
PHY–396 K. Solutions for homework set #7.

Problem 1(a):

The quantum state |p, λ〉 has definite momentum pµ, thus P̂µ |p, λ〉 = pµ |p, λ〉 and likewise

1
2εµαβγ Ĵ

αβP̂ γ |p, λ〉 = 1
2εµαβγp

γ Ĵαβ |p, λ〉 . (S.1)

To work out the RHS of this formula, let’s spell out the operator

Q̂µ
def
= 1

2εµαβγp
γ Ĵαβ (S.2)

in components:

Q̂0 = 1
2ε0ijkp

kĴ ij = 1
2ε
ijkpk × εij`Ĵ` = p · Ĵ, (S.3)

Q̂i = 1
2εijk0p

0Ĵjk + 1
2εij0kp

kĴj0 + 1
2εi0jkp

kĴ0j

= −1
2ε
ijkE × εij`Ĵ` + 1

2ε
ijkpk × K̂j − 1

2ε
ijkpk(−K̂j)

= −EĴ i + (K̂× p)i. (S.4)

For a massless particle with a lightlike momentum pµ = (E,Ev), |v| = 1, the components

of Q̂µ operators become

Q̂ = +EĴ + Ev × K̂ = EÎ

〈〈 for Î as in eq. (1) 〉〉,

Q̂0 = Ev · Ĵ = Eλ̂.

(S.5)

When this operator acts on the particle state |p, λ〉 which has definite helicity and is also

annihilated by the two transverse generators Î⊥ as in eq. (3), we get

Q̂0 |p, λ〉 = Eλ |p, λ〉 = λp0 |p, λ〉 (S.6)

and also

Î |p, λ〉 = λv |p, λ〉 (S.7)
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and hence

Q̂ |p, λ〉 = Eλv |p, λ〉 = λp |p, λ〉 . (S.8)

Altogether, in 4d terms we get

Q̂µ |p, λ〉 = λpµ |p, λ〉 (S.9)

and hence (after lowering the index µ on both sides)

1
2εµαβγ Ĵ

αβP̂ γ |p, λ〉 = λP̂µ |p, λ〉 . (4)

Quod erat demonstrandum.

Problem 1(b):

Consider a continuous Lorentz transform xµ → x′µ = Lµνx
ν acting on the |p, λ〉 state of a

massless particle. The operators on both sides of both sides of eq. (4) transform as Lorentz

vectors,

D̂(L)P̂νD̂†(L) = L µ
ν P̂µ , D̂(L)

(
1
2εναβγ Ĵ

αβP̂ γ
)
D̂†(L) = L µ

ν

(
1
2εµαβγ Ĵ

αβP̂ γ
)
. (S.10)

Consequently, the transformed state

D̂(L) |p, λ〉 = |Lp, ??〉 (S.11)

satisfies the same eq. (4) as the original state |p, λ〉. Indeed,

L µ
ν

(
1
2εµαβγ Ĵ

αβP̂ γ
)
|Lp, ??〉 = D̂(L)

(
1
2εναβγ Ĵ

αβP̂ γ
)
D̂†(L)× D̂ |p, λ〉

= D̂(L)×
(
1
2εναβγ Ĵ

αβP̂ γ
)
|p, λ〉

〈〈 by eq. (4) 〉〉 = D̂(L)× λP̂ν |p, λ〉

= λ× D̂(L)P̂νD̂†(L)× D̂ |p, λ〉

= λ× L µ
ν P̂µ |Lp, ??〉 ,

(S.12)

and hence (
1
2εµαβγ Ĵ

αβP̂ γ
)
|Lp, ??〉 = λP̂µ |Lp, ??〉 . (S.13)

Note that this equation for the transformed state |Lp, ??〉 has exactly the same helicity
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eigenvalue λ as the original eq. (4), which means that the transformed state has the same

helicity as the original state. And since the momentum and the helicity completely determine

the quantum state of a particle up to an overall phase, it follows that

D̂(L) |p, λ〉 = |Lp, sameλ〉 × ei phase. (11)

Thus, for massless particles, the continuous Lorentz transforms preserve helicity!

Problem 2(a):

The Lorentz generators Ĵ i and K̂i obey commutation relations

[
ĵi, Ĵj

]
= iεijkĴk,

[
ĵi, K̂j

]
= iεijkK̂k,

[
K̂i, K̂j

]
= −iεijkĴk. (S.14)

Consequently, for two components of Ĵ+ or two components of Ĵ− we have

[
Ĵ i±, Ĵ

j
±

]
= 1

4

[
Ĵ i, Ĵj

]
± i

4

[
K̂i, Ĵj

]
± i

4

[
Ĵ i, K̂j

]
− 1

4

[
K̂i, K̂j

]
= 1

4 iε
ijkĴk ± i

4 iε
ijkK̂k ± i

4 iε
ijkK̂k − 1

4 (−i)εijkĴk

= i
2ε
ijkĴk ∓ 1

2ε
ijkK̂k = iεijk ×

(
1
2 Ĵ

k ± i
2K̂

k
)

= iεijkĴk± ,

(S.15)

while for one component of Ĵ+ and one component of Ĵ− (or the other way around) we get

[
Ĵ i±, Ĵ

j
∓

]
= 1

4

[
Ĵ i, Ĵj

]
± i

4

[
K̂i, Ĵj

]
∓ i

4

[
Ĵ i, K̂j

]
+ 1

4

[
K̂i, K̂j

]
= 1

4 iε
ijkĴk ± i

4 iε
ijkK̂k ∓ i

4 iε
ijkK̂k + 1

4 (−i)εijkĴk

= i
4ε
ijk
(
Ĵk ± iK̂k ∓ iK̂k − Ĵk

)
= 0.

(S.16)
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Problem 2(b):

Let’s start by calculating the squares of the matrices (9) representing the boost B(r,n),

[
M2(B)

]2
= exp(−rn · σσ) and

[
M2(B)

]2
= exp(+rn · σσ). (S.17)

For any unit vector n,

(n · σσ)2 = n2 = 1, (S.18)

hence for any integer k ≥ 0

(n · σσ)k =

{
1 for even k,

(n · σσ) for odd k.
(S.19)

Consequently, expanding the exponentials in eq. (S.17) into powers of the rapidity r yields

exp(∓rn · σσ) =
∞∑
k=0

(∓r)k

k!
× (n · σσ)k

=
∑
even k

(∓r)k

k!
× 1 +

∑
odd k

(∓r)k

k!
× (n · σσ)

= cosh(r)× 1 ∓ sinh(r)× (n · σσ)

〈〈 translating from the rapidity to the β and γ parameters (10) 〉〉

= γ × 1 ∓ βγ × (n · σσ)

= γ ×
(
1 ∓ βn · σσ

)
.

(S.20)

Thus, [
M2(B)

]2
= γ

(
1 − βn · σσ

)
,

[
M2(B)

]2
= γ

(
1 + βn · σσ

)
, (S.21)

and therefore

M2(B) =
√
γ ×

√
1− βn · σσ, M2(B) =

√
γ ×

√
1 + βn · σσ. (11)

Quod erat demonstrandum.

4



Problem 2(c):

Among the 3 Pauli matrices σσ, the σ1 and the σ3 matrices are real while the σ2 is imaginary.

At the same time, the σ1 and the σ3 anticommute with the σ2 while the σ2 commutes with

itself. Consequently,

σ2(σ1,3)
∗σ2 = +σ2σ1,3σ2 = −σ1,3σ2σ2 = −σ1,3 , (S.22)

while

σ2(σ2)
∗σ2 = −σ2σ2σ2 = −σ2 , (S.23)

thus for all 3 Pauli matrices

σ2σσ∗σ2 = −σσ. (S.24)

Now let’s apply this identity to the 2 and the 2 representations of the same Lorentz sym-

metry L. Any continuous Lorentz symmetry must be generated by some linear combinations

of the angular momenta and boost generators, thus

L̂ = exp
(
−ia · Ĵ − ib · K̂

)
(S.25)

for some real 3-vectors a and b. In the 2 representation, the Ĵ i generators act as 1
2σ

i matrices

while the K̂i generators act as − i
2σ

i, thus

a · Ĵ + b · K̂ acts as 1
2(a− ib) · σσ (S.26)

and hence

M
def
= M2(L) = exp

(
− i

2(a− ib) · σσ
)
. (S.27)

Likewise, in the 2 representation, the Ĵ i generators also act as 1
2σ

i matrices but the K̂i
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generators act as + i
2σ

i, thus

a · Ĵ + b · K̂ acts as 1
2(a + ib) · σσ (S.28)

and hence

M
def
= M2(L) = exp

(
− i

2(a + ib) · σσ
)
. (S.29)

In terms of the complex 3-vector c = 1
2a−

i
2b,

M = exp(−ic · σσ) and M = exp(−ic∗ · σσ), (S.30)

and thanks to eq. (S.24), and two such matrices are related to each other as

M = σ2M
∗σ2 and M = σ2M

∗
σ2. (S.31)

To prove this relation, note that eq. (S.24) implies

σ2(−ic · σσ)∗σ2 = +ic∗ · (σ2σσ∗σ2) = −ic∗ · σσ, (S.32)

hence

σ2
[
(−ic ·σσ)2

]∗
σ2 = σ2(−ic ·σσ)∗σ2×σ2(−ic ·σσ)2σ2 = (−ic∗ ·σσ)×(−ic∗ ·σσ) = (−ic∗ ·σσ)2,

(S.33)

and likewise for any integer power n,

σ2
[
(−ic · σσ)n

]∗
σ2 = (−ic∗ · σσ)n. (S.34)

Consequently, for a power series like the exponential we have

σ2M
∗σ2 = σ2

( ∞∑
n=0

1

n!
(−ic · σσ)n

)∗
σ2 =

∞∑
n=0

1

n!
σ2
(
(−ic · σσ)n

)∗
σ2

=
∞∑
n=0

1

n!
(−ic∗ · σσ)n = M,

(S.35)

and likewise σ2M
∗
σ2 = M . Quod erat demonstrandum.
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Problem 2(d):

Let’s start with reality. The matrix V = V µσµ is hermitian if and only if the 4-vector V µ is

real. For any matrix M ∈ SL(2,C), the transform

V → V ′ = MVM † (S.36)

preserves hermiticity: if V is hermitian, then so is V ′; indeed(
V ′
)†

=
(
MVM †

)†
=
(
M †
)†
V †M † = MVM † = V ′. (S.37)

In terms of the 4-vectors, this means that if the V µ is real than the V ′µ = LµνV
ν is also real.

In other words, the 4× 4 matrix Lµν(M) is real.

Next, let’s prove that Lµν(M) ∈ O(3, 1) — it preserves the Lorentz metric gαβ, or

equivalently, for any V µ, gαβV ′αV
′
β = gαβVαVβ. In terms of the 2× 2 matrix V = V µσµ, the

Lorentz square of the 4-vector becomes the determinant:

gαβVαVβ = det
(
V = Vµσ

µ
)
. (S.38)

Indeed, from the explicit form of the 4 matrices

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

+i 0

)
, σ3 =

(
+1 0

0 −1

)
(S.39)

we have

V = V µσµ =

(
V0 + V3 V1 − iV2

V1 + iV2 V0 − V3

)
and hence

det(V ) = (V0 +V3)(V0−V3) − (V1− iV2)(V1 + iV2) = V 2
0 − V 2

3 − V 2
1 − V 2

2 = gαβVαVβ .

(S.40)

The determinant of a matrix product is the product of the individual matrices’ determi-

nants. Hence, for the transform (S.36),

det(V ′) = det(M)× det(V )× det(M †) = det(V )× |det(M)|2 . (S.41)

The M matrices of interest to us belong to the SL(2,C) group — they are complex matrices
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with unit determinants. There are no other restrictions, but det(M) = 1 is enough to assure

det(V ′) = det(V ), cf. eq. (S.41). Thanks to the relation (S.38), this means

gαβV ′αV
′
β = det(V ′) = det(V ) = gαβVαVβ (S.42)

— which proves that the matrix Lµν(M) is indeed Lorentzian.

Problem 2(e):

To prove that the Lorentz transform Lµν(M) is orthochronous, we need to show that for any

Vµ in the forward light cone — that is, V 2 > 0 and V0 > 0 — the V ′µ is also in the forward

light cone. In matrix terms, V 2 > 0 means det(V ) > 0 while V0 > 0 means tr(V ) > 0;

together, these two conditions mean that the 2 × 2 hermitian matrix V is positive-definite.

The transform (S.36) preserves positive definiteness: if for any complex 2-vector ξ 6= 0 we

have ξ†V ξ > 0, then

ξ†V ′ξ = ξ†MVM †ξ = (M †ξ)†V (M †ξ) > 0. (S.43)

(Note that M †ξ 6= 0 for any ξ 6= 0 because det(M) 6= 0.) Thus, for any M ∈ SL(2,C) the

Lorentz transform V µ → V ′µ preserves the forward light cone — in other words, the Lµν(M)

is orthochronous, Lµν(M) ∈ O+(3, 1).

The simplest proof that the Lorentz transform (16) is proper — det(L) = +1 — for any

SL(2,C) matrix M is topological: The SL(2,C) group manifold — which spans all matrices

of the form

M =

(
a b

c d

)
, complex a, b, c, d, ad − bc = 1 (S.44)

is connected, so all such matrices are continuously connected to the 12×2 matrix. It is

easy to see that for M = 1, the Lorentz transform L(1) is trivial, Lµν = δµν , hence all

Lorentz transforms of the form (16) are continuously connected to the trivial transform.

Consequently, they all must be continuous Lorentz transforms and therefore proper and

orthochronous.
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An alternative proof is more involved. It involves decomposition of M into a product

of a unitary U and a Hermitian H, 2 Lemmas showing that L(U) is a pure 3D rotation

(without reflections) while L(H) is a pure Lorentz boost, and the group law from part (f)

which tells us that

L(M = UH) = L(U)× L(H) = rotation× boost, (S.45)

which makes it a continuous Lorentz transform. But this is a rather long proof, so I leave it

as optional exercise for the interested students.

Problem 2(f):

Let L1 = L(M1), L2 = L(M2) and L12 = L(M2M1) be Lorentz transforms constructed

according to eq. (13–16) for some SL(2,C) matrices M1 and M2 and their product M2M1.

We want to prove that L12 obtains from a product of consecutive Lorentz transforms, first

L2 and then L1, so let’s consider how all these transforms act on some 4–vector V µ. On one

hand,

(
L12V

)ν
σν = (M2M1)× (V νσν)× (M2M1)

† = M2M1 × (V νσν)×M †1M
†
2 . (S.46)

On the other hand,

(
L2L1V

)ν
σν = M2 ×

(
(L1V )νσν

)
×M †2 = M2 ×

(
M1 × (V νσν)×M †1

)
×M †2

also = M2M1 × (V νσν)×M †1M
†
2 .

Thus we see that (
L12V

)ν
σν =

(
L2L1V

)ν
σν (S.47)

and therefore (
L12V

)ν
=
(
L2L1V

)ν
. (S.48)

Moreover, this holds true for any 4–vector V µ, hence the Lorentz transforms L12 = L(M2M1)

and L2L1 = L(M2)L(M1) must be equal to each other, quod erat demonstrandum.
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Problem 2(g):

For any Lie algebra equivalent to an angular momentum or its analytic continuation, the

product of two doublets comprises a triplet and a singlet, 2⊗ 2 = 3⊕ 1, or in (j) notations,

(12) ⊗ (12) = (1) ⊕ (0). Furthermore, the triplet 3 = (1) is symmetric with respect to

permutations of the two doublets while the singlet 1 = (0) is antisymmetric.

For two separate and independent types of angular momenta J+ and J− we combine the

j+ quantum numbers independently from the j− and the j− quantum numbers independently

from the j+. For two bi-spinors, this gives us

(12 ,
1
2)⊗ (12 ,

1
2) = (1, 1)⊕ (1, 0)⊕ (0, 1)⊕ (0, 0). (S.49)

Furthermore, the symmetric part of this product should be either symmetric with respect to

both the j+ and the j− indices or antisymmetric with respect to both indices, thus

[
(12 ,

1
2)⊗ (12 ,

1
2)
]
sym

= (1, 1)⊕ (0, 0). (S.50)

Likewise, the antisymmetric part is either symmetric with respect to the j+ but antisym-

metric with respect to the j− or the other way around, thus

[
(12 ,

1
2)⊗ (12 ,

1
2)
]
antisym

= (1, 0)⊕ (0, 1). (S.51)

From the SO+(3, 1) point of view, the bi-spinor (12 ,
1
2) is the Lorentz vector. A general

2-index Lorentz tensor transforms like a product of two such vectors, so from the SL(2,C)

point of view it’s a product of two bi-spinors, which decomposes to irreducible multiplets

according to eq. (S.49).

The Lorentz symmetry respects splitting of a general 2-index tensor into a symmetric

tensor Tµν = +T νµ and an antisymmetric tensor Fµν = −F νµ. The symmetric tensor corre-

sponds to a symmetrized square of a bi-spinor, which decomposes into irreducible multiplets

according to eq. (S.50). The singlet (0, 0) component is the Lorentz-invariant trace Tµµ while

the (1, 1) irreducible multiplet is the traceless part of the symmetric tensor.
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Likewise, the antisymmetric Lorentz tensor Fµν = −F νµ decomposes according to

eq. (S.51). Here, the irreducible components (1, 0) and (0, 1) are complex but conjugate

to each other; individually, they describe antisymmetric tensors subject to complex duality

conditions 1
2ε
κλµνFµν = ±iF κλ, or in 3D terms, E = ±iB.

Problem 3(a):

Suppose the γµ matrices obey the anticommutation relations (16). Then:

β2 = γ0γ0 = g00 = +1, (S.52)

{β, αi} = {γ0, γ0γi} = γ0γ0γi + γ0γiγ0

= γ0 × {γ0, γi} = γ0 × 0 = 0, (S.53)

αiαj = γ0γiγ0γj = −γ0γ0γiγj = −γiγj , (S.54)

⇓

{αi, αj} = −{γi, γj} = −2gij = +2δij , (S.55)

quod erat demonstrandum.

Conversely, suppose β2 = 1, {β, αi} = 0, and {αi, αj} = +2δij , and let us define γ0
def
= β

and γi
def
= βαi. In this case:

γ0γ0 = ββ = +1 = g00, (S.56)

{γ0, γi} = {β, βαi} = β × {β, αi} = β × 0 = 0 = 2g0i, (S.57)

γiγj = βαiβαj = −ββαiαj = −αiαj , (S.58)

⇓

{γi, γj} = −{αi, αj} = −2δij = +2gij , (S.59)

and therefore

∀µ, ν : {γµ, γν} = 2gµν . (1)

Quod erat demonstrandum.
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Problem 3(b):

γα γα = 1
2{γ

α, γβ}gαβ = gαβgαβ = 4; (S.60)

γαγνγα = (γαγν = 2gνα − γνγα)γα

= 2γν − γν(γαγα = 4) = −2γν ; (S.61)

γαγµγνγα = (γαγµ = 2gµα − γµγα)γνγα

= 2γνγµ − γµ(γαγνγα = −2γν)

= 2γνγµ + 2γµγν = 4gµν ; (S.62)

γαγλγµγνγα = (γαγλ = 2gµα − γλγα)γµγνγα

= 2γµγνγλ − γλ(γαγµγνγα = 4gµν)

= (2γµγν − 4gµν = −2γνγµ)γλ

= −2γνγµγλ. (S.63)

Problem 3(c):

First, a Lemma: for any Lorentz vector aµ, the 6a def
= γµaµ matrix squares to

6a 6a = γµaµγ
νaν = aµaν ×

(
γµγν = gµν − 2iSµν

)
= a2 − i[aµ, aν ]× Sµν (S.64)

(where the last equality comes from Sµν = −Sνµ.) For vectors aµ whose components com-

mute with each other, this formula simplifies to 6 a2 = a2, in particular for the ordinary

derivatives ∂µ, 6∂2 = ∂2. However, the covariant derivatives Dµ do not commute with each

other. Instead, [Dµ, Dν ] = iqFµν(x) where q is the electric charge of the field on which Dµ

act; for the electron field Ψ(x), q = −e and hence [Dµ, Dν ]Ψ(x) = −ieFµν(x)Ψ(x). Hence,

according to the lemma (S.64),

6D2Ψ = D2Ψ − eFµνS
µνΨ. (S.65)

Now, suppose the electron field Ψ(x) satisfies the covariant Dirac equation (i 6D −m)Ψ = 0.
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Then for any differential operator D, D × (i 6D −m)Ψ = 0, and in particular

(−i 6D −m)× (i 6D −m)Ψ = 0. (S.66)

The LHS of this formula amounts to

(−i 6D −m)× (i 6D −m)Ψ =
(
6D2 + m2

)
Ψ =

(
D2 − eFµνS

µν + m2
)
Ψ, (S.67)

which immediately leads to eq. (18).

Problem 3(d):

The anti-commutation relations (17) imply γµγν = ±γνγµ where the sign is ‘+’ for µ = ν

and ‘−’ otherwise. Hence for any product Γ of the γ matrices, γµΓ = (−1)nΓγµ, where n is

the number of γν 6=µ factors of Γ. For the Γ = γ5 ≡ iγ0γ1γ2γ3, n = 3 for any µ = 0, 1, 2, 3,

hence γµγ5 = −γ5γµ.

As to the spin matrices, γ5γµγν = −γµγ5γν = +γµγνγ5 and therefore γ5Sµν = +Sµνγ5.

Problem 3(e):

First, the hermiticity:

(
γ5 ≡ iγ0γ1γ2γ3

)†
= −i(γ3)†(γ2)†(γ1)†(γ0)† = −i(−γ3)(−γ2)(−γ1)(+γ0)

= +iγ3γ2γ1γ0 = +i(γ3γ2γ1)× γ0 = +i(−1)3γ0 × γ3γ2γ1

= +i(−1)3γ0 × (−1)2γ1 × γ3γ2 = +i(−1)3γ0 × (−1)2γ1 × (−1)γ2γ3

= (−1)6 × (+iγ0γ1γ2γ3) ≡ +1× γ5.
(S.68)

Second, the square:

(γ5)2 = γ5(γ5)† = (iγ0γ1γ2γ3)(iγ3γ2γ1γ0) = −γ0γ1γ2(γ3γ3)γ2γ1γ0

= +γ0γ1(γ2γ2)γ1γ0 = −γ0(γ1γ1)γ0 = +γ0γ0 = +1.
(S.69)
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Problem 3(f):

Since the four Dirac matrices γ0, γ1, γ2, γ3 all anticommute with each other, we have

εκλµνγ
κγλγµγν = γ[0γ1γ2γ3] = 24γ0γ1γ2γ3 = −24iγ5. (S.70)

To prove the other identity, we note that a totally antisymmetric product γ[κγλγµγν] vanishes

unless the Lorentz indices κ, λ, µ, ν are all distinct — which makes them 0, 1, 2, 3 in some

order. For such indices, the anticommutativity of the Dirac matrices implies γκγλγµγν =

−εκλµν × γ0γ1γ2γ3 (note that ε0123 = −1), and hence

γ[κγλγµγν] = −24εκλµν × γ0γ1γ2γ3 = +24iεκλµν × γ5. (S.71)

Problem 3(g):

6iεκλµν γκγ
5 = 6

24 γκ γ
[κγλγµγν]

= 1
4 γκ

(
γκγ[λγµγν] − γ[λ)γκγ(µγν] + γ[λγµ)γκγ(ν] − γ[λγµγν]γκ

)
= 1

4

(
4γ[λγµγν] + 2γ[λγµγν] + 4g[λµγν] + 2γ[νγµγλ]

)
= 1

4(4 + 2 + 0− 2)× γ[λγµγν] = γ[λγµγν].
(S.72)

Problem 3(h):

Proof by inspection: In the Weyl basis and in the 2× 2 block form, the 16 matrices are

14×4 =

(
1 0

0 1

)
, γ0 =

(
0 1

1 0

)
, γi =

(
0 +σi

−σi 0

)
,

1
2γ

[iγj] = −iεijk
(
σk 0

0 σk

)
, 1

2γ
[0γi] =

(
−σi 0

0 +σi

)
, (S.73)

γ5γ0 =

(
0 −1

+1 0

)
, γ5γi =

(
0 −σi

−σi 0

)
, γ5 =

(
−1 0

0 +1

)
,

and their linear independence is self-evident. Since there are only 16 independent 4 × 4

matrices altogether, any such matrix Γ is a linear combination of the matrices (S.73). Quod

erat demonstrandum.
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Algebraic Proof: Without making any assumption about the matrix form of the γµ op-

erators, let us consider the Clifford algebra (17). Using γµγν = ±γνγµ where the sign

is + for µ = ν and − for µ 6= ν, we may re-order any product of the γ matrices as

±γ0 · · · γ0 γ1 · · · γ1 γ2 · · · γ2 γ3 · · · γ3. Moreover, since each γµ squares to +1 or −1, we may

further simplify the product in question to to ±(γ0 or 1)× (γ1 or 1)× (γ2 or 1)× (γ3 or 1).

The net result is (up to a sign or ±i factor) one of the 16 matrices: 1, or a γµ, or a

γµγν for µ 6= ν which equals to 1
2γ

[µγν], or a γλγµγν for 3 different λ, µ, ν which equals to

1
6γ

[λγµγν] = iελµνργ5γρ (cf. part (g)), or γ0γ1γ2γ3 = −iγ5. Consequently, any operator Γ

algebraically constructed of the γ’s is a linear combination of these 16 matrices.

Incidentally, this proof explains why the Dirac matrices are 4 × 4 in d = 4 spacetime

dimensions: the 16 linearly-independent products of Dirac matrices require matrix size to

be
√

16 = 4.

Technically, we may also use matrices of size 4n × 4n, but then we would have γµ =

γµ4×4 ⊗ 1n×n, and ditto for all their products. Physically, this means combining the Dirac

spinor index with some other index i = 1, . . . , n which has nothing to do with Lorentz

symmetry. Nobody wants such an index confusion, so physicists always stick to 4× 4 Dirac

matrices in 4 spacetime dimensions.

Problem 4(a):

I have already written down the γ5 and the 1
2γ

[µγν] = −2iSµν in the Weyl basis. (S.73), but

here is the detailed calculation, in case you need it:

γ5 = i

(
0 σ0

σ0 0

)(
0 σ1

σ1 0

)(
0 σ2

σ2 0

)(
0 σ3

σ3 0

)

= i

(
σ0σ1σ2σ3 0

0 σ0σ1σ2σ3

)
=

(
+iσ1σ2σ3 0

0 −iσ1σ2σ3

)

=

(
−1 0

0 +1

)
.

(4)
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Problem 4(b):

In the Weyl basis for the γ matrices,

γµγν =

(
0 σµ

σµ 0

)(
0 σν

σν 0

)
=

(
σµσν 0

0 σµσν

)
, (S.74)

and hence

Sij =
i

4

(
−σ[iσj] 0

0 −σ[iσj]

)
=

εijk

2

(
σk 0

0 σk

)
(S.75)

while

S0k = −Sk0 = i
2γ

0γk =
i

2

(
−σk 0

0 +σk

)
. (S.76)

By inspection, these spin matrices agree with the 2+2 reducible representation of the Lorentz

generators,

Sij = εijk

(
Ĵk2 0

0 Ĵk
2

)
while S0i = −Si0 =

(
K̂i

2 0

0 K̂i
2

)
, (S.77)

or in one formula

Sµν =

(
Ĵµν2 0

0 Ĵµν
2

)
. (5)

Problem 4(c):

In problem 2(c) we saw that for any continuous Lorentz transform L,

MR(L) = σ2M
∗
L(L)σ2 and ML(L) = σ2M

∗
Rσ2 . (S.78)

Consequently, considering the transformation laws (23) of the Weyl spinors ψL(x) and ψR(x)

and their complex conjugates, we see that

ψ′L(x′) = ML × ψL(x),

ψ′∗L (x′) = M∗L × ψL(x),

σ2 × ψ′∗L (x′) = σ2 ×M∗L × ψ∗L(x) = σ2M
∗
Lσ2 × σ2ψ∗L(x) = MR × σ2ψ∗L(x),

(S.79)

thus σ2×ψ∗L(x) transforms under the continuous Lorentz transforms exactly like the ψR(x).
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Likewise,

ψ′R(x′) = MR × ψR(x),

ψ′∗R(x′) = M∗R × ψR(x),

σ2 × ψ′∗R(x′) = σ2 ×M∗R × ψ∗R(x) = σ2M
∗
Rσ2 × σ2ψ∗R(x) = ML × σ2ψ∗R(x),

(S.80)

thus σ2×ψ∗R(x) transforms under the continuous Lorentz transforms exactly like the ψL(x).

Problem 4(d):

Given the γµ matrices (19) and the decomposition (23) of the Dirac spinor field Ψ(x) into 2

Weyl spinor fields ψL(x) and ψR(x), we have

(iγµ∂µ − m)Ψ =

(
−m iσµ∂µ

iσµ∂µ −m

)(
ψL

ψR

)
=

(
−mψL + iσµ∂µψR

iσµ∂µψL − mψR

)
(S.81)

while

Ψ = Ψ†γ0 = (ψ†L ψ†R )

(
0 1

1 0

)
= (ψ†R ψ†L ) . (S.82)

Consequently, the Dirac Lagrangian becomes

L = Ψ (iγµ∂µ − m)Ψ

= ψ†R

(
−mψL + iσµ∂µψR

)
+ ψ†L

(
iσµ∂µψL − mψR

)
= iψ†Rσ

µ∂µψR + iψ†Lσ
µ∂µψL − mψ†LψR − mψ†RψL .

(S.83)

Problem 4(e):

For the massless fermions — and only for the massless fermions, — the last two terms in

the Lagrangian (S.83) go away, and we are left with

Lmassless = iψ†Lσ
µ∂µψL + iψ†Rσ

µ∂µψR (S.84)

where the two Weyl spinor fields ψL(x) and ψR(x) are completely independent from each
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other. In particular, they obey independent Weyl equations

iσµ∂µψL = 0 and iσµ∂µψR = 0. (S.85)

On the other hand, for m 6= 0 the two last terms in the Lagrangian (S.83) connect the ψL and

ψR to each other and we cannot have one without the other. In particular, their equations

of motion become mixed,

iσµ∂µψL = mψR and iσµ∂µψR = mψL . (S.86)

Problem 5(a):

As we saw in class, the Dirac equation (i 6∂ −m)Ψ = 0 implies the Klein–Gordon equation

(∂2 + m2)Ψ = 0, hence any plane-wave solution of the Dirac equation must have on-shell

momentum pµ with p2 = m2. But there is more to the Dirac equation than the Klein–

Gordon equation, hence eqs. (25) for the spinor coefficients of the e∓ipx plane waves. Indeed,

for Ψα(x) = e−ipxuα the Dirac equation becomes

(i 6∂ −m)e−ipxu = e−ipx × (6p−m)u, (S.87)

so the constant spinor uα must obey the matrix equation (6 p − m)u = 0. Likewise, for

Ψα(x) = e+ipxvα the Dirac equation becomes

(i 6∂ −m)e+ipxv = e+ipx × (−6p−m)v, (S.88)

so the spinor vα must obey the matrix equation (6p + m)v = 0. Conversely, for any on-shell

momentum p and any spinors uα and vα obeying the matrix equations (25) the plane waves

e−ipxuα and e+ipxvα obey the Dirac equation.
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Problem 5(b):

For p = 0, p0 = +m and 6 p − m = m(γ0 − 1). Hence, the u(p = 0, s) spinors satisfy

(γ0 − 1)u = 0, or in the Weyl basis

(
−12×2 12×2

12×2 −12×2

)
u = 0 =⇒ u =

(
ζ

ζ

)
(S.89)

where ζ is an arbitrary two-component spinor. Its normalization follows from u†u = 2 ζ†ζ,

so if we want u†u = 2Ep = 2m (for p = 0), then we need ζ†ζ = m. Equivalently, we want

ζ =
√
mξ — and hence u as in eq. (27) — for a conventionally normalized spinor ξ with

ξ†ξ = 0.

Note that there are two independent choices of ξ, normalized to ξ†sξs′ = δs,s′ , so they give

rise to two independent uα(0, s) spinors normalized to u†(0, s)u(0, s′) = 2mδs,s′ = 2Epδs,s′ .

They correspond to the two spin states of the p = 0 electron. In terms of the spin vector,

S = 1
2ξ
†
sσσξs.

Problem 5(c):

The Dirac equation is Lorentz-covariant, so we may obtain solutions for all pµ = (+Ep,p) by

simply Lorentz-boosting the solutions (27) from the rest frame where pµ0 = (+m,0). Thus,

u(p, s) = MD(B)u(p0, s) =

(
ML 0

0 MR

)(√
mξs
√
mξs

)
=

(√
mML ξs
√
mMR ξs

)
(S.90)

where MD, ML, and MR are respectively Dirac-spinor, LH–Weyl-spinor, and RH–Weyl-

spinor representations or the Lorentz boost B from pµ = (m,0) to pµ = (E,p). As we saw

in problem 2(b), for a boost of velocity β in the direction n,

ML =
√
γ ×

√
1− βn · σσ , MR =

√
γ ×

√
1 + βn · σσ . (11)

For the boost in question

γ =
E

m
, γβn =

p

m
, (S.91)
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hence

√
mML =

√
E − p · σσ ,

√
mMR =

√
E + p · σσ . (S.92)

Plugging these formulae into eq. (S.90) immediately gives us

u(p, s) =

(√
E − p · σσ ξs
√
E + p · σσ ξs

)
. (28)

Problem 5(d):

The negative-frequency solutions e+ipxvα(p, s) have Dirac spinors vα satisfying (6p+m)v = 0.

For a particle at rest, pµ = (+m,0), this equation becomes m(γ0 + 1)v = 0, or in the Weyl

basis

(
12×2 12×2

12×2 12×2

)
v(p = 0, s) = 0 =⇒ v(p = 0, s) =

√
m

(
+ηs

−ηs

)
(S.93)

for some two-component spinor ηs. As in part (b), the
√
m factor translates the normalization

v†(p, s)v(p, s′) = 2Epδs,s′ = 2mδs,s′ (for p = 0) to η†sηs′ = δs,s′ .

For p 6= 0 we proceed similarly to part (c), namely Lorentz-boost the rest-frame solu-

tion (S.93) to the frame where pµ = (+Ep,p):

v(p, s) = MD(B) v(p0, s) =

(
ML 0

0 MR

)(
+
√
mηs

−
√
mηs

)

=

(
+
√
mML ηs

−
√
mMR ηs

)
=

(
+
√
E − p · σσ ηs

−
√
E + p · σσ ηs

)
.

(S.94)

precisely as in eq. (29).
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Problem 5(e):

Physically, a hole in the Fermi sea has opposite free energy, opposite momentum, opposite

spin, etc., from the missing fermion (see my notes for the explanation). A positron is a hole

in the Dirac sea of electrons, so it should have opposite pµ = (E,p) from the missing electron

state — that’s why the v(p, s) spinors accompany the e+ipx = e+iEt−ipx plane waves instead

of the e−ipx = E−iEt+ipx factors of the u(p, s) spinors. Likewise, the positron should have

the opposite spin state from the missing electron, and that’s why the ηs should have the

opposite spin from the ξs. More accurately, the ηs should carry the opposite spin vector

η†sSηs from the ξ†sSξs.

The solution to this spin relation is ηs = σ2ξ
∗
s (where ∗ denotes complex conjugation).

Indeed, let

η = σ2ξ
∗ =⇒ η† = ξ>σ2 , (S.95)

and let’s use the formula

σ2σσ∗σ2 = −σσ (S.96)

from problem 2(c). Consequently,

η†σση = ξ>σ2σσσ2ξ∗ =
(
ξ†σ2σσ∗σ2ξ

)∗
=
(
−ξ†σσξ

)∗
= −ξ†σσξ, (S.97)

or in other words

η†Sη = 1
2η
†σση = −ξ†Sξ . (S.98)

And this is why we set ηs = σ2ξ
∗
s .

Now consider implication of this relation between the ξs and ηs spinors for the plane-wave

factors uα(p, s) and vα(p, s). Thanks to eq. (S.96) we have

σ2 ×
√
E ∓ p · σσ× σ2 =

(√
E ± p · σσ

)∗
, (S.99)
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hence in light of the explicit formulae (28) and (29),

v(p, s) =

(
+
√
E − p · σσ ηs

−
√
E + p · σσ ηs

)
=

(
+
√
E − p · σσσ2ξ∗s

−
√
E + p · σσσ2ξ∗s

)

=

(
+σ2σ2

√
E − p · σσσ2ξ∗s

−σ2σ2
√
E + p · σσσ2ξ∗s

)
=

(
+σ2

(√
E + p · σσ

)∗
ξ∗s

−σ2
(√

E − p · σσ
)∗
ξ∗s

)

=

(
0 +σ2

−σ2 0

)
×

(
+
√
E − p · σσ ξs

+
√
E + p · σσ ξs

)∗

= γ2u∗(p, s).

(S.100)

This verifies the first eq. (30). We may verify the second eq. (30) in a similar manner, but

it’s easier to use γ2 being imaginary and squaring to −1, hence γ2(γ2)∗ = −γ2γ2 = +1, and

therefore

γ2v∗(p, s) = γ2
(
γ2u∗(p, s)

)∗
= γ2

(
γ2
)∗
u(p, s) = +u(p, s). (S.101)

Problem 5(f):

The 3D spinors ξλ of definite helicity λ = ∓1
2 satisfy

(p · σσ)ξ∓ = ∓|p| × ξ∓ . (S.102)

Plugging these ξλ into the positive-energy Dirac spinors (28), we obtain

u(p, λ = ∓1
2) =

(√
E ± |p| × ξ∓√
E ∓ |p| × ξ∓

)
. (S.103)

In the ultra-relativistic limit E ≈ |p| � m, the square roots here simplify to
√
E + |p| ≈

√
2E and

√
E − |p| ≈ 0 (in comparison with the other root). Consequently, eq. (S.103)

simplifies to

u(p, L) ≈
√

2E

(
ξL

0

)
, u(p,R) ≈

√
2E

(
0

ξR

)
. (S.104)

In other words, the ultra-relativistic positive-energy Dirac spinors of definite helicity are

chiral — dominated by the LH Weyl components for the left helicity or by the RH Weyl

components for the right helicity.
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Now consider the negative-energy Dirac spinors (29). The ηs spinors have exactly oppo-

site spins from the ξs, so their helicities are also opposite from the ξs. Thus,

(p · σσ)η∓ = ±|p| × η∓ (S.105)

— note the opposite sign from eq. (S.102). Therefore, the negative-energy Dirac spinors v

of definite helicity are

v(p, λ = ∓1
2) =

(
+
√
E ∓ |p| × η∓

−
√
E ± |p| × η∓

)
, (S.106)

and in the ultra-relativistic limit they become

v(p, L) ≈ −
√

2E

(
0

ηL

)
, v(p,R) ≈ +

√
2E

(
ηR

0

)
. (S.107)

Again, the ultra-relativistic negative-energy spinors are chiral, but this time the chirality

is opposite from the helicity — the left-helicity spinor has dominant RH Weyl components

while the right-helicity spinor has dominant LH Weyl components.
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