
PHY–396 K. Solutions for problem set #10.

Problem 2(a):

For the ultra-relativistic electrons and positrons, the spinors u(p, s) and v(p, s) become chiral.

Indeed, by inspection of eqs. (2), u has chirality matching the electron’s helicity — left for

λ = −1
2 and right for λ = +1

2 — while v has chirality opposite to the positron’s helicity —

left for λ = +1
2 and right for λ = −1

2 . At the same time, the amplitude (1) depends on the

electron’s and positron’s spin states via the ‘Dirac sandwich’ v̄(e+)γνu(e
−) which does not

mix helicities. Indeed,

v̄γνu = v†γ0γνu = v†

(

σ̄ν 0

0 σν

)

u = v†Lσ̄νuL + v†RσνuR , (S.1)

so if u and v are chiral, then they should have the same chirality — both left or both right

— or else v̄γνu = 0. In terms of helicities, u(e−) and v(e+) being both left-handed means

λ(e−) = −1
2 while λ(e+) = +1

2 ; likewise, u(e
−) and v(e+) being both right-handed means

λ(e−) = +1
2 while λ(e+) = −1

2 . Thus, a non-zero amplitude (3) requires the electron and

the positron to have opposite helicities, λ(e+) = −λ(e−); for similar helicities of the two

initial particles, the amplitude vanishes. Quod erat demonstrandum.

For future reference, let me calculate the explicit Dirac sandwiches (S.1) for the ultra-

relativistic electron and positron spinors (2):

v̄(e+L )γνu(e
−
L ) = −2E

(

0

ηL

)†(

σ̄ν 0

0 σν

)(

ξL

0

)

= 0, (3)

v̄(e+L )γνu(e
−
R) = −2E

(

0

ηL

)†(

σ̄ν 0

0 σν

)(

0

ξR

)

= −2E × η†LσνξR , (S.2)

v̄(e+R)γνu(e
−
L ) = +2E

(

ηR

0

)†(

σ̄ν 0

0 σν

)(

ξL

0

)

= +2E × η†Rσ̄νξL , (S.3)

v̄(e+R)γνu(e
−
R) = +2E

(

ηR

0

)†(

σ̄ν 0

0 σν

)(

0

ξR

)

= 0. (3)

As promised, the sandwich — and hence the amplitude (1) vanishes for the same helicities.
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Problem 2(b):

For the ultra-relativistic muons, the u(µ−) and v(µ+) are chiral, and the chiralities behave

exactly similar to the electron and the positron in part (a): the Dirac sandwich ū(µ−)γνv(µ+)

vanishes unless u and v have the same chirality, which requires the µ− and the µ+ to have

opposite helicities. Specifically,

ū(µ−L )γνv(µ
+
L) = −2E

(

ξL

0

)†(

σ̄ν 0

0 σν

)(

0

ηL

)

= 0, (4)

ū(µ−L )γνv(µ
+
R) = −2E

(

ξL

0

)†(

σ̄ν 0

0 σν

)(

ηR

0

)

= +2E × ξ†Lσ̄νηR , (S.4)

ū(µ−R)γνv(µ
+
L) = −2E

(

0

ξL

)†(

σ̄ν 0

0 σν

)(

0

ηL

)

= −2E × ξ†RσνηL , (S.5)

ū(µ−R)γνv(µ
+
L) = −2E

(

0

ξL

)†(

σ̄ν 0

0 σν

)(

ηR

0

)

= 0. (4)

Eqs. (4) — and similar formulae for the other fermion-antifermion pairs produced with

ultra-relativistic speeds in electron-positron collisions — assure that the fermion and the

antifermion always have opposite helicities. Experimentally, this means that if for some

event we are able to determine the helicity of one final particle, then we may infer the

second final particle’s helicity without any further experimental effort.

Problem 2(c):

The electron moves in the positive z direction, so its helicity λ is the same as its Sz — the

z component of its spin. Hence, the ξ spinors corresponding to the 2 helicities are

ξ(e−L ) =

(

0

1

)

and ξ(e−R) =

(

1

0

)

. (S.6)

The positron moves in the negative z direction, so its helicity is opposite from Sz, hence

ξ(e+L ) =

(

1

0

)

and ξ(e+R) =

(

0

1

)

. (S.7)

However, the η spinors in eqs. (2) for the positrons have opposite spins from these ξ spinors,
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specifically η = σ2ξ
∗, thus

η(e+L ) =

(

0

+i

)

and η(e+R) =

(

−i

0

)

. (S.8)

Substituting these 2–component spinors into eqs. (S.2) and (S.3), we obtain

v̄(e+L )γνu(e
−
R) = −2E × ( 0 −i )σν

(

1

0

)

= +2iE × (σν)21

= 2E × (0,−i,+1, 0)ν ,

v̄(e+R)γνu(e
−
L ) = +2E × (+i 0 ) σ̄ν

(

0

1

)

= +2iE × (σ̄ν)12

= 2E × (0,+i,+1, 0)ν.

(5)

When taking the 21 and 12 matrix elements of the σν and σ̄ν matrices, please remember

that σν = (1, σx, σy, σz) while σ̄ν = (1,−σx,−σy,−σz).

Problem 2(d):

Suppose for a moment θ = 0 and the µ∓ move in the same directions as e∓. Then the

muons have exactly the same spinors u and v as the e∓ of the same charge and helicity, and

similarly to eqs. (5) we have

v̄(µ+L)γνu(µ
−
R) = 2E× (0,−i,+1, 0)ν and v̄(µ+R)γνu(µ

−
L) = 2E× (0,+i,+1, 0)ν . (S.9)

For the muons, the amplitude (1) involves the ū(µ−)γνv(µ+) Dirac sandwich rather than

the v̄(µ+)γνu(µ
−), but these two sandwiches are related by complex conjugation

(

v̄γνu
)∗

= ūγνv = ūγνv, (S.10)

as well as raising the index ν, hence

ū(µ−R)γ
νv(µ+L) = 2E ×

[

(0,−i,+1, 0)ν = (0,+i,−1, 0)ν
]∗

= 2E × (0,−i,−1, 0)ν ,

ū(µ−L)γ
νv(µ+R) = 2E ×

[

(0,+i,+1, 0)ν = (0,−i,−1, 0)ν
]∗

= 2E × (0,+i,−1, 0)ν .
(S.11)

Eqs. (S.11) apply for θ = 0. For other muon directions, we may simply rotate the
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4–vectors (S.11) through angle θ in the xz plane, thus

ū(µ−R)γ
νv(µ+L) = 2E × (0,−i cos θ,−1,+i sin θ)ν ,

ū(µ−L)γ
νv(µ+R) = 2E × (0,+i cos θ,−1,−i sin θ)ν .

(7)

Problem 2(e):

Substituting the Dirac sandwiches (5) and (7) into the pair production amplitude (1), we

obtain

〈

µ−L , µ
+
R

∣

∣M
∣

∣e−L , e
+
R

〉

=
〈

µ−R, µ
+
L

∣

∣M
∣

∣e−R, e
+
L

〉

= −e2 × (1 + cos θ),
〈

µ−R, µ
+
L

∣

∣M
∣

∣e−L , e
+
R

〉

=
〈

µ−L , µ
+
R

∣

∣M
∣

∣e−R, e
+
L

〉

= −e2 × (1− cos θ),
(S.12)

while all the other polarized amplitudes vanish by eqs. (3) and (4):

〈

µ−any, µ
+
any

∣

∣M
∣

∣e−L , e
+
L

〉

=
〈

µ−any, µ
+
any

∣

∣M
∣

∣e−R, e
+
R

〉

= 0,
〈

µ−L , µ
+
L

∣

∣M
∣

∣e−any, e
+
any

〉

=
〈

µ−R, µ
+
R

∣

∣M
∣

∣e−any, e
+
any

〉

= 0.
(S.13)

The partial cross-sections (8) follow from these amplitudes according to

dσ

dΩc.m.
=

|M|2
64π2s

×
( |p′|
|p| ≈ 1

)

. (S.14)

Problem 2(f):

Summing the polarized cross-sections (8) over the muons’ helicities, we get

dσ(e−L + e+R → µ−any + µ+any)

dΩc.m.
=

dσ(e−R + e+L → µ−any + µ+any)

dΩc.m.

=
α2

4s
× (1 + cos θ)2 +

α2

4s
× (1− cos θ)2 + 0 + 0

=
α2

2s
× (1 + cos2 θ)

(S.15)

while

dσ(e−L + e+L → µ−any + µ+any)

dΩc.m.
=

dσ(e−R + e+R → µ−any + µ+any)

dΩc.m.
= 0. (S.16)
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Averaging these cross-sections over the electron’s and positron’s helicities gives

dσ(e−avg + e+avg → µ−any + µ+any)

dΩc.m.
=

1

4

(

α2

2s
× (1 + cos2 θ) +

α2

2s
× (1 + cos2 θ) + 0 + 0

)

=
α2

4s
× (1 + cos2 θ),

(S.17)

which is exactly what we found in class for the un-polarized cross-section when E ≫ Mµ.

Problem 3(a):

Using Feynman gauge for the photon propagator, the usual QED vertex for the electron, and

the nuclear-photon vertex (9) (in the slow nucleus limit), the diagram (10) yields amplitude

iM =
−igµν

q2
× ū(e′)(ieγµ)u(e)× (−iZe)(2MN )δν,0 , (S.18)

and hence, after summing over the Lorentz indices

M =
−2MNZe2

q2
× ū(e′)γ0u(e). (S.19)

Problem 2(b):

For any elastic scattering in the CM frame, the partial cross-section is

dσ

dΩ
=

|M|2
64π2s

(S.20)

where |M|2 is the |M|2 summed over the final particle spins and averaged over the initial

particle spins. For the Mott scattering, the net energy (in the CM frame) is

Enet = E(N) + E(e) ≈ MN + E(e) ≈ MN since E(e) ≪ MN , (S.21)

hence s ≈ M2
N and therefore

dσ

dΩ
≈ |M|2

64π2M2
N

. (S.22)
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For the Mott amplitude (S.19), this translates to

dσ

dΩ
≈ Z2e4

16π2
× 1

(q2)2
× 1

2

∑

s,s′

∣

∣ū(p′, s′)γ0u(p, s)
∣

∣

2
. (S.23)

To bring this formula to the form (11), note that in the h̄ = c = 1 units (e4/16π2) = α2;

also in the CM frame q2 = −q2 = −2p2(1− cos θ).

Problem 3(c):

As explained in class, for any Dirac matrix Γ,

∑

s,s′

∣

∣ū(p′, s′)Γu(p, s)
∣

∣

2
= tr

(

(6p′ +m)Γ(6p +m)Γ
)

. (S.24)

In particular, for the spin sum (12) we have

1

2

∑

s,s′

∣

∣ū(p′, s′)γ0u(p, s)
∣

∣

2
= 1

2 tr
(

(6p′ +m)γ0(6p+m)γ0
)

= 1
2 tr(6p

′γ0 6pγ0) + 1
2m

2 tr(γ0γ0)

= 2
(

p′0p0 − (p′p)g00 + p′0p0
)

+ 2m2g00

= 2
(

2×E′E − (p′p)
)

+ 2m2

= 2
(

E′E + p′ · p + m2
)

.

(12)

Problem 3(d):

Combining eqs. (11) and (12), we immediately get

dσ

dΩ
=

(Zα)2

(q2)2
× 2
(

E′E + p′ · p + m2
)

. (S.25)

The rest is relativistic kinematics: in h̄ = c = 1 units,

q2 = p2 × 2(1− cos θ) = p2 × 4 sin2(θ/2) = m2γ2β2 × 4 sin2(θ/2), (S.26)
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while in the numerator of eq. (S.25)

p′ · p = p2 cos θ = p2 − 2p2 sin2(θ/2), (S.27)

hence

E′E + p′ · p + m2 = 2E2 − 2p2 sin2(θ/2) = 2m2γ2(1− β2 sin2(θ/2)). (S.28)

Plugging all these formulae into eq. (S.25), we get

dσ

dΩMott
=

(Zα)2

16m4γ4β4 sin2(θ/2)
× 4m2γ2(1− β2 sin2(θ/2))

=
(Zα)2

4m2β4 sin2(θ/2)
× 1− β2 sin2(θ/2)

γ2

=
dσ

dΩRutherford
× 1− β2 sin2(θ/2)

γ2
.

(13)

Quod erat demonstrandum.

Problem 4, preamble:

A point of notation: In the solutions to this problem, the indices µ, e, ν ≡ νµ, and ν̄ ≡ ν̄e

denote the particles. For the Lorentz indices, I shall use α, β, γ, δ, κ, λ, σ, ρ, but never µ

or ν. Thus, pµα denotes the α component of the muon’s 4–momentum, etc., etc.

Problem 4(a):

Since the muon is so much lighter than the W± bosons, we have q2 ≪ M2
W which justifies

using Fermi’s effective low-energy theory instead of the full Glashow–Weinberg–Salam theory

of the weak interactions. In terms of the diagram (15), this means approximating the W

propagator as igκλ/M
2
W , hence combining this propagator with the two vertices and the

external line factors of the diagram, we get

iM =
igκλ
M2

W

× ū(νµ)

(−ig2√
2
γκ

1− γ5
2

)

u(µ)× ū(e)

(−ig2√
2
γλ

1− γ5
2

)

v(ν̄e)

= − ig22
8M2

W

× ū(νµ)γ
λ(1− γ5)u(µ)× ū(e)γλ(1− γ5)v(ν̄e).

(S.29)

Eq. (18) obtains from this formula by identifying the overall factor here as the Fermi constant,
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or rather

GF√
2

def
=

g22
8M2

W

. (19)

Problem 4(b):

Let’s start with the muon decay amplitude

M(µ− → e−νµν̄e) = −GF√
2

[

ū(νµ)γ
α(1− γ5)u(µ−)

]

×
[

ū(e−)γα(1− γ5)v(ν̄e)
]

. (18)

Since the Dirac conjugate of the γα(1− γ5) matrix is the same

γα(1− γ5) = (1− γ̄5)γ̄α = (1 + γ5)γα = γα(1− γ5), (S.30)

the complex conjugate of the amplitude (18) is

M∗ =
GF√
2

[

ū(µ−)γβ(1− γ5)u(νµ)
]

×
[

v̄(ν̄e)γβ(1− γ5)u(e−)
]

. (S.31)

Note: I changed the summed-over Lorentz index here from α to β, so that in the product

M×M∗ below I can separately sum over α and β. Thus,

|M|2 = 1
2G

2
F ×

[

ū(νµ)γ
α(1− γ5)u(µ−)

]

×
[

ū(e−)γα(1− γ5)v(ν̄e)
]

×

×
[

ū(µ−)γβ(1− γ5)u(νµ)
]

×
[

v̄(ν̄e)γβ(1− γ5)u(e−)
]

= 1
2G

2
F ×

[

ū(νµ)γ
α(1− γ5)u(µ−)× ū(µ−)γβ(1− γ5)u(νµ)

]

×

×
[

ū(e−)γα(1− γ5)v(ν̄e)× v̄(ν̄e)γβ(1− γ5)u(e−)
]

.

Consequently, when this |M|2 is summed over the final fermions spins and averaged over

the spin of the initial muon, it becomes a product of two traces,

|M|2 def
= 1

2

∑

all

spins

|M|2 = 1
4G

2
F ×

∑

sµ,sν

[

ū(νµ)γ
α(1− γ5)u(µ−)× ū(µ−)γβ(1− γ5)u(νµ)

]

×

×
∑

se,sν̄

[

ū(e−)γα(1− γ5)v(ν̄e)× v̄(ν̄e)γβ(1− γ5)u(e−)
]

= 1
4G

2
F × tr

(

γα(1− γ5)(6pµ +Mµ)γ
β(1− γ5)(6pν +mν)

)

× tr
(

γα(1− γ5)(6pν̄ −mν̄)γβ(1− γ5)(6pe +me)
)

.

(S.32)
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Problem 4(c):

Our next task is to evaluate the traces in eq. (S.32). For the first trace, we have

tr
(

γα(1− γ5)(6pµ +Mµ)γ
β(1− γ5)(6pν +mν)

)

=

= tr
(

γα(1− γ5) 6pµγβ(1− γ5) 6pν
)

+ Mµmν × tr
(

γα(1− γ5)γβ(1− γ5)
)

+ vanishing traces of odd numbers of γλ matrices

〈〈 next, move the (1− γ5) factors left using γλ(1∓ γ5) = (1± γ5)γλ 〉〉

= tr
(

(1 + γ5)γα 6pµγβ 6(1− γ5)pν

)

+ Mµmν × tr
(

(1 + γ5)γαγβ(1− γ5)
)

= tr
(

(1 + γ5)2γα 6pµγβ 6pν
)

+ Mµme × tr
(

(1 + γ5)(1− γ5)γαγβ
)

〈〈 use (1 + γ5)2 = 2(1 + γ5) while (1 + γ5)(1− γ5) = 0 〉〉

= 2 tr
(

(1 + γ5)γα 6pµγβ 6pν
)

+ 0

= 2 tr
(

γα6pµγβ 6pν
)

+ 2 tr
(

γ5γα6pµγβ 6pν
)

.

(S.33)

Furthermore, the traces on the last line here were explicitly evaluated in my notes on Dirac

traces:

tr
(

γα6pµγβ 6pν
)

= 4pαµp
β
ν + 4pβµp

α
ν − 4gαβ(pµ · pν),

tr
(

γ5γα6pµγβ 6pν
)

= −4iǫαγβδpµγpνδ ,
(S.34)

hence

tr
(

γα(1− γ5)(6pµ +Mµ)γ
β(1− γ5)(6pν +mν)

)

= (S.35)

= 8
[

pαµp
β
ν + pβµp

α
ν − gαβ(pµ · pν)

]

− 8iǫαγβδpµγpνδ.

In exactly the same way, the second big trace in eq. (S.32) evaluates to

tr
(

γα(1− γ5)(6pe +me)γβ(1− γ5)(6pν̄ −mν̄

)

= (S.36)

= 8
[

(peαpν̄β + peβpν̄α − gαβ(pe · pν̄)
]

− 8iǫαρβσp
ρ
ν̄p

σ
e .
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Problem 4(d):

Let’s plug the traces (S.35) and (S.36) back into eq. (S.32) and contract the Lorentz indices

α and β:

|M|2 = 16G2
F ×

([

pαµp
β
ν + pβµp

α
ν − gαβ(pµ · pν)

]

− iǫαγβδpµγpνδ

)

×

×
([

peαpν̄β + peβpν̄α − gαβ(pe · pν̄)
]

− iǫαρβσp
ρ
ν̄p

σ
e

)

.
(S.37)

Note that inside each pair of () here, the first term is symmetric WRT α ↔ β while the

second term is antisymmetric, so when we multiply the two factors together and contract

the indices, only the symmetric × symmetric and antisymmetric × antisymmetric products

contribute to the

|M|2 = 16G2
F





[

pαµp
β
ν + pβµp

α
ν − gαβ(pµ · pν)

]

×
[

peαpν̄β + peβpν̄α − gαβ(pe · pν̄)
]

− i0 − i0 − ǫαγβδpµγpνδ × ǫαρβσp
ρ
ν̄p

σ
e



 .

(S.38)

Moreover, when we open the brackets on the top line here, several terms cancel each other:

[

pαµp
β
ν + pβµp

α
ν − gαβ(pµ · pν)

]

×
[

peαpν̄β + peβpν̄α − gαβ(pe · pν̄)
]

=

= 2(pµ · pe)(pν · pν̄) + 2(pµ · pν̄)(pν · pe)

− 2× (pµ · pν)(pe · pν̄) − 2× (pµ · pν)(pe · pν̄)

+ (gαβgαβ = 4)× (pµ · pν)(pe · pν̄)

= 2(pµ · pe)(pν · pν̄) + 2(pµ · pν̄)(pν · pe).
(S.39)

As to the second line of eq. (S.38), contracting the two Levi–Civita tensors gives us

ǫαγβδ × ǫαρβσ = −2δγρδ
δ
σ + 2δγσδ

δ
ρ , (S.40)

hence

−ǫαγβδpµγpνδ × ǫαρβσp
ρ
ν̄p

σ
e = +2(pµ · pν̄)(pν · pe) − 2(pµ · pe)(pν · pν̄). (S.41)
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Finally, combining the two lines of eq. (S.38) gives us one more cancellation, thus

|M|2 = 16G2
F

(

2(pµ · pe)(pν · pν̄) + 2(pµ · pν̄)(pν · pe)

+ 2(pµ · pν̄)(pν · pe) − 2(pµ · pe)(pν · pν̄)

)

= 64G2
F × (pµ · pν̄)(pν · pe).

(21)

Quod erat demonstrandum.

Problem 4(e):

As explained in my notes on phase space — and in much more detail in §4.5 of the Peskin

& Schroeder textbook, — the partial rate of a decay process (in the rest frame of the initial

particle) is given by

dΓ = |M|2 × dP (S.42)

where M is the decay’s amplitude, |M|2 is |M|2 averaged over the unknown initial spins

and summed over the unmeasured final spins, and dP is the infinitesimal phase space factor.

For three final-state particles,

dP =
1

2M0
× d3p1

(2π)3(2E1)

d3p2

(2π)3(2E2)

d3p3

(2π)3(2E3)
×

× (2π)3δ(3)(p1 + p2 + p3)× (2π)δ(E1 + E2 + E3 −M0)

(S.43)

where the energy-momentum conservation laws apply in the rest frame, thus p1+p2+p3 =

ptot = 0 and E1 + E2 + E3 = Etot = M0.

We start by using the momentum-conservation δ–function to eliminate the p3 as inde-

pendent variable, thus

dP =
d3p1 d

3p2

512π5
× δ(E1 + E2 + E3 − Etot)

M0E1E2E3

∣

∣

∣

∣

p3=−(p1+p2)

. (S.44)

Next, we use spherical coordinates for the two remaining momenta,

d3p1 = p21 dp1 d
2Ω1 , d3p2 = p22 dp2 d

2Ω2 , (S.45)

and then replace the d2Ω2 describing the direction of the second particle’s momentum relative
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to the fixed external frame with

d2Ω
(1)
2 = dθ12 sin θ12 dφ

(1)
2

describing the same direction of p2 relative to the frame centered on the p1. Consequently,

d2Ω1 d
2Ω2 = d2Ω1 d

2Ω
(1)
2 =

[

d2Ω1 dφ
(1)
2

]

dθ12 sin θ12 ≡ d3Ω× d(cos θ12) (S.46)

and hence

dP =
d3Ω

512π5
× p21p

2
2

M0E1E2E3
dp1 dp2 × d(cos θ12) δ(E1 + E2 + E3 − Etot)

∣

∣

∣

∣

p3=−(p1+p2)

.

(S.47)

Next, we use the cosine theorem

p23 = (p1 + p2)
2 = p21 + p22 + 2p1p2 cos θ12

which gives

d(cos θ12) =
p3 dp3
p1 p2

(for fixed p1, p2), and therefore

dP =
d3Ω

512π5M0
× p1p2p3

E1E2E3
× dp1 dp2 dp3 × δ(E1 + E2 + E3 − Etot). (S.48)

Finally, we notice that for a relativistic particle of any mass, pdp = EdE, hence

p1p2p3
E1E2E3

× dp1 dp2 dp3 = dE1 dE2 dE3 (S.49)

and therefore

dP =
d3Ω

512π5M0
× dE1 dE2 dE3 δ(E1 + E2 + E3 −Etot). (S.50)

Plugging this formula into eq. (S.42) immediately gives us eq. (22) for the partial 3-body

decay rate, quod erat demonstrandum.
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Problem 4(f):

The kinematic limits on the final particles’ energies follow from the triangle inequalities for

the magnitudes of three momentum vectors which add up to zero:

p1 + p2 + p3 = 0 =⇒ p1 ≤ p2 + p3 and p2 ≤ p1 + p3 and p3 ≤ p1 + p2 .

(S.51)

These inequalities look simple in terms of momenta but generally produce rather compli-

cated inequalities for the energies E1 =
√

p21 +m2
1, E2 =

√

p22 +m2
2, and E3 =

√

p23 +m2
3.

However, when all three final particles are massless, the kinematic restrictions become simply

E1 ≤ E2 + E3 = M − E1 ,

E2 ≤ E1 + E3 = M − E2 ,

E3 ≤ E1 + E2 = M − E3 ,

(S.52)

where the second expression on each right hand side follows from the net energy conservation

E1 + E2 + E3 = M . In other words, the kinematically allowed energies of the three final

particles’ range over

0 ≤ E1, E2, E3 ≤ 1
2M0 , while E1 + E2 + E3 = M0 . (23)

The picture below shows this range in the (E1, E2, E3) space:

E1

E2E3

the E1 + E2 + E3 = M planethe allowed range

(S.53)

13



Problem 4(g):

In the muon’s rest frame

(pµ · pν̄) = MµEν̄ (S.54)

while

(pe · pν) = EeEν − pepν cos θeν

〈〈 by the cosine theorem 〉〉

= EeEν + 1
2p

2
e + 1

2p
2
ν − 1

2p
2
ν̄

〈〈 neglecting me, mν , mν̄ 〉〉

≈ EeEν + 1
2E

2
e + 1

2E
2
ν − 1

2E
2
ν̄

= 1
2(Ee + Eν)

2 − 1
2E

2
ν̄

〈〈 using Ee + Eν = Mµ −Eν̄ 〉〉

= 1
2(Mµ − Eν̄)

2 − 1
2E

2
ν̄

= 1
2Mµ(Mµ − 2Eν̄).

(S.55)

Consequently, the spin-averaged muon decay amplitude2 (21) becomes

|M|2 = 32G2
FM

2
µEν̄(Mµ − 2Eν̄). (S.56)

Plugging this formula into eq. (22) for the decay rate gives us

dΓ(µ− → e−νµν̄e) =
G2

F

16π5
MµEν̄(Mµ − 2Eν̄)× dEe dEν dEν̄ d

3Ω δ(Ee + Eν + Eν̄ −Mµ),

(S.57)

and all we need to do now is to integrate this formula over the final-state variables.

The integration variables comprise 3 angles d3Ω — which integrate to
∫

d3Ω = 8π2 —

and 3 particles’ energies subject to the constraint Ee + Eν + Eν̄ = Mµ and the kinematic
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limits (23). Integrating the decay rate (S.57) over these variables, we have

Γ =
G2

FMµ

2π3

Mµ/2
∫

0

dEe

Mµ/2
∫

0

dEν̄Eν̄(Mµ − 2Eν̄)×
Mµ/2
∫

0

dEν δ(Ee + Eν + Eν̄ −Mµ)

=
G2

FMµ

2π3

Mµ/2
∫

0

dEe

Mµ/2
∫

0

dEν̄Eν̄(Mµ − 2Eν̄)× restrict to(Eν = M − Ee −Eν̄ ≤ 1
2M)

=
G2

FMµ

2π3

1

2
Mµ
∫

0

dEe

1

2
Mµ
∫

1

2
Mµ−Ee

dEν̄ Eν̄(Mµ − 2Eν̄)

〈〈where the lower limit of the
∫

dEν̄ comes from Eν ≤ 1
2Mµ =⇒ Ee + Eν̄ ≥ 1

2Mµ 〉〉

=
G2

FMµ

2π3

1

2
Mµ
∫

0

dEe

(

1
2MµE

2
e − 2

3E
3
e

)

.

(S.58)

In other words, the partial muon decay rate with respect to the final electron’s energy is

given by

dΓ

dEe
=

G2
FMµ

12π3
× E2

e (3Mµ − 4Ee) (S.59)

or rather

dΓ

dEe
≈
{

G2
F

12π3 MµE
2
e (3Mµ − 4Ee) for Ee <

1
2Mµ,

0 for Ee >
1
2Mµ.

(S.60)

Graphically,
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Ee

dΓ/dEe

1
2Mµ

Note how this curve smoothly reaches its maximum at Ee = 1
2Mµ and then abruptly falls

down to zero.

It remains to calculate the total decay rate of the muon by integrating the partial rate

(S.60) over the electron’s energy. The result is

Γtot(µ → eνν̄) =
G2

FMµ

12π3
×

1

2
Mµ
∫

0

dEeE
2
e (3Mµ − 4Ee) =

G2
FM

5
µ

192π3
, (S.61)

or numerically Γ = 3.01 · 10−19 GeV = 4.57 · 105 s−1. This tree level result is in good

agreement with the experimental muon lifetime τ = 2.197 · 10−6 s or Γ = 4.55 · 105 s−1, the

small discrepancy being due to QED loop corrections.
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