PHY-396 K. Solutions for homework set #7.

Problem 1(a):
The quantum state |p, \) has definite momentum p#, thus ]f’u D, A) = pu [p, A) and likewise

E,uaﬁ’yJ P’Y ’p> > = %e,uozﬁ'yp’yjaﬁ !p, )‘> : (Sl)

To work out the RHS of this formula, let’s spell out the operator

N d f A
Qu = 3euapp’ I (5-2)
in components:
Qo = Seoiup™J7 = LéiFph x 7tjt = p-J, (5.3)
Qi = jeror’ J* + §€ij0kpkjj0 + g S
_ _%Ez’jkE % eijéjé 1 zgk k % K] . % ijk k( K])
= —EJ + (pr)i. (5.4)

For a massless particle with a lightlike momentum p# = (E, Ev), |v| = 1, the components

of Q" operators become

A

Q = +EJ + EvxK = Fi
(for T as in eq. (1)), (S.5)
Q" = BEv-J = EA

When this operator acts on the particle state |p, A) which has definite helicity and is also

annihilated by the two transverse generators I, as in eq. (3), we get

Qlp,\) = Exp,A) = M Ip,\) (S.6)

and also

Ip,A) = Avip,A) (8.7)



and hence
Qlp,\) = EMAvIp,A\) = Ap|p,\). (S.8)

Altogether, in 4d terms we get
Q[ A) = M [p. ) (8.9)
and hence (after lowering the index 1 on both sides)
3€uapy d PPV Ip.X) = APy |p,A) . (4)
Quod erat demonstrandum.

Problem 1(b):
Consider a continuous Lorentz transform z# — x'* = L',z acting on the |p, \) state of a
massless particle. The operators on both sides of both sides of eq. (4) transform as Lorentz

vectors,

~

D(L)B,DY(L) = LIP,, D(L) (%emmjaﬂm) Di(L) = LY (%euaﬂvjaﬁﬁ) . (S.10)
Consequently, the transformed state
D(L)[p,A) = |Lp,?7) (S.11)
satisfies the same eq. (4) as the original state |p, \). Indeed,
L (S6uasy 7 P) |Lp,72) = D(L) (Sevapy J*PPY) DI(L) x D p, )
— D(L) x (%emmjaﬁfﬂ) D, \)
(by eq. (4)) = D(L) x AP, |p, \) (5.12)
— Ax D(L)B,DI(L) x D|p, \)
= Ax L/P,|Lp,77),
and hence

(%ewmjaﬁfﬂ) 1Lp,??) = AP, |Lp,?7). (S.13)

Note that this equation for the transformed state |Lp,?7) has exactly the same helicity



eigenvalue A\ as the original eq. (4), which means that the transformed state has the same
helicity as the original state. And since the momentum and the helicity completely determine

the quantum state of a particle up to an overall phase, it follows that
D(L) |p,\) = |Lp, same \) x eiPhase, (11)

Thus, for massless particles, the continuous Lorentz transforms preserve helicity!

Problem 2(a):

The Lorentz generators Jt and K* obey commutation relations
G0 = ddh, LRI = aeRE O [RRT) = iR (s14)
Consequently, for two components of J or two components of J_ we have

L) = 3]+ [k + [0 - 3[R )
= Lick gk £ LielR KR 1 Lidih R - 1 (—i)etdk g

S o C X o (S.15)
= JeTJh  LeTRRE — e (LR & 4RY)

while for one component of J; and one component of J_ (or the other way around) we get

2] = 4[] = 2 [ 0) = 4[]+ 3[R

= %lieijkjk + %ieijkf(k T iiéijkf(k + i(—i)eijkjk
o ) ) R (S.16)
= LR (JF LiKkY iKY - J)

= 0.



Problem 2(b):

Let’s start by calculating the squares of the matrices (9) representing the boost B(r,n),
[Ma(B)]® = exp(—rn-0) and [M5(B)]® = exp(+rn-0). (S.17)

For any unit vector n,

(n-0)? = n? = 1, (S.18)
hence for any integer k > 0
L 1 for even k, 519
n-o = .
( ) { (n-o0) for odd k. (8:19)

Consequently, expanding the exponentials in eq. (S.17) into powers of the rapidity r yields

exp(Frn-0) = Z (:Fﬁ) X (n-o)"

(S.20)

(( translating from the rapidity to the 8 and ~ parameters (10)))
= yx1 F Byx(n-0)
= v X (1 :Fﬁn~0).

Thus,

[Ma(B)]* = 7(1 = fn-0a),  [Mz(B)]* = 7(1 + fn-a), (S.21)

and therefore

My(B) = Ax\I1-pn-0, Mz(B) = \/x/1+pn-o. (11)

Quod erat demonstrandum.



Problem 2(c):
Among the 3 Pauli matrices 0, the o1 and the g3 matrices are real while the o3 is imaginary.
At the same time, the o1 and the o3 anticommute with the oo while the o9 commutes with

itself. Consequently,
o2(013) 09 = 40901300 = —0130202 = —013, (5.22)
while
oo(02)*09 = —090909 = —o039, (S.23)
thus for all 3 Pauli matrices

0'20'*0'2 = —0. (8.24)

Now let’s apply this identity to the 2 and the 2 representations of the same Lorentz sym-
metry L. Any continuous Lorentz symmetry must be generated by some linear combinations

of the angular momenta and boost generators, thus

L = exp(—ia - J—ib- K) (S.25)

for some real 3-vectors a and b. In the 2 representation, the Jt generators act as %cri matrices

while the K* generators act as —%O’i, thus

a-J + b-K acts as t(a—ib) o (S.26)
and hence
M Y My(L) = exp(—i(a—ib)-0). (8.27)

Likewise, in the 2 representation, the Jt generators also act as %O'i matrices but the K*



generators act as —|—%ai, thus
a-J + b-K acts as %(a+ib)-a (S.28)

and hence
M = Mz(L) = exp(—%(a+ib)-0). (S.29)
In terms of the complex 3-vector ¢ = %a — %b,
M = exp(—ic-0) and M = exp(—ic*-0), (S.30)
and thanks to eq. (S.24), and two such matrices are related to each other as
M = ousM*oy and M = o9M 5. (S.31)
To prove this relation, note that eq. (S.24) implies
oo(—ic-0)*oy = +ic" - (020%02) = —ic” -0, (S.32)

hence

UQ[(-iC-O')Q]*UQ = 0'2(—2.(:'0')*0'2XUQ(—iC‘U)QUQ = (—iC*~0')X(—iC*-0') = (—iC*-O')2,

(S.33)
and likewise for any integer power n,
o2 [(—ic-0)"] oy = (—ic*- o)™ (S.34)
Consequently, for a power series like the exponential we have
> 1 " <1
* 3 . *
ooM* oy = o9 (Z m(—zc . 0)”) oy = Z mag((—zc . O')”) 09
n=0 n=0 (S.35)
00 1 L
=Y (=i o) = 1,
n=0

and likewise O'QM*O'Q = M. Quod erat demonstrandum.



Problem 2(d):
Let’s start with reality. The matrix V' = V#7,, is hermitian if and only if the 4-vector V* is

real. For any matrix M € SL(2,C), the transform
VoV = MVM (S.36)
preserves hermiticity: if V' is hermitian, then so is V/; indeed
v = (vt = (h)'viut = vt = v (5.37)

In terms of the 4-vectors, this means that if the V# is real than the V/* = L,V is also real.

In other words, the 4 x 4 matrix L}, (M) is real.

Next, let’s prove that L', (M) € O(3,1) — it preserves the Lorentz metric ¢*?, or
equivalently, for any V#, g*8 VoVi = g8 Vo V5. In terms of the 2 x 2 matrix V' = V#5),, the

Lorentz square of the 4-vector becomes the determinant:

9"V, Vs = det(V = V,0"). (S.38)

o3 = <t)1 _01> (S.39)

Vo + Vs Vi — iV,
Vitite VoV

Indeed, from the explicit form of the 4 matrices

1 0 0 1 0 —1
o = y 01 = y 02 =
0 1 10 +i 0

we have

vzwaﬂ:<

and hence

det(V) = (Vo+WB)(Vo—W3) — (Vi —iVa)(Vi+iVa) = V@ = V& - VE - V3 = gaﬂvavﬂ.
(S.40)

The determinant of a matrix product is the product of the individual matrices” determi-

nants. Hence, for the transform (S.36),
det(V') = det(M) x det(V) x det(MT) = det(V) x |det(M)|?. (S.41)

The M matrices of interest to us belong to the SL(2, C) group — they are complex matrices



with unit determinants. There are no other restrictions, but det(M) = 1 is enough to assure

det(V') = det(V), ¢f. eq. (S.41). Thanks to the relation (S.38), this means
g*PVIVE = det(V') = det(V) = g™V, Vj (S.42)

— which proves that the matrix L/, (M) is indeed Lorentzian.

Problem 2(e):

To prove that the Lorentz transform L/, (M) is orthochronous, we need to show that for any
V,, in the forward light cone — that is, V2>0and Vy) >0 — the V,i is also in the forward
light cone. In matrix terms, V2 > 0 means det(V) > 0 while V5 > 0 means tr(V) > 0;
together, these two conditions mean that the 2 x 2 hermitian matrix V is positive-definite.

The transform (S.36) preserves positive definiteness: if for any complex 2-vector & # 0 we

have £1V¢ > 0, then
Ve = IMVMTE = (MTETV(MTE) > 0. (S.43)

(Note that MT¢ # 0 for any € # 0 because det(M) # 0.) Thus, for any M € SL(2,C) the
Lorentz transform V# — V'¥ preserves the forward light cone — in other words, the L%, (M)
is orthochronous, L', (M) € O7(3,1).

The simplest proof that the Lorentz transform (16) is proper — det(L) = +1 — for any
SL(2,C) matrix M is topological: The SL(2, C) group manifold — which spans all matrices
of the form

M = (Z Z), complex a,b,c,d, ad — bc = 1 (S.44)
is connected, so all such matrices are continuously connected to the 1o.9 matrix. It is
easy to see that for M = 1, the Lorentz transform L(1) is trivial, L/, = 4}, hence all
Lorentz transforms of the form (16) are continuously connected to the trivial transform.

Consequently, they all must be continuous Lorentz transforms and therefore proper and

orthochronous.



An alternative proof is more involved. It involves decomposition of M into a product
of a unitary U and a Hermitian H, 2 Lemmas showing that L(U) is a pure 3D rotation
(without reflections) while L(H) is a pure Lorentz boost, and the group law from part (f)
which tells us that

L(M =UH) = L(U) x L(H) = rotation X boost, (S.45)

which makes it a continuous Lorentz transform. But this is a rather long proof, so I leave it

as optional exercise for the interested students.

Problem 2(f):

Let L1 = L(My), Ly = L(Ms) and Liy = L(M2Mj) be Lorentz transforms constructed
according to eq. (13-16) for some SL(2,C) matrices M; and My and their product MaM;.
We want to prove that Lis obtains from a product of consecutive Lorentz transforms, first

Lo and then L1, so let’s consider how all these transforms act on some 4-vector V#. On one
hand,

(L12V)' 5, = (MyMy) x (VVG,) x (MaMy)T = MyM; x (VV5,) x MIMJ.  (S.46)
On the other hand,

(LaLi V)7, = My x (L1V)'5,) x My = My x (M x (V'7,) x M}) x M)
also = MyM, x (V') x M{M].
Thus we see that
(L12V)"' 7, = (L2L1V)'5, (S.47)
and therefore

(L12V)" = (L2LiV)". (S.48)

Moreover, this holds true for any 4—vector V#, hence the Lorentz transforms L1y = L(Ma M)

and LoLy = L(Msy)L(Mj) must be equal to each other, quod erat demonstrandum.



Problem 2(g):

For any Lie algebra equivalent to an angular momentum or its analytic continuation, the
product of two doublets comprises a triplet and a singlet, 2® 2 = 3@ 1, or in (j) notations,
(3) ® (3) = (1) ® (0). Furthermore, the triplet 3 = (1) is symmetric with respect to

permutations of the two doublets while the singlet 1 = (0) is antisymmetric.

For two separate and independent types of angular momenta J, and J_ we combine the
7+ quantum numbers independently from the j_ and the j_ quantum numbers independently

from the j;. For two bi-spinors, this gives us
(33)® (33 = LY@ (L,0)&(0,1)&(0,0). (S49)

Furthermore, the symmetric part of this product should be either symmetric with respect to

both the j; and the j_ indices or antisymmetric with respect to both indices, thus

(55 @ G H]ym = 1,1 &(0,0). (8.50)

Likewise, the antisymmetric part is either symmetric with respect to the j; but antisym-

metric with respect to the j_ or the other way around, thus

= (1,0)® (0,1). (S.51)

—
—~
Nl =
Nl
~—
—~
Nl =
Nol—=

)} antisym

From the SOT(3,1) point of view, the bi-spinor (3,3) is the Lorentz vector. A general
2-index Lorentz tensor transforms like a product of two such vectors, so from the SL(2, C)
point of view it’s a product of two bi-spinors, which decomposes to irreducible multiplets

according to eq. (S.49).

The Lorentz symmetry respects splitting of a general 2-index tensor into a symmetric
tensor TH” = +T"F and an antisymmetric tensor F*¥ = —F"#. The symmetric tensor corre-
sponds to a symmetrized square of a bi-spinor, which decomposes into irreducible multiplets
according to eq. (S.50). The singlet (0,0) component is the Lorentz-invariant trace 7%, while

the (1,1) irreducible multiplet is the traceless part of the symmetric tensor.

10



Likewise, the antisymmetric Lorentz tensor F* = —F"! decomposes according to
eq. (S.51). Here, the irreducible components (1,0) and (0,1) are complex but conjugate
to each other; individually, they describe antisymmetric tensors subject to complex duality

conditions %e"‘)‘WFW = +iF" or in 3D terms, E = +iB.

Problem 3(a):

Suppose the v# matrices obey the anticommutation relations (16). Then:

B2 = A0 — 00— g (S.52)
(8,0} = (22"} = "%+ 40
= 0% {yo,yi} = "%0 = 0, (S.53)
a'al = A0 = 0yl = 4, (S.54)
4
{h,af} = —{yi47} = —2gi = +a50, (5.55)

quod erat demonstrandum.

Conversely, suppose 52 = 1, {8, a’} = 0, and {a*, a9} = +26% and let us define 10 %< 3

and ~* def Bat. In this case:

0 = 88 = +1 = g%, (S-56)
{7%,7'} = {8.8a'} = Bx{B,a'} = Bx0 =0 = 29", (S.57)
VAl = BalBal = —BBaled = —dld, (S.58)
I
(7,7} = —{a', 0/} = =267 = +2¢, (S.59)
and therefore
Vv {997} = 29" (1)

Quod erat demonstrandum.
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Problem 3(b):

Y = HNY Y 0as = 9P00s = 4 (S.60)

7Y e = (1" = 29" = 7" )a
= 29" = 7( " =4) = 297 (5.61)
VY Ve = (Y = 20" = A e
= 29" = ("% = —27")
= 297" + 29MyY = 4" (S.62)

VY v = (P = 26" — YY),
= 299"y — P (VY v = 4g™)
= (29" — 4g" = —2"y")y
= 29k (S.63)

Problem 3(c):

. def .
First, a Lemma: for any Lorentz vector a#, the ¢ = ~vHa, matrix squares to

dd = Yana, = aya, X (7“7” = g" — 2%'5“”) = d® — iay,a,] x S* (S.64)
(where the last equality comes from S* = —S"F.) For vectors a* whose components com-
mute with each other, this formula simplifies to ¢?> = a2, in particular for the ordinary

derivatives 0*, #*> = 0%. However, the covariant derivatives D,, do not commute with each
other. Instead, [D,, D,] = iqF},,(x) where ¢ is the electric charge of the field on which D,
act; for the electron field ¥(z), ¢ = —e and hence [D,, D,|¥(z) = —ieF,,(x)¥(z). Hence,
according to the lemma (S.64),

P*0 = D?V — eF,,S"V. (S.65)

Now, suppose the electron field ¥(x) satisfies the covariant Dirac equation (¢ — m)¥ = 0.

12



Then for any differential operator D, D x (i) — m)¥ = 0, and in particular
(=it —m) x (i) —m)¥ = 0. (S.66)
The LHS of this formula amounts to
(—iP—m)x (i —m)¥ = P? + m*)¥ = (D* — eF,S" + m?)V, (S.67)
which immediately leads to eq. (18).

Problem 3(d):

The anti-commutation relations (17) imply v#~v” = +£4”~* where the sign is ‘+’ for p = v
and ‘—’ otherwise. Hence for any product I' of the v matrices, Y*I" = (—1)"I'y*, where n is
the number of 4*7# factors of T'. For the I' = 4° = in0y14243, n = 3 for any = 0,1,2, 3,
hence 7“75 = —757".

As to the spin matrices, Y9y#yY = —yHy2yY = +4H4Y~5 and therefore 42 SH = +SHV AP,

Problem 3(e):
First, the hermiticity:

(4° = ir®2) =~ EADTEHTEY)T = =) (=) (=) ()
= +ir’ 7?7 = () x 2% = Hi(=1)%0 x
= +i(=1)%" x (=1)*4" x99 = +i(=1)%7" x (=1)*y" x (=1)7*°
= (-1)° x (+in"y'9*?) = +1x7”.
(S.68)

Second, the square:

= YOO = (23210 = 02 (1330

= 7' = A = % = 4L

5\2
) (S.69)
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Problem 3(f):

Since the four Dirac matrices Y, 41, 42, 43 all anticommute with each other, we have

eV VY = A0 = 2490919298 = —24in®, (S.70)

To prove the other identity, we note that a totally antisymmetric product 'y["‘fy)‘*y“fy”] vanishes
unless the Lorentz indices k, A, u, v are all distinct — which makes them 0,1,2,3 in some
order. For such indices, the anticommutativity of the Dirac matrices implies 7y y#qy" =

— R 707172,}/3 (note that 9123 = —1)7 and hence

7[’{7)‘7“7”] = —Q4erM x A0yln2A3 = 245 ~5. (S.71)

Problem 3(g):

Bie™ M 0P = Ly Ayt

= 17 (v“v“v“v”} — Wyl Ry yrg 01 V[W“v”}v*‘)
= i(www I N N TN R LY QW[WW])
= 1(4+24+0-2) x gyl = 4PRqpd,
(S.72)

Problem 3(h):
Proof by inspection: In the Weyl basis and in the 2 x 2 block form, the 16 matrices are

1 0 0 1 , 0 +o
1 p— 5 0 pr— ; Z pr— . 5

k )
o ) 0 ) -0 0
Ral (0 VS R el 0 ol ] (S.73)

0 -1 . 0 —ot -1 0
5.0 _ 5.1 _ 5 _
T <+1 0>’ o (—al 0)’ ! <0 +1>’

and their linear independence is self-evident. Since there are only 16 independent 4 x 4
matrices altogether, any such matrix I' is a linear combination of the matrices (S.73). Quod

erat demonstrandum.
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Algebraic Proof: Without making any assumption about the matrix form of the * op-
erators, let us consider the Clifford algebra (17). Using y#v” = ++4”~4* where the sign
is + for u = v and — for u # v, we may re-order any product of the 7 matrices as
470 A0l AT A2 4283 43 Moreover, since each y* squares to +1 or —1, we may
further simplify the product in question to to (7% or 1) x (y! or 1) x (2 or 1) x (y3 or 1).
The net result is (up to a sign or +i factor) one of the 16 matrices: 1, or a v, or a
~vHAY for ;i # v which equals to %7[“71’ I, or a AAytav for 3 different A, p, v which equals to
%7[)‘7“7”] = iP5y, (cf. part (g)), or Y0919%4% = —iy®. Consequently, any operator T’

algebraically constructed of the +’s is a linear combination of these 16 matrices.

Incidentally, this proof explains why the Dirac matrices are 4 X 4 in d = 4 spacetime

dimensions: the 16 linearly-independent products of Dirac matrices require matrix size to

be V16 = 4.

Technically, we may also use matrices of size 4n x 4n, but then we would have v* =
Yis4 ® Luxn, and ditto for all their products. Physically, this means combining the Dirac
spinor index with some other index ¢ = 1,...,n which has nothing to do with Lorentz
symmetry. Nobody wants such an index confusion, so physicists always stick to 4 x 4 Dirac

matrices in 4 spacetime dimensions.

Problem 4(a):
I have already written down the 7 and the %'y[“v” ' = —2i9" in the Weyl basis. (S.73), but

here is the detailed calculation, in case you need it:

5 [0 o 0 of 0 o 0 o3
Vo=
70 0 710 72 0 70
oV5lo253 0 +iolo2o3 0
= 3 = (4)
0 70015203 0 —ioto2o3

_ (‘01 +O1>
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Problem 4(b):
In the Weyl basis for the v matrices,

v 0 ot 0 o¥ lofatoid 0 (5.74)
R V)  0/) \ 0o Gto)’ '

and hence
i i [ —oligl] 0 dik (oF 0 g 7
4 0 —oligil ) 0 ok (575)
while
. k
. —0 0
SO — gk — 00k 1 . S.76
577 A (S.76)

By inspection, these spin matrices agree with the 242 reducible representation of the Lorentz

generators,

g [ JE 0 . . Ky 0
S = ¢k ( 02 jk) while S§% = —8§0 — ( 02 K) (S.77)

2
JE 0
quv ( ) jﬁl’)' (5)
2
Problem 4(c):

In problem 2(c) we saw that for any continuous Lorentz transform L,

or in one formula

Mp(L) = 09Mj(L)og and M (L) = o2Mpos. (S.78)

Consequently, considering the transformation laws (23) of the Weyl spinors ¢ 7, (x) and ()

and their complex conjugates, we see that

Yr(a) = Mpxir(x),

Yr (') = Mp x (), (S.79)
09 X w/[ik(x/) = 09 X ME X wz($) = UQMEO'g X Ugiﬁi(%) = MR X 0'21/12(1'),

thus o9 x ] (z) transforms under the continuous Lorentz transforms exactly like the ¢ g(z).
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Likewise,

Yr(a") = Mg x ¥p(z),
V(') = Mp x Yg(z), (.80)

09 X Qﬂ/ﬁ(l‘/) = 09 X ME X ?,DE((E) = O'QM]*%O'Q X Jg?ﬂ}%(l‘) = ML X 027#}%(%’),
thus o2 x ¢ (x) transforms under the continuous Lorentz transforms exactly like the ¢ (z).

Problem 4(d):
Given the v* matrices (19) and the decomposition (23) of the Dirac spinor field ¥(z) into 2
Weyl spinor fields ¢ (x) and g(x), we have

(1999, — m)W = ( —m ia“@u> (2/}1;) _ (—me + iaM3H¢R> (5.81)

iohd, —m YR ioh0 b, — mypR
while

T = v = (¢l w}g)(O 1) = (vh o). (S.82)

1 0

Consequently, the Dirac Lagrangian becomes

L = V(in"0, — m)¥
= Gh(-men + i 0uin) + v} (001 — mip) (5.83)
= Who' g + WIF L — mulvg — muhy,.

Problem 4(e):
For the massless fermions — and only for the massless fermions, — the last two terms in

the Lagrangian (S.83) go away, and we are left with

‘Cmassless = idjzﬁua;ﬂvDL + W};U“@MDR (884)

where the two Weyl spinor fields ¢z (z) and ¢r(x) are completely independent from each

17



other. In particular, they obey independent Weyl equations

iocl0,;, = 0 and 00 = 0. (S.85)

On the other hand, for m # 0 the two last terms in the Lagrangian (S.83) connect the 17, and
1R to each other and we cannot have one without the other. In particular, their equations

of motion become mixed,

iEMaM¢L = meR and Z.O'Ma'uﬂ)R = me (886)

Problem 5(a):

As we saw in class, the Dirac equation (i # — m)¥ = 0 implies the Klein—-Gordon equation
(82 + m2)\I! = 0, hence any plane-wave solution of the Dirac equation must have on-shell
momentum p* with p> = m?. But there is more to the Dirac equation than the Klein-
Gordon equation, hence eqs. (25) for the spinor coefficients of the eTP* plane waves. Indeed,

for U, (z) = e "%y, the Dirac equation becomes

(i@ —m)e PPy = e PT % (f —m)u, (S.87)

so the constant spinor u, must obey the matrix equation (p — m)u = 0. Likewise, for

VU, (z) = e™Py, the Dirac equation becomes

(i @ —m)etPy = e™PT x (— g —m)v, (S.88)

so the spinor v, must obey the matrix equation (¥ + m)v = 0. Conversely, for any on-shell
momentum p and any spinors u, and v, obeying the matrix equations (25) the plane waves

e~ "PTy, and ey, obey the Dirac equation.

18



For p = 0, p° = +m and p —m = m(y” — 1). Hence, the u(p = 0,s) spinors satisfy
(7Y — 1)u = 0, or in the Weyl basis

<_12><2 12><2 ) (C)
u=0 = u= (S.89)
12><2 _12><2 C

where ¢ is an arbitrary two-component spinor. Its normalization follows from ufu = 27,
so if we want ufu = 2E, = 2m (for p = 0), then we need ¢f¢ = m. Equivalently, we want

¢ = y/m¢& — and hence u as in eq. (27) — for a conventionally normalized spinor ¢ with
gfe=0.

Note that there are two independent choices of &, normalized to 615 o = 0Os,¢, 50 they give
rise to two independent (0, s) spinors normalized to uf(0, s)u(0, s') = 2mds ¢ = 2Epds..
They correspond to the two spin states of the p = 0 electron. In terms of the spin vector,

S = Leloe,.

Problem 5(c):
The Dirac equation is Lorentz-covariant, so we may obtain solutions for all p* = (+Ep, p) by

simply Lorentz-boosting the solutions (27) from the rest frame where pjy = (+m, 0). Thus,

M 0 m&s m My, &
u(p,s) = Mp(B)u(po,s) = ( OL MR) (22) = (\\j_;M;§> (S.90)

where Mp, My, and Mp are respectively Dirac-spinor, LH-Weyl-spinor, and RH-Weyl-
spinor representations or the Lorentz boost B from p* = (m,0) to p* = (E,p). As we saw

in problem 2(b), for a boost of velocity  in the direction n,

ML:ﬁX\/l—ﬁl’l-O', MR:ﬁX\/l—I—Bn-U. (11)

For the boost in question

E
v=2 gn=2 (S.91)
m m
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hence
vmMp, = \JE —p-0, VmMrp = \/JE +p-O. (S.92)

Plugging these formulae into eq. (S.90) immediately gives us

u(p,s) — VE —p-0¢&s
P T \vETh s )

Problem 5(d):
The negative-frequency solutions e™%v,,(p, s) have Dirac spinors v, satisfying (#+m)v = 0.
For a particle at rest, p* = (+m, 0), this equation becomes m(7? 4+ 1)v = 0, or in the Weyl

basis

(1“2 12X2)U(P=0,3) =0 = ou(p=0,s) = \/ﬁ<+ns) (5.93)

12><2 12><2 _773

for some two-component spinor 75. As in part (b), the /m factor translates the normalization

vl (p, s)v(p, ') = 2E,0 s = 2mds ¢ (for p=0) to 771773/ = 05,5

For p # 0 we proceed similarly to part (c), namely Lorentz-boost the rest-frame solu-

tion (S.93) to the frame where p* = (+Ep, p):

o(p.s) = Mp(B)v(po,s) = (ML " ) (”M)

0 Mg _\/%778
(S.94)
_ <+x/ﬁMLns> _ (Jr\/E—p-Om)
—y/m Mg s ~VE+p-ons )

precisely as in eq. (29).
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Problem 5(e):
Physically, a hole in the Fermi sea has opposite free energy, opposite momentum, opposite
spin, etc., from the missing fermion (see for the explanation). A positron is a hole

in the Dirac sea of electrons, so it should have opposite p* = (F, p) from the missing electron

+iEt—ipx

state — that’s why the v(p, s) spinors accompany the etP? = ¢ plane waves instead

of the e~% = E~iFIHHPX factors of the u(p, s) spinors. Likewise, the positron should have
the opposite spin state from the missing electron, and that’s why the 7s should have the
opposite spin from the &. More accurately, the ns should carry the opposite spin vector

niSns from the &1S¢,.

The solution to this spin relation is 7y = o2&} (where * denotes complex conjugation).

Indeed, let

n =0 = nl =¢loy, (S.95)

and let’s use the formula

020'*02 = —0 (8'96)

from problem 2(c). Consequently,
nlon = ¢loyo0d” = (5*020*025) = (—5*0&) = —¢log, (S.97)

or in other words

n'Sny = nlon = —¢Is¢. (S.98)

And this is why we set n, = 02&;.

Now consider implication of this relation between the &, and 7 spinors for the plane-wave

factors uq(p, s) and v, (p, s). Thanks to eq. (S.96) we have

oo X \VEFpPp-0xo9 = (x/Eip-a>*, (S.99)
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hence in light of the explicit formulae (28) and (29),

ey (FVETPONY _(+VEB o
T\ vETR o) T\ vETPOmg

+o209V/ E — p - 002 _ [ fo2 (VE+p-0) &
—0209V/ E +p - 0028 ~oy (VE—p-0) &

0 +09 " +VE—p-0& i
+VE+p-0&s

(S.100)

—09 0

= Y2t (p, s).
This verifies the first eq. (30). We may verify the second eq. (30) in a similar manner, but
it’s easier to use 2 being imaginary and squaring to —1, hence v2(v?)* = —v292 = +1, and

therefore

Yt (pys) = ¥ (Pur(p,9)" = ¥ () ulp,s) = +ulp,s). (S.101)

Problem 5(f):
The 3D spinors &) of definite helicity A = :F% satisfy

(p-0)éx = Flp| x &= (5.102)
Plugging these &) into the positive-energy Dirac spinors (28), we obtain

VE % |p| ><§3F>
VEFp] x& )

In the ultra-relativistic limit £ = |p| > m, the square roots here simplify to \/E + |p| ~
V2E and /FE — |p| = 0 (in comparison with the other root). Consequently, eq. (S.103)

simplifies to

u(p, A =TF3) = ( (S.103)

u(p,L) ~ V2FE (%) , u(p, R) =~ @( ’ > . (S5.104)

§R

In other words, the ultra-relativistic positive-energy Dirac spinors of definite helicity are
chiral — dominated by the LH Weyl components for the left helicity or by the RH Weyl
components for the right helicity.
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Now consider the negative-energy Dirac spinors (29). The 7, spinors have exactly oppo-

site spins from the &, so their helicities are also opposite from the &. Thus,

(P-o)ny = £[p[ xng (S.105)

— note the opposite sign from eq. (S.102). Therefore, the negative-energy Dirac spinors v

of definite helicity are

+VEF p| ><?7$> (5.106)

vip A =TFi) =
PA=F2) (—\/Ei\p\xnx

and in the ultra-relativistic limit they become
0
v(p,L) ~ —V2E < ) . u(p,R) ~ +V2E (ng‘) . (S.107)
s

Again, the ultra-relativistic negative-energy spinors are chiral, but this time the chirality
is opposite from the helicity — the left-helicity spinor has dominant RH Weyl components
while the right-helicity spinor has dominant LH Weyl components.
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