PHY-396 K. Solutions for problem set #9.

Problem 2:
In the Lagrangian
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the first 4 terms on the RHS describe two free scalar fields ®(x) and ¢(z), while the fifth
term is the interaction that we treat as a perturbation. In Feynman rules, the propagators
follow from the free part of the Lagrangian, so for the theory at hand there are two distinct
propagators,
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Likewise, there are two kinds of external lines according to the species of the incoming or

outgoing particles for the process in question.

The Feynman vertices follow from the interaction part of the Lagrangian, which for the
theory at hand is the cubic potential term V3 = & d¢p?. Consequently, all vertices should be
connected to three lines (net valence = 3), one double line for the one  field, and two single

lines for the two gZA> fields,

where the 2! factor comes from the interchangeability of two identical gZ; fields in the vertex.



Now consider the decay process ® — ¢ 4+ ¢. To the lowest order of the perturbation

theory, the decay amplitude follows from a single tree diagrams

This diagram has one vertex, one incoming double line, two outgoing single lines and no

internal lines of either kind, hence
(81 + @b|iT|®) = iM x (2m)'6W(p—pi —ph) = —ipx 2m) "6 W (p—ph —ph), (S4)
or in other words
M(® = 61 +¢3) = —p. (S.5)

This amplitude is related to the & — ¢¢ decay rate as
I = /|M|2 dP (S.6)

where the phase space factor for 1 particle — 2 particles decays is

/
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P = e

¢f. [my nofes on the phase spacd, eq. (65) on page 12. In this formula p’ = |p}| = |p}| in the

rest frame of the original ® particle, and d2 = dQ(p}) = dQ(p)) in the same frame. For
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hence
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and therefore the partial decay rate is
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For the problem at hand, My;ee = —p regardless of directions of final particles, hence
Al tree 4m? /~L2
= 4/1 - . S.11
20 M2 " 64m2M (5:11)

Integrating this partial decay rate over the directions of p’ we must remember that the two

final particles are identical bosons, so we cannot tell p} from p, = —p). Consequently,

[d*Q = 47 /2 and therefore
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Problem 3:

Similar to the previous problem, the Feynman propagators of a theory follow from the free
part of its Lagrangian. This time, we have N scalar fields ¢’(z) of similar mass m, hence in
momentum space
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Note the 67% factor — the two fields connected by a propagator must be of the same species.
Graphically, this means that both ends of the propagator carry the same species label j = k.
Likewise, the external lines should also carry a species label of the incoming or outgoing
particle in question. For the external lines, these labels are fixed (for a particular process),

while for the internal lines we sum over j = 1,2,..., N.



The Feynman vertices follow from the interactions between the fields; for the theory in

question, they come form the quartic potential
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Consequently, all vertices have net valence = 4, but there are two vertex types with different
indexologies: (1) a vertex involving 4 lines of the same field species ¢/, with the vertex factor
—i(\/8) x 4! = —3i); and (2) a vertex involving 2 lines of one field species ¢/ and 2 lines
of a different species ¢, with the vertex factor —i(A/4) x (2!)2 = —i\. (The combinatorial
factors arise from the interchanges of the identical fields in the same vertex, thus 4! for the
first vertex type and (2!)? for the second type.) Equivalently, we may use a single vertex

type involving 4 fields of whatever species, with the species-dependent vertex factor
¢’ ¢
= —iX(o7Fgtm 4 §ItSRm 4 gImake). (S.15)
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Now consider the scattering process ¢ + ¢F — ¢f + ¢™. At the lowest order of the
perturbation theory, there is just one Feynman diagram for this process; it has one vertex,

4 external legs and no internal lines. Consequently, at the lowest order,
M(¢7 + ¢F = "+ ¢™) = —\(7Fs"™ 4 5itskm 5T 6T (S.16)

independent of the particles’ momenta. Specifically,

M(o' + ¢ — ¢t + %) = —
M(P' + o' = ¢? + %) = =), (S.17)
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The partial cross sections in the CM frame follow from these amplitudes via eq. (4.85) of the



textbook or eq. (60) on page 12 of ny notes on phase spacd: For the elastic scattering,
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To calculate the total cross sections, we integrate over d2, which gives the factor of 47 when
the two final particles are of distinct species, but for the same species, we only get 27 because

of Bose statistics. Thus,
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Problem 4(a):
In perturbation theory, the Feynman propagators follow from the quadratic part of the
Lagrangian (and hence free Hamiltonian), while the vertices follow from the cubic, quartic,

etc., terms treated as perturbation. For the linear sigma model’s Lagrangian (3),

L = ‘Cfree - Vperta (8-21)
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The free Lagrangian (S.22) describes one massive field o plus N massless fields m;, hence two

types of scalar propagators,
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(S.24)
and the 77 propagator carries a label j = k = 1,2..., N specifying a particular species of

the pion field.

As to the perturbation (S.23), it has two cubic terms and 3 quartic terms, hence two
types of valence = 3 vertices and three types of valence = 4 vertices: the coo and onrm

vertices

the cooo and comm vertices

g o 7Tj o
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and finally the mwmm vertex similar to what we had in problem 3,
ml mt

= —iA (7Rt 4 5IEGR™ 4 5 R, (S.27)
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This completes the Feynman rules of the linear sigma model.



Problem 4(b):

As explained in class, a tree diagram (L = 0) with £ = 4 external lines has either (A)
one valence = 4 vertex and no propagators, or else (B) two valence = 3 vertices and one
propagator. Topologically, there are three diagrams of type (B) with different arrangements

of incoming versus outgoing external lines, so altogether there are 4 tree diagrams.

Specifically for the m/ + 7% — 7t + 7™ scattering, the diagrams are
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where s, t, u are the Mandelstam variables
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Note that in the diagrams (S.29), (S.30), and (S.31), the internal line belongs to the o field

rather than to any 7 fields since there are no 77 vertices but only 77o.

Also, each of the diagrams (S.29), (S.30), and (S.31) yields a different combination of
Kronecker §4 for the j, k, £, m indices of the four pions, while the first diagram (S.28) yields all
three combinations. So when we total up the four tree diagrams’ amplitudes, it’s convenient

to reorganize the net tree amplitude by the j, k, ¢, m indexology, thus
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Problem 4(c-d):

The Lagrangian (3) of the linear sigma models has a very important relation between the

quartic coupling ), the cubic coupling x = Af, and the ¢ particle’s mass M2 = \f?, thus
(M2 =) x A = (k=Af)". (S.34)

Thanks to this relation,

)+ ()‘f)2 _ As _M +M As (S.35)

s — M2 s — M2 s — M2
and likewise
(Af)? At (Af)? Au
A\ d A S.36
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Thanks to these formulae, the scattering amplitude (S.33) simplifies to

[ sikstm 5 it skm t jm skt u
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Now consider the low-energy limit of this amplitude. In the CM frame, all 4 pions have

the same energy F, hence
s = (B9 — 4F? ¢ = —4E? xsin?(0/2), uw = —4E? x cos?(0/2),  (S.38)

and therefore

s,t,u = O(E?). (S.39)

Consequently, when the pion’s energies are much smaller than the o particle’s mass, the

denominators in the amplitude (S.37) may be approximated as
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Consequently, the scattering amplitude (S.37) simplifies to
A 4l ik s 0 ok im skt B
M:(ngﬁ)x(éjémXS+575mxt+57m5 xu + O ﬁg . (S.41)
The magnitude of this amplitude is generally O(£?/f?), so in the low-energy limit it becomes
quite small.

Now consider the 7m — 77 scattering in a completely general frame of reference. Since

the pions are massless, Mandelstam’s s, ¢, u variables may be written as

def
s = (m+p)® = (PL+pH)? = +2(pip2) = +2(piph),
—2(pip1) = —2(php2), (S.42)
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so whenever any one of the four momenta becomes small, all 3 of the s, ¢, u become small.

In particular, when 3 of the momenta are O(M,) or smaller while the fourth momentum



becomes much smaller, we have
s,t,u = O(Ma X psmallest) < Mg- (843)

Consequently, the scattering amplitude becomes as in eq. (S.41), and its magnitude is gen-

erally

A A
M ~ (S,t,u) X ﬁg g Psmallest X E . <S44)

The physical reason for this behavior is the Goldstone theorem: Among other things, it says
that all scattering amplitudes involving Goldstone particles — such as the pions in this prob-
lem — become small as O(p;) when any Goldstone particle’s momentum pr becomes small.
A few lines above we saw how this works for the tree-level (7, 7| M |7, ) amplitude (S.37);
the same behavior persists at all the higher orders of the perturbation theory, but seeing

how that works is waaay beyond the scope of this exercise.

Problem 4(e):
In the low-energy limit ¥ < M,, the tree-level mm — w7 amplitudes may be approximated

as in eq. (S.41). In particular,
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{(since s +t+u=4m2 =0))

Translating these amplitudes into the partial and the total scattering cross-sections, we
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obtain
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For a more accurate approximation to the same-species elastic scattering like 7! + 7! —

7l 47!, we need to go back to the amplitude (S.37) and expand it to second powers in s, t, u.

Thus,
AS As As?
s—M2 T M2 MA’
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and therefore
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(S.48)
~ X (stt+u=0) + A (s + 12 +u?)
In the center of mass frame,
s+ 12 + u? = 16E* + 16E* xsin?(0/2) + 16E* x cos?(8/2)
3+ cos? 0 (S.49)
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hence

do(r! +mt — 7 +7l) NES 2 9\2
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and therefore
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