the tension field transforms into

AL A = i [(vAUT + i@t (DAt + i@t
— i vt uaut| - @t uau] (8.24)

- vt @t - i@t eout

Combining egs. (S.23) and (S.24) leads to massive cancellation of 6 out of 8 terms on the
combined right hand side. Only the first terms on right hand sides of (S.23) and (S.24)

survive the cancellation, thus

oA, — A, + i [ALA] = U(0.A, — 0,A)UT + z’[UAMUT,UAyUT 595
= U<8H-A1/ — O A, + [-AWAV])UTv |

or in other words,

Flo () = Ulx)Fu(x)U'(2). (S.26)
Quod erat demonstrandum.

Problem 1(e):
There are two ways to prove the non-abelian differential identity (8): using part (b) and (c)
and Jacobi identity for the commutators, or the hard calculation based directly on eq. (S.17).

Let me start with the easier proof.

In part (b) we have proved the Leibniz rule for the covariant derivatives of a matrix
product of two adjoint fields ®(z) and Z(z). Clearly, the same Leibniz rule also applies to

the commutator [®, Z]:
Du[®, 2] = [D,®, 2] + [®,D,Z]. (S.27)
In particular, for ® = F,,, and arbitrary =, we have

D)\([quaE]) = [D/\fuuaE] + [FuyaDAE]- (828)



On the other hand, in part (c¢) we saw that for any adjoint field =(x) we have [F,,, =] =
—i[D,,, D,]=. Likewise, for the D\Z(x) we also have [F,, D\E] = —i[D,,, D,|D)\E. Conse-
quently, eq. (S.28) becomes

—iD\[Dy, D,JE = [Dr\Fu,E] — i[D,, D)D)= (S.29)

and hence

i[DAFurZ] = [Dy,[Dy, DJJE. (S.30)

Now, let’s sum 3 such formulae, one for each cyclic permutations of the indices A, p, v.

On the left hand side, this gives us
i [(D)\}"W + DpFux +DVfAu)>E] -
while on the right hand side we obtain
« = (IDA 1D D)) + (D Dy, DA]] + 1Dy, (D, DJJ)E = 0 (.31)

due to Jacobi identity for the double commutators of the three covariant derivatives Dy, D,

and D,,. Consequently
[(D)\Fw/ + Dufy,\ + DV.F/\H), E} = 0,

and this must be true for any adjoint field Z(x). Moreover, for any x, \, u, v, the N x N

matrix

D)\-Fw/ + D,ufy)\ + DZ/F)\N

is traceless, and the only way it may commute with all traceless hermitian matrices =Z(x) is

by being zero, thus

D)\-Fw/ + D,ufy)\ + DV‘F)\M = 0. (8.32)

This is my first proof of the non-abelian differential identity (8).



The second proof of the differential identity (8) follows directly from the definition (S.17) of

the non-abelian tension fields and the covariant derivatives (4). Let’s spell out DyF,,, in

detail:
DaFu = OFu + ilAy, Fu)
= W (0pAy — O A, + i[Au, A)]) + i [Ay, (0pAL — O AL + i[Ay AY))]
= 0Oy — DA, + i[hAu A+ i[AL 0rA]
+ A A — AN AL — A [A A
= (0304, — 030A) + (1004w A — [0, A
+i([A0 A] — (A BAL) = (1A 1AL A)).
(S.33)

On the bottom two lines here I have grouped terms in () so that after summing over cyclic

permutations of the indices A, i, v, we get a zero sum separately for each group. Indeed,

(aAa A, — 0dA,) + cyclic = (8A8HAV _ ayaAAu) + cyclic
0 ((by inspection )),
0

([@\AH,A |- 1[0 AV,AA) + cyclic = {( by inspection ), (S5.34)
([AM,@A] Ay, 9, A4,] ) + cyclic =

[A)n [A,LHA H + CyChC =

0 ((by inspection )), and
0 ((by Jacobi identity )).
Therefore,

DyFu + cyclic = Dy\Fu + DyFun + DyFy, = 0. (8)

Problem 1(f):
The Euler-Lagrange field equations follow from requiring zero first variation of the action S =
[ £ under infinitesimal variation of the independent fields A, (). Let’s start by calculating

the variation of the tension fields F,:

0Fu = 0(Ouhs — 0 Ay + 14, A))
= 0,04, — 0,04, + i[0ALA)] + i[A0A)]
= (004, + i[A4,04]) — (00A, + i[As04,])
— DA, — DA,

(.35)



where we treat the matrix-valued variations 0.4, (z) as adjoint fields so their covariant deriva-

tive work according to eq. (4), D 0 A, = 0,0A, + i[ Ay, 0.A,] and likewise for the D,J0.A,,.

In light of eq. (S.35), the trace in the Yang—Mills Lagrangian (9) varies by

ste(FUF) = 26 (FF) = 200(F (D5 A, - DOA))
= 4tr(]:“”Du5Ay) ((since FH = —FVH)) (S.36)
= —atr((DuF™)oA) + 49,0 (FoA,)

where the last equality follows from the Leibniz rule for the two adjoint fields F#* and d.A,:

tr((Du}—W)&Au) + tr(}"W(Dué.Au)) =
= tr(Du(]:WCSAu))
= tr(Qu(FOA) + itr ([Ay, (FA)])

= Oy tr(F"0A,) + 0 ((since trace of a commutator is zero)).
(5.37)
Thus,

0Lym = 32 tr((DyF")0A,) — a total divergence (S.38)
9

so the net Yang-Mills action varies by

58 = % d*z tr (D, FM ()0 A, (x)) = ;12/ die Y DuF(x) x A (x).  (S:39)

To make this variation vanish for any infinitesimal §.A%(z) we need D, F*¥(x) = 0, and this

becomes the Euler-Lagrange equation for the Yang—Mills theory,

D, FH = . (S.40)



Problem 2(a):
In problem 1(f) we saw that under infinitesimal variations of the gauge fields, the YM

Lagrangian varies by
1 auy a auy a
SO = 5 D DpF X GAL + u+) = DIDRFY X GAL + Ol (S41)

Now let’s add the matter Lagrangian Lyat(¢, Do) for some matter fields in a non-trivial
multiplet (or multiplets) of the gauge symmetry. When we vary the gauge fields A%(z) while
keeping the matter fields ¢(x) fixed, the covariant derivatives D¢ vary due to igA%t®¢ terms

in D, ¢, which leads to non-trivial variation

aAcmat
HAY

0Lomat = X 0AL = =) Y x 5AY. (S.42)

a

Altogether, the net action of the theory varies by
65 = /d% Z(DHFGW(:U) - JW(:C)) x §A%(z). (S.43)
a
Requiring this variation to vanish for any §A%(x) leads to the field equations
D, F*" = J%, (S.44)

or in matrix notations D, ['*” = J”. This is the non-abelian version of the Maxwell equations
o = Jv.

In the abelian EM theory, the equations d,F'*” = J" require the electric current to be
conserved, 0, J" = 0,0, F'" = 0 since F*¥ = —F"" and the derivatives commute with each

other. The non-abelian tension fields F'*¥ are also antisymmetric in p <+ v, but the covariant

derivatives do not commute, D, D, # D, D,,. Therefore,
D,J" = D,D,F" = 4D, D)JF*" = §[Fu, F"] (S.45)

where the last equality works exactly as in problem 3(c) — the F*"* fields form an adjoint

multiplet of fields, and for any such multiplet packed into an hermitian N x N matrix &,



D, D,|® = i[F,,,®]. However, unlike a generic matrix ¢ which may commute or not

commute with the F,,,, for any p and v the F# matrix always commutes with dtself. Thus,
[Fuw, F*'] = 0 even before summing over p and v. (S.46)

Of course, after the summing over p and v we still have a zero, thus D, D, F*(xz) = 0.

Thus, consistency of the field equations (S.44) for the gauge fields requires the non-

abelian currents J to be covariantly conserved:

D,J" = D,D,F* = 0, (S.47)
or in components

8, Jv — febepb g = . (S.48)
Note: because of the covariantizing term here, we do not have conserved net charges; alas,

% Bx JOx,t) # 0. (S5.49)

Problem 2(b):

The currents J;j come from the covariant derivatives in the Lagrangian for the scalar fields

Lot = DVIDFO — V(UTD), (S.50)
Expanding the covariant derivatives DM\IIT and DAV in components of ¥, W7, and A, we
obtain
Dt = 90 — Largr(\) | prwi = grwi 4 Loam(\) wi o (S51)
H = H= 2 w1 K 9 ] ) :
and hence
OL mat oD,V 9D,V; :
a — _ = —_DY{y* _ 7 DHt
L DA YT oAz
= 2 (=ipmwp x L (N) W+ iopws (), x DY) 8.52)

- g(—z’(D“\DT))\“\If + z’\IfU“(D“\If))
- —glm(\pwm\p),

exactly as in eq. (16).
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Now let’s combine these component currents in the matrix J, = Jj X %)\a. Each term on
the RHS of eq. (16) has form \I/];)\“\Ilg where either \I/]; = Ut while ¥y = D,V or V¥ = DM\I/T

while Uy = W. For each of these combinations, the identity (17) leads to
. - 9 )
() x (UIAy) = 2050, — N(‘I’I%) x d'j. (8.53)

a

Thus, altogether the matrix-valued SU(NN) symmetry current .J, has matrix elements

() = S(Duwy ey — WD) — S5 0% x (V10w — (D,9h)w),  ($54)

or in matrix form

Jo € S Jrxc e = %((DM‘I’)@?‘I’T - ‘1’®DVI’T>
. (18)
ig
_ ﬁ@,mu\p _ (DH\IJT)\I!> X Lyin-

Quod erat demonstrandum.

Problem 2(c):
Under a local SU(N) symmetry U(x), the scalar fields ¥(x) and ¥T(z) and their covariant

derivatives D,V (x) and D,¥T(z) transform according to

U(z) = Ux)(z), ¥(z) = Ui(2)UT(2),

(S.55)
DU (z) = U(x)D,¥(x), DU (z) = (DU (2))UT(z).
Consequently;,
D,V (x) x Ui(x) = Ul(x)D " x Uy (U (2))", (S.56)
or in the matrix form
DU (z) @ Ul(z) — Ulx) (DH\I’(x) ® ot (:c)) x Ul(). (S.57)
Likewise,
U(z) ® DU () — U(x) (\1/(3;) ® DMIIIT(x)) x Ul(z). (.58)

The first term on the RHS of eq. (18) for the matrix-valued current combines these two

11



expressions, so the whole first term transforms under the local symmetries as
(first term) — U(z) x (first term) x UT(x). (S.59)
As to the second term on the RHS of eq. (18), it’s gauge invariant because
Ul (2)D,¥(z) s Ul (2)UT(2)U(2)D,¥(x) = Wi(2x)D,¥(x) (S.60)
and likewise

D,V (2)¥(z) — D,V (2)¥(x). (S.61)

However, for a unitary U(z) matrix we may treat the unit matrix as transforming according

to

1 — 1 = Ulz)x1xUl(x), (S.62)

so the gauge invariant second term on the RHS of eq. (18) can also be viewed as transforming

according to

(second term) — U(x) x (second term) x UT(z). (5.63)

Altogether, combining egs. (S.59) and (S.63), we find that the matrix-valued currents J,,(z)

transform under the gauge symmetries as

Ju(x) = Ux) x Ju(z) x Ul(z), (S.64)

exactly as in eq. (12). Thus, the component currents Jjj(z) transform into each other as

members of the adjoint multiplet of the SU(N) group.
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Problem 2(d):

First, let’s derive the Leibniz rule for the adjoint multiplets of the form Q% = U T’

D, (¥\0) = D, UINTY + TIND, T

Proof:

D, (TN = 9,(TAW) — gf*eAb (TTAT)

= (0NN + TN, V) — gAL WI(FoN = —L[A% N]) O/

o 1y b b / / U b b
= (00" - T AN )W 1wt (9,97 4 Z AN
= DU\ + wixD, W

Thanks to this lemma, the non-abelian currents (S.52) satisfy

D" = 4D, (vhrmprw — Drotaw)

ig
= (Db + ¥IND, DY — DDA — DrEbeD D)

= gtm(wXD, DY),

Now let the scalar fields satisfy their covariant equations of motion

oL oL oL oL

Doy = ow Pramar T awe

For the Lagrangian (3.13) these equations read

: oV . A
D,DFy* = — = 2 4 Zuty
g 0, 8 (m 3 )
oV 5 A
D, D'T; = —og7 = <m + 5@*@) x U,

so for the fields obeying these equations
A
\I/T)\GDMD“\II = — (m2 + E\IIT\II) x UTAT = (real) x (real)
for any hermitian matrix A%, and therefore

D™ = glm(wiA"D, D) = 0,
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(S.71)



Problem 3(a):

4]

&

D=

KR =

Problem 3(b):

v

Leikteimn [[Jit, jun] = ((by eq. (19))

(ke jmn (_Z-gkmjzn +ighn jtm o gtm jhn _ genjkm)

-

(( by antisymmetry of the €’s))

6ikfejmn % _igkmjfn

iJi (_gkmeikéejmn — Ly ghmeike gmn _ sijstn _5m5£j>
0 — iJ7 = +iJV

+ieldk k.

L) = by eq. (19))

¢ (_igkOjéj i igkijO I Z.gmjkj _ Z.gzg'jko)

D=

eik
eik

D=

¢ (o YLy (N z’éfﬂ'j’fo)
b (HigH R — isti )

(Rt~ Lk i

Nl— o~

eijkf(k

LT = by eq. (19))

_Z-goojij + Z-ngjiO + igiOJAOj . igijJOO
—iJ9 + 0+ 0 + 0,

LY LS

_ 1 _jke [vri jke 1 _jkt (: ikyrt  : ilyrk

= ;¢ [VZ,J } = g€ (zgZ Ve — g™V )

_ %Ejkz (_Mikf/e T 51’6‘71@) _ _%'EjiKVé n %'ejkif/k
— etk

1 ke [0 FR€] 1kt (50keA 061

= 3¢ [V J } = 3¢ <W W)

= 0,
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(S.76)



Vi &) = [F.0] = a0V~ igii
e (5.77)
[V0,K9) = [79,0%] = ig7 - o7
= iV, (S.78)
Note that the Hamiltonian of a relativistic theory is a member of a 4-vector multiplet pr =

([:I , 15) where P is the net momentum operator. Applying the above equations to the pr
vectors, we obtain
[P, J7] = iekpt,
[FI, Jil = o,
N o (S.79)
[PZ,KJ — oV H,

[HKJ = il

In particular, the Hamiltonian H commutes with the three angular momenta J7 but it does

not commute with the three generators K* of the Lorentz boosts.

Problem 3(c):

In the ordinary quantum mechanics, it is often said that generators of continuous symmetries
must commute with the Hamiltonian operator. However, this is true only for the symmetries
that act in a time independent manner — for example, rotating the 3D space by the same
angle at all times . But when the transformation rules of a symmetry depend on time, the

Hamiltonian must change to account for this time dependence.

In a Lorentz boost, the transform x — x’ obviously depends on time, which changes
the way the transformed quantum fields such as P’ (x,t) depend on t. Consequently, the
Hamiltonian H of the theory must change so that the new Heisenberg equations would
match the new time dependence. In terms of the generators, this means that the boost

generators K’ should not commute with the Hamiltonian.

Note that this non-commutativity is not caused by the Lorentz boosts affecting the time
itself, ¢’ = Loux“ # t. Even in non-relativistic theories — where the time is absolute — the
generators of symmetries which affect the other variables in a time-dependent matter do not

commute with the Hamiltonian H.
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Indeed, consider a Galilean transform from one non-relativistic moving frame into an-
other, x’ = x+vt but ¢/ = t. This is a good symmetry of non-relativistic particles interacting

with each other but not subject to any external potential,

ﬁzz pa + 3 V(% —%p). (S.80)

a#b

A unitary operator G realizing a Galilean symmetry acts on coordinate and momentum

operators as

Gx.G' = %4 + vt, GPuG' = Pa + M,v, (S.81)

and it also transforms the Hamiltonian into

QAHQAT = f{ + V'ptot + %Mtotv2. (SSQ)

In terms of the Galilean boost generators K,
G = exp(—iv - Kg), (S.83)

so under an infinitesimal boost v = €, various operators transform according to

-~

O = 0+ 0, 0 = —ie [KG@} (S.84)

Consequently, the commutation relations with the boost generators follow from the infinites-

imal boosts, for example

5%, = €t :>[a:aKé — i xt,
Spa = €M, :[ﬁg,Kg' — 61 % M,, (S.85)
SH = & Py :[H,kg — P,

In particular, the Hamiltonian does NOT commute with the Galilean boost generators.
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Problem 4(a):
Consider a linear combination %N /wj 1 of Lorentz generators with some generic coefficients

N, = —Ny,. The infinitesimal Lorents transform

LM, = exp(ieN)*, = 6* + ieN* + O(e) (S.86)

v

preserves a given momentum p#, L', PY = P* if and only if

NEp” = 0. (S.87)
In 3D terms, N = ¢7kg% and NO% = —N*0 = pF for some 3-vectors a and b, the generator
in question is
INLJ"™ = a-J + b-K, (S.88)
and
N%p, = —N%p = —b.p
’ (S.89)
pry — _pr] + Nz()p() — —EZ]kp]CLk . sz’
so the condition (S.87) becomes
axp — bE =0 and b-p = 0. (5.90)

Actually, the second condition here is redundant, so the general solution is

p
b = — S.91
any a, ax (S.91)
and hence
. . ‘K . .
%NWJW = a-J + % = %-(EJ + p X K) for any a. (5.92)

In other words, the Lorentz symmetries preserving the momentum p# have 3 generators,

namely the components of the 3-vector

A~ A A~

R = FJ + pxK. (22)

Quod erat demonstrandum.
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Problem 4(b):
Consider a massive particle moving at a slower-than-light speed  in z direction, so the
energy is E = ym (where v = 1/4/1 — ?) while the 3-momentum is p = (0,0, Sym).

Consequently, the three components of the R vector for this energy-momentum are
R = ’ijx - 5’777@%1/, RV = fymjy + nymf(x, R* = fymjz. (S5.93)

These 3 operators generate the little group G(p) of the particle’s 4—momentum p* = (E, p).
To see that this little group happens to be isomorphic to the 3D rotation group SO(3), we
need to find 3 linear combinations J%¥# of the operators (S.93) which obey the angular-

momentum commutation relations
[Ji,ﬂ] = ik k. (S.94)

My choice of the (properly normalized) generators J%¥% is spelled out in egs. (23). Let’s see
that they indeed obey the commutation relations (S.94):

] = [0 [ R = it -y x (k)
= i(y)¥ + ByK®) = iJY,

:jz,jy: = v [jz,fy} + By [JZK-’”} = 4 x (—iJ%) + By x (+iKY)

= —i(yJ® — ipyKY) = —iJ®, (S.95)
:jx’jy: _ 2 [jx’jy] _ By [Ky’jy} + By [jx’Kx] _ B2 [Ky’f(x]

= V2 xiJ* — 0 4 0 — 322 xiJ?

= iJ*x (¥(1-pY)=1) = iJ".

Quod erat demonstrandum.

Problem 4(c):
For a massless particle, we cannot rescale the little group generators as in eqs. (23) since
the 1/m factor for the J*¥ generators would be infinite. Instead, the best we can do is to

use the 1/FE factor for all three rescaled generators, hence egs. (24) and (25). Consequently,
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instead of egs. (S.95) for the commutators of the rescaled generators, we get

[jz,fw' = [z ge] = [0 RY] = v - (iRT) = Y,
Jp) = [+ [ R = (mide) - (iKY = il s
e e R S R

= iJF  —0+0—iJF =0

precisely as in eq. (26).

The commutation relations (26) are different from the angular-momentum commutation
relations, and they cannot be brought to the form (S.94) by any finite rescaling of the
generators. Consequently, the little group of a light-like momentum p* = (E,0,0, E) is
NOT isomorphic to the SO(3).

Instead, the commutation relations (26) are similar to the commutation relations between
the z component of the angular momentum and the x and y components of the linear

momentum,
(27 = by, [P = i, [P PY] <o (S.97)

The J* operator generates rotations around the z axis, ¢.e., within the zy plane, while the
P and P operators generate translations in that plane. Together, they generate the group

ISO(2) of isometries — rotations and translations — in 2 space dimensions.

Thus, we see that the little group G(p) of a light-like momentum of a massless particle
is isomorphic to the ISO(2).

Problem 4(d):
Finally, consider a particle moving faster-than-light in the z direction, so its momentum

pt = (p°,0,0,p3) has p3 > p?. Such a tachyon must have negative mass?, so let us denote

g =1 (S.98)

0
p
M} = —-m* = —pup >0, 7 = -,
' g LM Do

where the subscript ¢ stands for ‘imaginary’ and § > 1 is the faster-than-light speed. In
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these notations, let us rescale the little group generators (22) according to

K" = Mﬁy = ByuK® + yiJY,

. 1 . . .

KY = —Rx = ﬁ%’Ky — %’Jx, (8.99)
M;

. 1 . .

J* = R?* = J?, the helicity.
YiM; Y

Consequently, the commutation relations of the rescaled operators become
] = ]
= Br(+iKY) + o' (=iJ7)
= iKY, (S.100)
PR = [ — [ ]
= B(—iKY) + 4'(+iJ7)

[f(x,f(y} = A% [K‘”Ky] + B} [jy,f(y} — B [K"”Jx} — 7 [jy,jx]
= 8297 x (i) + B97 x 0 = Brf x 0 = of x (i)
= —i(B% = 1)y x J?
= —iJ?, (S.102)

where the last equality follows from the kinematic relation

2 2 2 2 2
P3—po ., P P3—p
(B°=1)x7f = 3p3 Sxom o= gt =1 (S.103)
1 1

Altogether, the generators (S.99) obey the commutation relations
[jz,f«v} — iKY, [jz,z%y} — —iK®, [m,m} = _iJ?, (S.104)
which are exactly similar to the SO (2, 1) commutation relations
[jz,f«v} — iKY, [jz,ky} — K", [m,m} — iJ (S.105)

Therefore, the little group G(p) of a tachyonic momentum is isomorphic to the continuous

Lorentz group SOT(2,1) in 2 + 1 dimensions.
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