
PHY–396 K. Solutions for problem set #9.

Problem 2:

In the Lagrangian

L =
1

2
(∂µΦ)

2 −
M2

2
Φ2 +

1

2
(∂µφ)

2 −
m2

2
φ2 −

µ

2
Φφ2, (1)

the first 4 terms on the RHS describe two free scalar fields Φ(x) and φ(x), while the fifth

term is the interaction that we treat as a perturbation. In Feynman rules, the propagators

follow from the free part of the Lagrangian, so for the theory at hand there are two distinct

propagators,

Φ Φ =
i

q2 −m2 + i0
and φ φ =

i

q2 −M2 + i0
. (S.1)

Likewise, there are two kinds of external lines according to the species of the incoming or

outgoing particles for the process in question.

The Feynman vertices follow from the interaction part of the Lagrangian, which for the

theory at hand is the cubic potential term V3 =
µ
2 Φφ

2. Consequently, all vertices should be

connected to three lines (net valence = 3), one double line for the one Φ̂ field, and two single

lines for the two φ̂ fields,

Φ

φ

φ

= −i
µ

2
× 2! = −iµ (S.2)

where the 2! factor comes from the interchangeability of two identical φ̂ fields in the vertex.
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Now consider the decay process Φ → φ + φ. To the lowest order of the perturbation

theory, the decay amplitude follows from a single tree diagrams

Φ

φ′1

φ′2

(S.3)

This diagram has one vertex, one incoming double line, two outgoing single lines and no

internal lines of either kind, hence

〈

φ′1 + φ′2
∣

∣ iT̂ |Φ〉 ≡ iM× (2π)4δ(4)(p− p′1 − p′2) = −iµ× (2π)4δ(4)(p− p′1 − p′2), (S.4)

or in other words

M(Φ → φ′1 + φ′2) = −µ. (S.5)

This amplitude is related to the Φ → φφ decay rate as

Γ =

∫

|M|2 dP (S.6)

where the phase space factor for 1 particle → 2 particles decays is

dP =
p′

32π2M2
dΩ, (S.7)

cf. my notes on the phase space, eq. (65) on page 12. In this formula p′ = |p′

1| = |p′

2| in the

rest frame of the original Φ particle, and dΩ = dΩ(p′

1) = dΩ(p′

2) in the same frame. For
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decays to two particles of equal masses m < M
2 ,

E′

1 = E′

2 =
M

2
=⇒ p′ =

√

E′2
1 −m2 =

M

2
×

√

1−
4m2

M2
, (S.8)

hence

dP =

√

1−
4m2

M2
×

1

64π2M
× dΩ, (S.9)

and therefore the partial decay rate is

dΓ

d2Ω
=

√

1 −
4m2

M2
×

|M|2

64π2M
. (S.10)

For the problem at hand, Mtree = −µ regardless of directions of final particles, hence

dΓtree

d2Ω
=

√

1 −
4m2

M2
×

µ2

64π2M
. (S.11)

Integrating this partial decay rate over the directions of p′ we must remember that the two

final particles are identical bosons, so we cannot tell p′

1 from p′

2 = −p′

1. Consequently,
∫

d2Ω = 4π/2 and therefore

Γ =

√

1 −
4m2

M2
×

µ2

32πM
. (S.12)

Problem 3:

Similar to the previous problem, the Feynman propagators of a theory follow from the free

part of its Lagrangian. This time, we have N scalar fields φi(x) of similar mass m, hence in

momentum space

φj φk =
iδjk

q2 −m2 + i0
. (S.13)

Note the δjk factor — the two fields connected by a propagator must be of the same species.

Graphically, this means that both ends of the propagator carry the same species label j = k.

Likewise, the external lines should also carry a species label of the incoming or outgoing

particle in question. For the external lines, these labels are fixed (for a particular process),

while for the internal lines we sum over j = 1, 2, . . . , N .
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The Feynman vertices follow from the interactions between the fields; for the theory in

question, they come form the quartic potential

V4 =
λ

8

(

φ · φ =
∑

j

φjφj
)2

=
∑

j

λ

8

(

φ̂j
)4

+
∑

j<k

λ

4

(

φ̂j
)2(

φ̂k
)2
. (S.14)

Consequently, all vertices have net valence = 4, but there are two vertex types with different

indexologies: (1) a vertex involving 4 lines of the same field species φj , with the vertex factor

−i(λ/8) × 4! = −3iλ; and (2) a vertex involving 2 lines of one field species φj and 2 lines

of a different species φk, with the vertex factor −i(λ/4)× (2!)2 = −iλ. (The combinatorial

factors arise from the interchanges of the identical fields in the same vertex, thus 4! for the

first vertex type and (2!)2 for the second type.) Equivalently, we may use a single vertex

type involving 4 fields of whatever species, with the species-dependent vertex factor

•

φj

φk

φℓ

φm

= −iλ
(

δjkδℓm + δjℓδkm + δjmδkℓ
)

. (S.15)

Now consider the scattering process φj + φk → φℓ + φm. At the lowest order of the

perturbation theory, there is just one Feynman diagram for this process; it has one vertex,

4 external legs and no internal lines. Consequently, at the lowest order,

M(φj + φk → φℓ + φm) = −λ
(

δjkδℓm + δjℓδkm + δjmδkℓ
)

(S.16)

independent of the particles’ momenta. Specifically,

M(φ1 + φ2 → φ1 + φ2) = −λ,

M(φ1 + φ1 → φ2 + φ2) = −λ,

M(φ1 + φ1 → φ1 + φ1) = −3λ.

(S.17)

The partial cross sections in the CM frame follow from these amplitudes via eq. (4.85) of the
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textbook or eq. (60) on page 12 of my notes on phase space: For the elastic scattering,

dσ

dΩcm
=

|M|2

64π2E2
cm

, (S.18)

hence

dσ(φ1 + φ2 → φ1 + φ2)

dΩcm
=

λ2

64π2E2
cm

,

dσ(φ1 + φ1 → φ2 + φ2)

dΩcm
=

λ2

64π2E2
cm

,

dσ(φ1 + φ1 → φ1 + φ1)

dΩcm
=

9λ2

64π2E2
cm

.

(S.19)

To calculate the total cross sections, we integrate over dΩ, which gives the factor of 4π when

the two final particles are of distinct species, but for the same species, we only get 2π because

of Bose statistics. Thus,

σtot(φ
1 + φ2 → φ1 + φ2) =

λ2

16πE2
cm

,

σtot(φ
1 + φ1 → φ2 + φ2) =

λ2

32πE2
cm

,

σtot(φ
1 + φ1 → φ1 + φ1) =

9λ2

32πE2
cm

.

(S.20)

Problem 4(a):

In perturbation theory, the Feynman propagators follow from the quadratic part of the

Lagrangian (and hence free Hamiltonian), while the vertices follow from the cubic, quartic,

etc., terms treated as perturbation. For the linear sigma model’s Lagrangian (3),

L = Lfree − Vpert , (S.21)

Lfree =
1

2

∑

i
(∂µφi)

2 +
1

2
(∂µσ)

2 −
M2

σ = λf2

2
× σ2, (S.22)
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Vpert =
3λf

6
× σ3 +

λf

2
×
∑

i
σφ2i (S.23)

+
3λ

24
× σ4 +

λ

4
×

∑

i
σ2φ2i +

λ

8
×
(

∑

i
φ2i

)2
.

The free Lagrangian (S.22) describes one massive field σ plus N massless fields πi, hence two

types of scalar propagators,

σ σ =
i

q2 −M2
σ + i0

and πj πk =
iδjk

q2 + i0
,

(S.24)

and the ππ propagator carries a label j = k = 1, 2 . . . , N specifying a particular species of

the pion field.

As to the perturbation (S.23), it has two cubic terms and 3 quartic terms, hence two

types of valence = 3 vertices and three types of valence = 4 vertices: the σσσ and σππ

vertices

σ

σ

σ = −3iλf and

πj

πk

σ = −iλfδjk , (S.25)

the σσσσ and σσππ vertices

σ

σ

σ

σ

= −3iλ and

πj

πk

σ

σ

= −iλδik (S.26)

and finally the ππππ vertex similar to what we had in problem 3,

πj

πk

πℓ

πm

= −iλ
(

δjkδℓm + δjℓδkm + δjmδkℓ
)

. (S.27)

This completes the Feynman rules of the linear sigma model.
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Problem 4(b):

As explained in class, a tree diagram (L = 0) with E = 4 external lines has either (A)

one valence = 4 vertex and no propagators, or else (B) two valence = 3 vertices and one

propagator. Topologically, there are three diagrams of type (B) with different arrangements

of incoming versus outgoing external lines, so altogether there are 4 tree diagrams.

Specifically for the πj + πk → πℓ + πm scattering, the diagrams are

πj(p1)

πk(p2)

πℓ(p′1)

πm(p′2)

= −iλ
(

δjkδℓm + δjℓδkm + δjmδkℓ
)

, (S.28)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

πj(p1)

πk(p2)

πℓ(p′1)

πm(p′2)

= (−iλfδjk)
i

s−M2
σ

(−iλfδℓm), (S.29)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

πj(p1)

πk(p2)

πℓ(p′1)

πm(p′2)

= (−iλfδjℓ)
i

t−M2
σ

(−iλfδkm), (S.30)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

πj(p1)

πk(p2)

πℓ(p′1)

πm(p′2)

= (−iλfδjm)
i

u−M2
σ

(−iλfδkℓ), (S.31)

7



where s, t, u are the Mandelstam variables

s
def
= (p1 + p2)

2 ≡ (p′1 + p′2)
2,

t
def
= (p′1 − p1)

2 ≡ (p′2 − p2)
2,

u
def
= (p′1 − p2)

2 ≡ (p′2 − p′1)
2.

(S.32)

Note that in the diagrams (S.29), (S.30), and (S.31), the internal line belongs to the σ field

rather than to any πi fields since there are no πππ vertices but only ππσ.

Also, each of the diagrams (S.29), (S.30), and (S.31) yields a different combination of

Kronecker δδ for the j, k, ℓ,m indices of the four pions, while the first diagram (S.28) yields all

three combinations. So when we total up the four tree diagrams’ amplitudes, it’s convenient

to reorganize the net tree amplitude by the j, k, ℓ,m indexology, thus

M
(

πj(p1) + πk(p2) → πℓ(p′1) + πm(p′2)
)

= −δjkδℓm
(

λ +
λ2f2

s−M2
σ

)

− δjℓδkm
(

λ +
λ2f2

t−M2
σ

)

− δjmδkℓ
(

λ +
λ2f2

u−M2
σ

)

.

(S.33)

Problem 4(c-d):

The Lagrangian (3) of the linear sigma models has a very important relation between the

quartic coupling λ, the cubic coupling κ = λf , and the σ particle’s mass M2
σ = λf2, thus

(

M2
σ = λf2

)

× λ =
(

κ = λf
)2
. (S.34)

Thanks to this relation,

λ +
(λf)2

s−M2
σ

=
λs− λM2

σ + (λf)2

s−M2
σ

=
λs

s−M2
σ

(S.35)

and likewise

λ +
(λf)2

t−M2
σ

=
λt

t−M2
σ

and λ +
(λf)2

u−M2
σ

=
λu

u−M2
σ

. (S.36)
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Thanks to these formulae, the scattering amplitude (S.33) simplifies to

M = −λ
(

δjkδℓm ×
s

s−M2
σ

+ δjℓδkm ×
t

t−M2
σ

+ δjmδkℓ ×
u

u−M2
σ

)

. (S.37)

Now consider the low-energy limit of this amplitude. In the CM frame, all 4 pions have

the same energy E, hence

s = (Etot
cm)2 = 4E2, t = −4E2 × sin2(θ/2), u = −4E2 × cos2(θ/2), (S.38)

and therefore

s, t, u = O(E2). (S.39)

Consequently, when the pion’s energies are much smaller than the σ particle’s mass, the

denominators in the amplitude (S.37) may be approximated as

1

s−M2
σ

≈
1

t−M2
σ

≈
1

u−M2
σ

≈
−1

M2
σ

=
−1

λf2
. (S.40)

Consequently, the scattering amplitude (S.37) simplifies to

M =

(

+λ

M2
σ

=
+1

f2

)

×

(

δjkδℓm × s + δjℓδkm × t + δjmδkℓ × u + O

(

E4

M2
σ

))

. (S.41)

The magnitude of this amplitude is generally O(E2/f2), so in the low-energy limit it becomes

quite small.

Now consider the ππ → ππ scattering in a completely general frame of reference. Since

the pions are massless, Mandelstam’s s, t, u variables may be written as

s
def
= (p1 + p2)

2 ≡ (p′1 + p′2)
2 = +2(p1p2) = +2(p′1p

′

2),

t
def
= (p′1 − p1)

2 ≡ (p′2 − p2)
2 = −2(p′1p1) = −2(p′2p2),

u
def
= (p′1 − p2)

2 ≡ (p′2 − p′1)
2 = −2(p1p

′

2) = −2(p′1p2),

(S.42)

so whenever any one of the four momenta becomes small, all 3 of the s, t, u become small.

In particular, when 3 of the momenta are O(Mσ) or smaller while the fourth momentum
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becomes much smaller, we have

s, t, u = O(Mσ × psmallest) ≪ M2
σ . (S.43)

Consequently, the scattering amplitude becomes as in eq. (S.41), and its magnitude is gen-

erally

M ∼ (s, t, u)×
λ

M2
σ

<∼ Psmallest ×
λ

Mσ
. (S.44)

The physical reason for this behavior is the Goldstone theorem: Among other things, it says

that all scattering amplitudes involving Goldstone particles — such as the pions in this prob-

lem — become small as O(pπ) when any Goldstone particle’s momentum pπ becomes small.

A few lines above we saw how this works for the tree-level 〈π, π|M |π, π〉 amplitude (S.37);

the same behavior persists at all the higher orders of the perturbation theory, but seeing

how that works is waaay beyond the scope of this exercise.

Problem 4(e):

In the low-energy limit E ≪ Mσ, the tree-level ππ → ππ amplitudes may be approximated

as in eq. (S.41). In particular,

M(π1 + π2 → π1 + π2) =
λt

M2
σ

+ O

(

λE4

M4
σ

)

≈
t

f2
,

M(π1 + π1 → π2 + π2) =
λs

M2
σ

+ O

(

λE4

M4
σ

)

≈
s

f2
,

M(π1 + π1 → π1 + π1) =
λ(s+ t+ u)

M2
σ

+ O

(

λE4

M4
σ

)

= O

(

λE4

M4
σ

)

〈〈 since s+ t+ u = 4m2
π = 0 〉〉

(S.45)

Translating these amplitudes into the partial and the total scattering cross-sections, we
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obtain

dσ(π1 + π2 → π1 + π2)

dΩcm
=

1

64π2s
×

t2

f4
=

E2
cm

64π2f4
× sin4

θcm
2

,

σtot(π
1 + π2 → π1 + π2) =

E2
cm

48πf4
,

dσ(π1 + π1 → π2 + π2)

dΩcm
=

1

64π2s
×

s2

f4
=

E2
cm

64π2f4
,

σtot(π
1 + π1 → π2 + π2) =

E2
cm

32πf4
,

dσ(π1 + π1 → π1 + π1)

dΩcm
=

1

64π2s
× O

(

λ2E8

M8
σ

)

= O

(

E6
cm

f4M4
σ

)

,

σ(π1 + π1 → π1 + π1) = O

(

E6
cm

f4M4
σ

)

≪
E2
cm

f4
.

(S.46)

For a more accurate approximation to the same-species elastic scattering like π1+π1 →

π1+π1, we need to go back to the amplitude (S.37) and expand it to second powers in s, t, u.

Thus,

−
λs

s−M2
σ

≈
λs

M2
σ

+
λs2

M4
σ

,

−
λt

t−M2
σ

≈
λt

M2
σ

+
λt2

M4
σ

,

−
λu

u−M2
σ

≈
λu

M2
σ

+
λu2

M4
σ

,

(S.47)

and therefore

M(π1 + π1 → π1 + π1) = −
λs

s−M2
σ

−
λt

t−M2
σ

−
λu

u−M2
σ

≈
λ

M2
σ

× (s+ t+ u = 0) +
λ

M4
σ

× (s2 + t2 + u2).

(S.48)

In the center of mass frame,

s2 + t2 + u2 = 16E4 + 16E4 × sin4(θ/2) + 16E4 × cos4(θ/2)

= 8E4 × (3 + cos2 θ) =
(

Etot
cm

)4
×

3 + cos2 θ

2
,

(S.49)
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hence

dσ(π1 + π1 → π1 + π1)

dΩcm
≈

λ2E6
cm

256π2M8
σ

× (3 + cos2 θ)2 , (S.50)

and therefore

σ(π1 + π1 → π1 + π1) ≈
7λ2E6

cm

80πM8
σ

. (S.51)
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