
PHY–396 K. Solutions for homework set #8.

Problem 1(a):

In the previous homework#7, problem (5.b–c), we saw that

u(p, s) =

(√
E − p · σσ ξs
√
E + p · σσ ξs

)
, v(p, s) =

(
+
√
E − p · σσ ηs

−
√
E + p · σσ ηs

)
(S.1)

where ξs and ηs are 2-component SU(2) spinors normalized to

ξ†sξs′ = η†sηs′ = δs,s′ , ηs = σ2ξ
∗
s . (S.2)

Before we check eqs. (2), let’s check the normalization (1) conditions for the spinors (S.1):

u†(p, s)u(p, s′) = ξ†s

(
(
√
E − p · σσ)2 + (

√
E + p · σσ)2

)
ξs′ = ξ†s(2E)ξs′ = 2Eδs,s′ ,

v†(p, s)v(p, s′) = η†s

(
(+
√
E − p · σσ)2 + (−

√
E + p · σσ)2

)
ηs′ = η†s(+2E)ηs′ = 2Eδs,s′ ,

(S.3)

because

(±
√
E − p · σσ)2 + (±′

√
E + p · σσ)2 = (E − p · σσ) + (E + p · σσ) = 2E. (S.4)

And now that we have verified that the spinors (S.1) are properly normalized, let’s

consider the Lorentz invariant products ūu and v̄v. For the u(p, s) and v(p, s) as in eqs. (S.1),

the ū and v̄ are given by

ū(p, s) = u†(p, s)γ0 =

(√
E − p · σσ ξs
√
E + p · σσ ξs

)†(
0 12×2

12×2 0

)

= ( ξ†s ×
√
E + p · σσ , ξ†s ×

√
E − p · σσ ) ,

v̄(p, s) = v†(p, s)γ0 =

(
+
√
E − p · σσ ηs

−
√
E + p · σσ ηs

)†(
0 12×2

12×2 0

)

= (−η†s ×
√
E + p · σσ , +η†s ×

√
E − p · σσ ) .

(S.5)
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Consequently,

ū(p, s)u(p, s′) = ξ†s ×
√
E + p · σσ×

√
E − p · σσ× ξs′

+ ξ†s ×
√
E − p · σσ×

√
E + p · σσ× ξs′

= 2m× ξ†sξs′ = 2mδs,s′

(S.6)

because

√
E + p · σσ×

√
E − p · σσ =

√
E − p · σσ×

√
E + p · σσ

=
√
E2 − (p · σσ)2 =

√
E2 − p2 = m.

(S.7)

Likewise,

v̄(p, s) v(p, s′) = − η†s ×
√
E + p · σσ×

√
E − p · σσ× ηs′

− η†s ×
√
E − p · σσ×

√
E + p · σσ× ηs′

= − 2m× η†sηs′ = −2mδs,s′ .

(S.8)

Problem 1(b):

In matrix notations (column× row = matrix), we have

u(p, s)× u(p, s) =

(√
E − pσσ ξs
√
E + pσσ ξs

)
×
(
ξ†s
√
E + pσσ , ξ†s

√
E − pσσ

)

=

(√
E − pσσ ξs × ξ†s

√
E + pσσ

√
E − pσσ ξs × ξ†s

√
E − pσσ

√
E + pσσ ξs × ξ†s

√
E + pσσ

√
E + pσσ ξs × ξ†s

√
E − pσσ

)
, (S.9)

v(p, s)× v(p, s) =

(
+
√
E − pσσ ηs

−
√
E + pσσ ηs

)
×
(
−η†s

√
E + pσσ ,+η†s

√
E − pσσ

)

=

(
−
√
E − pσσ

(
ηs × η†s

)√
E + pσσ +

√
E − pσσ

(
ηs × η†s

)√
E − pσσ

+
√
E + pσσ

(
ηs × η†s

)√
E + pσσ −

√
E + pσσ

(
ηs × η†s

)√
E − pσσ

)
. (S.10)

Summing over two spin polarizations replaces ξs × ξ†s with
∑

s ξs × ξ
†
s = 12×2 and likewise
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ηs × η†s with
∑

s ηs × η
†
s = 12×2 . Consequently,∑

s

u(p, s)× u(p, s) =

=

(√
E − pσσ

[∑
s ξs × ξ

†
s

]√
E + pσσ

√
E − pσσ

[∑
s ξs × ξ

†
s

]√
E − pσσ

√
E + pσσ

[∑
s ξs × ξ

†
s

]√
E + pσσ

√
E + pσσ

[∑
s ξs × ξ

†
s

]√
E − pσσ

)

=

(√
E − pσσ ×

√
E + pσσ

√
E − pσσ ×

√
E − pσσ

√
E + pσσ ×

√
E + pσσ

√
E + pσσ ×

√
E − pσσ

)

=

(
m E − pσσ

E + pσσ m

)
= m× 14×4 + E × γ0 − p · ~γ

= 6p + m. (S.11)∑
s

v(p, s)× v(p, s) =

=

(
−
√
E − pσσ

[∑
s ηs × η

†
s

]√
E + pσσ +

√
E − pσσ

[∑
s ηs × η

†
s

]√
E − pσσ

+
√
E + pσσ

[∑
s ηs × η

†
s

]√
E + pσσ −

√
E + pσσ

[∑
s ηs × η

†
s

]√
E − pσσ

)

=

(
−
√
E − pσσ ×

√
E + pσσ +

√
E − pσσ ×

√
E − pσσ

+
√
E + pσσ ×

√
E + pσσ −

√
E + pσσ ×

√
E − pσσ

)

=

(
−m E − pσσ

E + pσσ −m

)
= −m× 14×4 + E × γ0 − p · ~γ

= 6p − m. (S.12)

Quod erat demonstrandum.

Problem 2(a):

The γ0 matrix commutes with itself but anticommutes with the space-indexed γ1,2,3. At

the same time, the parity reflects the space coordinates but not the time coordinate, x →
x′ = −x but t → t′ = +t, hence the new space and time derivatives are related to the old

derivatives as ∇′ = −∇ but ∂′0 = +∂ . Together, these two facts give us

6∂′×γ0 =
(
γ0∂′0 + ~γ ·∇′

)
γ0 = γ0

(
γ0∂′0 − ~γ ·∇′

)
= γ0

(
+γ0∂0 + ~γ ·∇) = γ0×6∂ (S.13)

3



and hence

(i 6∂′ −m)× γ0 = γ0 × (i 6∂ −m). (S.14)

Combining this formula with eq. (10) for the Dirac field, we find

(i 6∂−m)′Ψ′(x′) = (i 6∂′−m)
(
±γ0Ψ(x)

)
= ±(i 6∂′−m)γ0Ψ(x) = ±γ0(i 6∂−m)Ψ(x) (S.15)

— the (i 6∂ − m)Ψ(x) transforms under parity precisely like the Ψ(x) field itself. In other

words, the Dirac equation transforms covariantly.

Now consider the Dirac Lagrangian. Taking the Hermitian conjugate of eq. (10) we find

Ψ′
†
(−x, t) = ±Ψ†(x, t)γ0

†
= ±Ψ†(x, t)γ0 (S.16)

and hence

Ψ
′
(−x, t) = ±Ψ(x, t)γ0. (S.17)

Consequently, the Dirac Lagrangian L = Ψ(i 6∂ −m)Ψ transforms into

L(x′) = Ψ
′
(x′)× (i 6∂ −m)′Ψ′(x′)

= ±Ψ(x)γ0 ×±γ0(i 6∂ −m)Ψ(x)

= +Ψ(x)× (i 6∂ −m)Ψ(x)

= L(x).

(S.18)

In other words, the Dirac Lagrangian is invariant modulo x→ x′ = (−x,+t), and the Dirac

action S =
∫
d4xL is invariant.

Problem 2(b):

The linear momentum p is a polar vector while the angular momentum — orbital, or spin,

or whatever — is an axial vector. Therefore, when the parity symmetry acts on a particle

state with momentum p and spin s, it reverses p → −p but leaves the spin state as it is
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s→ +s. The same rules apply to the plane waves of definite momentum and spin, hence for

the Dirac spinors (S.1):

P : u(p, s) → u(−p,+s) =

(
+
√
E + p · σσ ξs

+
√
E − p · σσ ξs

)

=

(
02×2 12×2

12×2 02×2

)
×

(
+
√
E − p · σσ ξs

+
√
E + p · σσ ξs

)
= γ0 × u(p, s), (S.19)

P : v(p, s) → v(−p,+s) =

(
+
√
E + p · σσ ξs

−
√
E − p · σσ ξs

)

=

(
02×2 −12×2

−12×2 02×2

)
×

(
+
√
E − p · σσ ξs

−
√
E + p · σσ ξs

)
= −γ0 × v(p, s), (S.20)

quod erat demonstrandum.

Problem 2(c):

Let’s apply parity to the quantum Dirac field

Ψ̂(x, t) =

∫
d3p

(2π)3
1

2Ep

∑
s

(
e−itEp+ix·p × u(p, s)× âp,s + e+itEp−ix·p × v(p, s)× b̂†p,s

)
.

(S.21)

Since everything besides the âp,s and b̂†p,s operators in this expansion is a c-number, sand-

wiching the field between two parity operators gives us

P̂ Ψ̂(x, t)P̂ =

∫
d3p

(2π)3
1

2Ep

∑
s

(
e−itEp+ix·p × u(p, s)× P̂ âp,s P̂

+ e+itEp−ix·p × v(p, s)× P̂ b̂†p,s P̂

)
. (S.22)

At the same time, this expansion should match the the right hand side of eq. (5), for which
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we have

±γ0Ψ̂(−x, t) =

∫
d3p

(2π)3
1

2Ep

∑
s

 ± e−itEp−ix·p × γ0u(p, s)× âp,s

± e+itEp+ix·p × γ0v(p, s)× b̂†p,s


〈〈 using part (b) 〉〉

=

∫
d3p

(2π)3
1

2Ep

∑
s

 ± e−itEp−ix·p × u(−p, s)× âp,s

∓ e+itEp+ix·p × v(−p, s)× b̂†p,s


〈〈 changing

∫
variable p→ −p 〉〉

=

∫
d3p

(2π)3
1

2Ep

∑
s

 ± e−itEp+ix·p × u(p, s)× â−p,s

∓ e+itEp−ix·p × v(p, s)× b̂†−p,s

 .

(S.23)

By eq. (5), the right hand sides of eqs. (S.22) and (S.23) must be equal to each other. Since

the Dirac plane waves e−ipxu(p, s) and e+ipxv(p, s) are linearly independent from each other,

this means

P̂ âp,s P̂ = ±â−p,s and P̂ b̂†p,s P̂ = ∓b̂†−p,s . (7a)

The rest of eq. (7) follows by hermitian conjugation: Since P̂† = P̂−1 = P̂,

P̂ â†p,s P̂ =
(
P̂ âp,s P̂

)†
= ±â†−p,s ,

P̂ b̂p,s P̂ =
(
P̂ b̂†p,s P̂

)†
= ∓b̂−p,s .

(7b)

Finally, eqs. (8) follow from eqs. (7) and from parity-invariance of the vacuum state, P̂ |0〉 =

|0〉. Indeed,

P̂ |F (p, s)〉 = P̂× â†p,s |0〉 = P̂â†p,sP̂× P̂ |0〉

= ±â†−p,+s × |0〉 = ± |F (−p,+s)〉 , (S.24)

P̂
∣∣F (p, s)

〉
= P̂× b̂†p,s |0〉 = P̂b̂†p,sP̂× P̂ |0〉

= ∓b̂†−p,+s × |0〉 = ∓
∣∣F (−p,+s)

〉
. (S.25)
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Problem 3(a):

Consider a state â†(+pred, s1)b̂
†(−pred, s2) |0〉 of one fermion and one antifermion with def-

inite reduced momentum and spins. The charge conjugation operator Ĉ turns this state

into

Ĉ× â†(+pred, s1)b̂
†(−pred, s2) |0〉 = Ĉ â†(+pred, s1)Ĉ× Ĉ b̂†(−pred, s2)Ĉ× |0〉

= b̂†(+pred, s1)× â†(−pred, s2) |0〉

= −â†(−pred, s2)× b̂†(+pred, s1) |0〉 .

(S.26)

Let’s plug this formula into eq. (9):

Ĉ× |B(ptot = 0)〉 =

∫
d3pred

(2π)3

∑
s1,s2

ψ(pred, s1, s2)× Ĉ â†(+pred, s1)b̂
†(−pred, s2) |0〉

=

∫
d3pred

(2π)3

∑
s1,s2

ψ(pred, s1, s2)×−â†(−pred, s2)b̂
†(+pred, s1) |0〉

〈〈 change variables pred → −pred and s1 ↔ s2 〉〉

=

∫
d3pred

(2π)3

∑
s1,s2

−ψ(−pred, s2, s1)× â†(+pred, s1)b̂
†(−pred, s2) |0〉 .

(S.27)

In terms of the bound state’s wave function ψ, this action of the C-parity operator Ĉ is

equivalent to

Ĉψ(pred, s1, s2) = −ψ(−pred, s2, s1). (S.28)

For a bound state with a definite orbital angular momentum L,

ψ(−pred, s1, s2) = (−1)L × ψ(+pred, s1, s2). (S.29)

Likewise, for a bound state with a definite net spin S,

ψ(pred, s2, s1) = (−1)1−Sψ(pred, s1, s2). (S.30)
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Plugging these two formulae into eq. (S.28) for the C-parity, we obtain

Ĉψ(pred, s1, s2) = −ψ(−pred, s2, s1)

= −(−1)Lψ(+pred, s2, s1)

= −(−1)L(−1)1−Sψ(+pred, s1, s2).

(S.31)

In other words, the bound state has definite C-parity

C = −(−1)L(−1)1−S = (−1)L × (−1)S , (S.32)

Quod erat demonstrandum.

Problem 3(b):

Now consider how the P-parity (reflection of space) acts on the one-fermion+one-antifermions

state â†(+pred, s1)b̂
†(−pred, s2) |0〉:

P̂× â†(+pred, s1)b̂
†(−pred, s2) |0〉 = P̂ â†(+pred, s1)P̂× P̂ b̂†(−pred, s2)P̂× |0〉

= (±1)â†(−pred, s1)× (∓1)b̂†(+pred, s2) |0〉

= −â†(−pred, s1)b̂
†(+pred, s2) |0〉 .

(S.33)

where the overall − sign comes from the opposite intrinsic parities of the fermion and the

antifermion. Again, we plug this formula into eq. (9) and then change the integration variable

pred → −pred — but this time we do not swap the spins s1 and s2:

P̂× |B(ptot) = 0〉 =

∫
d3pred

(2π)3

∑
s1,s2

ψ(pred, s1, s2)× P̂ â†(+pred, s1)b̂
†(−pred, s2) |0〉

=

∫
d3pred

(2π)3

∑
s1,s2

ψ(pred, s1, s2)×−â†(−pred, s1)b̂
†(+pred, s2) |0〉

=

∫
d3pred

(2π)3

∑
s1,s2

−ψ(−pred, s1, s2)× â†(+pred, s1)b̂
†(−pred, s2) |0〉 ,

(S.34)

In terms of the wave-function ψ, this action of the P-parity operator means

P̂ψ(pred, s1, s2) = −ψ(−pred, s1, s2). (S.35)
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For a bound state with a definite angular momentum, this gives us

P̂ψ(pred, s1, s2) = −ψ(−pred, s1, s2) = −(−1)L × ψ(pred, s1, s2) (S.36)

and hence definite P-parity

P = −(−1)L, (S.37)

Quod erat demonstrandum.

Problem 3(c):

Finally, consider the positronium atom decaying into photons. Since the EM interactions

respect the charge conjugation symmetry, the EM processes such as e− + e+ → photons

conserve C-parity. A photon of any momentum or polarization has C = −1, so the net C-

parity of an n–photon final state is (−1)n. Consequently, if the initial electron and positron

are in a bound state with C = +1 they must annihilate into an even number of photons,

e−+ e+ → 2γ, 4γ, 6γ, . . .. But if the bound state has C = −1, the electron and the positron

must annihilate into an odd number of photons, e− + e+ → 3γ, 5γ, . . .. (Annihilation into a

single photon is forbidden because of p2
net < E2

net.)

The ground state of a hydrogen-like positronium ‘atom’ is 1S, meaning nrad = 1 and

L = 0. Due to spins, there are actually 4 almost-degenerate 1S states; the hyperfine structure

splits them into a 1S3 triplet and a 1S1 singlet of the net spin. According to eq. (S.32),

the triplet states have C = (−1)L(−1)S = (−1)0(−1)1 = −1 while the singlet state has

C = (−1)L(−1)S = (−1)0(−1)0 = +1. Consequently, the singlet S = 0 state decays into an

even number of photons,

(e− + e+)@1S1 → 2γ, 4γ, . . . , (S.38)

while the triplet S = 1 states decay into odd numbers of photons,

(e− + e+)@1S3 → 3γ, 5γ, . . . . (S.39)

This difference affects the net decay rate of each state because QED (Quantum ElectroDy-

namics) has a rather small coupling constant α = (e2/4π) ≈ 1/137. For each photon in the
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final state, the decay amplitude carries a factor of e, so the decay rate of a positronium atom

into n photons Γ(e−e+ → nγ) is O(αn). Consequently, the S = 0 positronium state usually

decays into just 2 photons while decays into 4, 6, or more photons are allowed but much less

common. Likewise, the S = 1 positronium states usually decays into 3 photons while decays

into 5 or more photons are allowed but rare. More over, the decay rate into 3 photons is

much slower than the decay rate into just 2 photons,

Γ
(
(e− + e+)@1S3 → 3γ

)
Γ
(
(e− + e+)@1S1 → 2γ

) =
O(α3)

O(α2)
= O(α), (S.40)

hence the net decay rate of an S = 1 state into anything it can decay to — i.e., into any

odd number of photons — is much slower then the net decay rate of the S = 0 state,

Γ
(
(e− + e+)@1S3 → anything

)
Γ
(
(e− + e+)@1S1 → anything

) = O(α) � 1. (S.41)

And that’s why the S = 1 states have mush longer lifetimes than the S = 0 state.

Problem 4(a):

Despite anticommutativity of the fermionic fields, the Hermitian conjugation of an operator

product reverses the order of operators without any extra sign factors, thus (Ψ†αΨβ)† =

+Ψ†βΨα. Consequently, for any 4 × 4 matrix Γ, (Ψ†ΓΨ)† = +Ψ†Γ†Ψ, and hence (ΨΓΨ)† =

ΨΓΨ where Γ = γ0Γ†γ0 is the Dirac conjugate of Γ.

Now consider the 16 matrices which appear in the bilinears (10). Obviously 1 = +1

and this gives us S† = +S. We saw in class that γµ = +γµ for all µ = 0, 1, 2, 3 (cf. my

notes on Dirac spinor fields), and this gives us (V µ)† = +V µ. We also saw that i
2γ

[µγν] =

− i
2γ

[νγµ] = + i
2γ

[µγν], and this gives us (Tµν)† = +Tµν . As to the γ5 matrix, we saw in

the last homework#7 (problem 3(d–e)) that it’s Hermitian and anticommutes with all the

γµ. Hence γ5 = γ0(γ5)†γ0 = +γ0γ5γ0 = −γ5 =⇒ iγ5 = +iγ5, which gives us P † = +P .

Finally, γ5γµ = γµγ5 = −γµγ5 = +γ5γµ, which gives us (Aµ)† = +Aµ. Thus, by inspection,

all the bilinears (10) are Hermitian. Quod erat demonstrandum.
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Problem 4(b):

Under a continuous Lorentz symmetry x 7→ x′ = Lx, the Dirac spinor field and its conjugate

transform according to

Ψ′(x′) = M(L)Ψ(x = L−1x′), Ψ
′
(x′) = Ψ(x = L−1x′)M−1(L), (S.42)

hence any bilinear ΨΓΨ transforms according to

Ψ
′
(x′)ΓΨ(x′) = Ψ(x)Γ′Ψ(x) (S.43)

where

Γ′ = M−1(L)ΓM(L). (S.44)

So the Lorentz transformation properties of the Dirac bilinears (10) follow from this trans-

formation rule for the 16 Γ matrices in question.

Obviously for Γ = 1, Γ′ = M−1M = 1, which makes S a Lorentz scalar.

For Γ = γµ, we saw in class that Γ′ = M−1γµM = Lµνγ
ν — see my notes on Dirac

spinors, eq. (22). Consequently V ′µ = LµνV
ν , which makes V µ a Lorentz vector.

For Γ = γµγν , M−1γµγνM = (M−1γµM)(M−1γνM) = Lµκγ
κ × Lνλγλ. Similar trans-

formation works for Γ = i
2γ

[µγν]: Γ′ = LµκL
ν
λ ×

i
2γ

[κγλ]. This makes Tµν a Lorentz tensor

(with two antisymmetric indices).

Next, the γ5 commutes with even products of the γµ matrices and hence with M(L) =

exp
(
1
4Θµνγ

µγν
)
. Consequently, M−1γ5M = γ5, which makes P a Lorentz scalar.

Finally, M−1(γµγ5)M =
(
M−1γµM

)
γ5 = Lµνγ

νγ5, which makes Aµ a Lorentz vector.
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Problem 4(c):

In problem (2) we saw that the Dirac fields transform under parity as

Ψ′(x′) = ±γ0Ψ(x), Ψ
′
(x′) = ±Ψ(x)γ0. (S.45)

Consequently, the Dirac bilinears transform as

P : ΨΓΨ
∣∣∣
x
7→ Ψ

′
ΓΨ′

∣∣∣
x′

= Ψ(γ0Γγ0)Ψ
∣∣∣
x
. (S.46)

By inspection, out of 16 possible Γ matrices, 1, γ0, γ[iγj], and γ5γi commute with the γ0,

while γi, γ0γi, γ5γ0, and γ5 anticommute with the γ0. Therefore,

• the bilinears S, V 0, T ij , and Ai are P-even, i.e. remain invariant under parity, while

• the bilinears V i, T 0i, A0, and P are P-odd — the parity flips their signs.

From the 3D point of view, this means that S and V 0 are true scalars, P and A0 are pseudo-

scalars, V is a true or polar vector, A is a pseudo-vector or axial vector, and the tensor T

contains one true vector T 0i and one axial vector 1
2ε
ijkT jk. In space-time terms, we call S

a true (Lorentz) scalar, P a (Lorentz) pseudoscalar, V µ a true (Lorentz) vector, and Aµ an

axial (Lorentz) vector. Finally, the tensor Tµν is a true Lorentz tensor. However, a physically

equivalent tensor T̃ κλ = 1
2ε
κλµνTµν — for which T̃ 0i = −1

2ε
ijkT jk is an axial 3–vector while

1
2ε
ijkT̃ jk = +T 0i is a polar 3–vector — is a Lorentz pseudo-tensor.

Problem 4(d):

In class we saw that in the Weyl convention, the charge conjugation symmetry acts on Dirac

fields as

C : Ψ(x) → Ψ′(x) = γ2Ψ∗(x) = γ2
(
Ψ†(x)

)>
,

C : Ψ(x) → Ψ
′
(x) = Ψ

∗
(x)γ2 = Ψ>(x)γ0γ2 = −Ψ>(x)γ2γ0.

(S.47)

Consequently, for any Dirac bilinear ΨΓΨ,

Ψ
′
ΓΨ′ = −Ψ>γ2γ0Γγ2

(
Ψ†
)>

= +Ψ†(γ2γ0Γγ2)>Ψ = +Ψγ0γ2Γ>γ0γ2Ψ ≡ ΨΓcΨ. (S.48)

The second equality here follows by transposition of the Dirac “sandwich” Ψ> · · ·
(
Ψ†
)>

,

which carries an extra minus sign because the fermionic fields Ψ and Ψ∗ anticommute with
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each other (in the classical limit). The third equality follows from (γ0)> = +γ0, (γ2)> = +γ2,

and Ψ† = Ψγ0.

Problem 4(e):

By inspection, 1c ≡ γ0γ2γ0γ2 = +1. The γ5 matrix is symmetric and commutes with the

γ0γ2, hence γc5 = +γ5. Among the four γµ matrices, the γ1 and γ3 are anti-symmetric

and commute with the γ0γ2 while the γ0 and γ2 are symmetric but anti-commute with

the γ0γ2; hence, for all four γµ, γcµ = −γµ. Finally, because of the transposition involved,

(γµγν)c = γcνγ
c
µ = +γνγµ, hence ( i2γ

[µγν])c = + i
2γ

[νγµ] = − i
2γ

[µγν]. Likewise, (γ5γµ)c =

(γµ)c(γ5)c = −γµγ5 = +γ5γµ.

Therefore, according to eq. (S.48), the scalar S, the pseudoscalar P , and the axial vector

Aµ are C–even, while the vector Vµ and the tensor Tµν are C–odd.
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