PHY-396 K. Solutions for problem set #10.

Problem 2(a):

For the ultra-relativistic electrons and positrons, the spinors u(p, s) and v(p, s) become chiral.
Indeed, by inspection of egs. (2), u has chirality matching the electron’s helicity — left for
A= —% and right for A = +% — while v has chirality opposite to the positron’s helicity —
left for \ = —l—% and right for A\ = —%. At the same time, the amplitude (1) depends on the
electron’s and positron’s spin states via the ‘Dirac sandwich’ 9(e™)y,u(e™) which does not

mix helicities. Indeed,

pu = viy0yu = of <UV 0 )u = vzc’ryuL + ’ULO’,/UR, (S.1)
0 o,

so if u and v are chiral, then they should have the same chirality — both left or both right

— or else vy,u = 0. In terms of helicities, u(e™) and v(e™) being both left-handed means

AMe™) = —% while \(e™) = +%; likewise, u(e™) and v(e') being both right-handed means

A(e™) = +3 while A(e*) = —1. Thus, a non-zero amplitude (3) requires the electron and

the positron to have opposite helicities, A(e™) = —A(e™); for similar helicities of the two

initial particles, the amplitude vanishes. Quod erat demonstrandum.

For future reference, let me calculate the explicit Dirac sandwiches (S.1) for the ultra-

relativistic electron and positron spinors (2):
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o o\ /s, 0\ /[0 T
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0 0 o, &R

As promised, the sandwich — and hence the amplitude (1) vanishes for the same helicities.



Problem 2(b):

For the ultra-relativistic muons, the u(u—) and v(u™) are chiral, and the chiralities behave
exactly similar to the electron and the positron in part (a): the Dirac sandwich @(u™ )y v(u™)
vanishes unless v and v have the same chirality, which requires the ©~ and the pu* to have

opposite helicities. Specifically,

T/
- €L g 0 0
alupwoluf) = =28 )5 o) =0 (4)
v L
Ty
o 33 o, 0 R _
il wlig) = 2B | O” ) - +2E X £ G, (S4)
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- N o\ /5 0\ /0 T
u(pg)nwo(pr) = —2E ¢ 0 o 0 = —2E x{pouny,, (S.5)
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u(/”LR)’yV,U(ILL—’L_) = —2F ¢ 0 o O) = 0. (4)
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Egs. (4) — and similar formulae for the other fermion-antifermion pairs produced with
ultra-relativistic speeds in electron-positron collisions — assure that the fermion and the
antifermion always have opposite helicities. Experimentally, this means that if for some
event we are able to determine the helicity of one final particle, then we may infer the

second final particle’s helicity without any further experimental effort.

Problem 2(c):
The electron moves in the positive z direction, so its helicity A is the same as its .S, — the

z component of its spin. Hence, the £ spinors corresponding to the 2 helicities are

o (! d oo (! S.6
5<eL>—(1> an s<eR>—<O>. (S0

The positron moves in the negative z direction, so its helicity is opposite from S, hence

1 0
Elef) = (()) and &(ef) = <1> (S.7)

However, the 7 spinors in eqgs. (2) for the positrons have opposite spins from these £ spinors,



specifically n = 02£*, thus

nlep) = (fz> and n(ef) = (;l> (S.8)

Substituting these 2—component spinors into egs. (S.2) and (S.3), we obtain

1
(e )nuler) = —2Ex (0 —i)o, <0>
= +2F x (Uy)Ql
— 2B x (0, —i, +1,0),,

0
v(ep)nwuler) = 42E x (+i 0)a, <1>

= +2F x (6,,)12
= 2F x (0,+i,+1,0),.
When taking the 21 and 12 matrix elements of the o, and &, matrices, please remember

that o, = (1,0%,0Y,0%) while 6, = (1, —0%, —0¥, —07%).

Problem 2(d):
Suppose for a moment # = 0 and the uT move in the same directions as eT. Then the
muons have exactly the same spinors u and v as the eT of the same charge and helicity, and

similarly to egs. (5) we have
o(p)wulpy) = 2Ex(0,—i,+1,0)” and o(uf)vu(py) = 2Ex(0,+i,+1,0)". (S.9)

For the muons, the amplitude (1) involves the u(u~)y”v(u™) Dirac sandwich rather than

the o(ut)y,u(p™), but these two sandwiches are related by complex conjugation
(Try”u)* = uyYv = uyYv, (S.10)

as well as raising the index v, hence

v

()Y v(py) = 2B x [(0,—i,+1,0), = (0,+4,—1,0)"]" = 2E x (0, —i,—1,0)",

a(pu )V v(pg) = 2B x [(0,44,+1,0), = (0,—,—1,0)"]" = 2E x (0, +¢,—1,0):. |
S.11

Egs. (S.11) apply for § = 0. For other muon directions, we may simply rotate the



4—vectors (S.11) through angle 6 in the xz plane, thus

v(uf) = 2E x (0,—icosf, —1,+isin0)",

u(py )y v(pg) = 2E x (0,+icosf, —1, —isin6).

Problem 2(e):
Substituting the Dirac sandwiches (5) and (7) into the pair production amplitude (1), we

obtain
(up, | Mlep,e) = (uppp| Mlep,ep) = —€* x (1+cos), S12)
(o nf | Mlep,eh) = (up uf| Mlegef) = —e x (1 - cosd),
while all the other polarized amplitudes vanish by egs. (3) and (4):
(Hany: Hany| M|eTs€5) = (Hanys Hany| M |eg, k) = 0, 613

<N27NZ}M‘e;nyve:ny> = <M}—%’ME}M‘e;ny76:n}’> = 0.

The partial cross-sections (8) follow from these amplitudes according to

do —_ IMP (1P|
ol <HN1 . (S.14)

Problem 2(f):

Summing the polarized cross-sections (8) over the muons’ helicities, we get

do(e] + €fy = fany + liny)  do(eg + €] = fiany + finy)
d€de.m. d€dc.m.
2 2
_ @ 2 . & _ 2 (S.15)
15 < (14 cosf)* + 5 (1—cosf)” + 0 + 0
2

= % x (1 + cos® )

while

doey e oy T tny) _ doleptoh i) g g0
Q. N Q. o '




Averaging these cross-sections over the electron’s and positron’s helicities gives

dg(ea_vg + e;;zg - :ua_ny + :u;_ny) . 1 (a? o?
d€de.m. 4

2—s><(1+cos26’) + 2—S><(1+cos29) +0+0

2
_a 2
=5 (14 cos”0),
(S.17)

which is exactly what we found in class for the un-polarized cross-section when £/ > M,,.

Problem 3(a):
Using Feynman gauge for the photon propagator, the usual QED vertex for the electron, and

the nuclear-photon vertex (9) (in the slow nucleus limit), the diagram (10) yields amplitude

—ighv

M =
¢

x u(e')(iey,)ule) x (—iZe)(2Mn)dyp (S.18)

and hence, after summing over the Lorentz indices

—2Mn Ze?
q

M:

x (€)Y u(e). (S.19)

™,

Problem 2(b):

For any elastic scattering in the CM frame, the partial cross-section is

= = (S.20)

where |M|? is the |[M|? summed over the final particle spins and averaged over the initial

particle spins. For the Mott scattering, the net energy (in the CM frame) is
FEnet = E(N) + E(e) = My + E(e) = My since E(e) < My, (S.21)

hence s ~ MJ2V and therefore

do M2

—_— " ———. S.22
dQ 647T2M]2V ( )



For the Mott amplitude (S.19), this translates to

do Z2et 1
~ X

2
dQ 1672 (¢?)? |

(S.23)

1
x5 > [ule, s ulp, s)

s,s’

To bring this formula to the form (11), note that in the i = ¢ = 1 units (e*/1672) = o?;
also in the CM frame ¢> = —q? = —2p?(1 — cosf).

Problem 3(c):

As explained in class, for any Dirac matrix T,
Z |a(p’, s")Tu(p, s)}2 = tr((# + m)L(+ m)T). (S.24)
S,S8

In particular, for the spin sum (12) we have

% S a7 ulp, )| = Str(@ +mn @+ m))

= 3t ") + gm? (")

12
_ 2(]9/0]90 . (p/p)QOO + plop()) + 2m2g00 ( )
= 2(2x E'E — (p'p)) + 2m?

= 2(E'E + p' -p + m?).

Problem 3(d):
Combining egs. (11) and (12), we immediately get
do (Za)?

0 - (PP x2(E'E + p'-p + m?). (S.25)

The rest is relativistic kinematics: in 74 = ¢ = 1 units,

@ = p? x2(1 —cosh) = p? x4sin?(0/2) = m?y%3? x 4sin?(0/2), (S.26)



while in the numerator of eq. (S.25)
p-p = p?cosf = p* — 2p*sin?(h/2), (5.27)
hence
E'E+7p -p+m? = 2E% — 2p%sin®(0/2) = 2m?y2(1 — 3?sin?(0/2)). (S.28)

Plugging all these formulae into eq. (S.25), we get

do (Za)2 ) -
4 1- 0/2
d2 Mot 16mAy434sin®(6/2) x 4m*~y*(1 — B*sin*(6/2))

(Za)? L1 (2 sin?(0/2)

= 13
4m2 (4 sin?(0/2) Y2 (13)

_do L= 32sin?(6/2)

N dS2 Rutherford ’72 .

Quod erat demonstrandum.

Problem 4, preamble:

A point of notation: In the solutions to this problem, the indices p, e, v = v, and v = 7,
denote the particles. For the Lorentz indices, I shall use «, 5, v, J, k, A\, o, p, but never

or v. Thus, p,, denotes the o component of the muon’s 4-momentum, etc., etc.

Problem 4(a):

Since the muon is so much lighter than the W¥ bosons, we have ¢> < M%V which justifies
using Fermi’s effective low-energy theory instead of the full Glashow—Weinberg—Salam theory
of the weak interactions. In terms of the diagram (15), this means approximating the W
propagator as 1g\ /MI%V, hence combining this propagator with the two vertices and the
external line factors of the diagram, we get

g Mgk - —ig2 11— _ —ig2  1—=95\
M= 22 ) (2,5 Y ) < ale) (T2 5 ) o
195 _

- — X u(l/u)”y)‘(l — 5 u(p) x u(e)ya(l — vs5)v(Te).

Eq. (18) obtains from this formula by identifying the overall factor here as the Fermi constant,



or rather

2
Or g 9 (19)
V2 8MY
Problem 4(b):
Let’s start with the muon decay amplitude
- S Gr 1_ @ 5 - - 5\, (5
Ml = e ) = =7 (8 (1= 7)ulu0)] x [ale (= 27e@)] . (18)
Since the Dirac conjugate of the ¥%(1 — +°) matrix is the same
1(1=77) = (1=")7 = 1+ = (1 =), (S-30)
the complex conjugate of the amplitude (18) is
* GF _— i _
M=z (a1 = P )u(m)] x 5750 = 2P)ute)] (5.31)

Note: I changed the summed-over Lorentz index here from « to [, so that in the product

M x M* below T can separately sum over a and 8. Thus,

M2 = 563 x [a(,)r (1 =7 P)u(e)] x [a(e )01 = 27)e(@)] x
x Ay (1= )] < [5)75(1 = 7 )u(e)]
= 3G X :H(Vu)va(l =P )ulp™) x w(n” )y (1 - 75)U(Vu)} X

X |a(e (1 =P )u(E) X 0(Z)vs(1 = 7P)u(eT)]

Consequently, when this [M]? is summed over the final fermions spins and averaged over

the spin of the initial muon, it becomes a product of two traces,

ME LS IME = 163 % 3 [l (1= 2P )ule”) x 1 (1= 27)u)] x

all SpySu

x 3 (e )a(l = 97)o(me) x 351 = 7Pu(e)]

Se,Sp

= 1G% x tr(”ya(l — ) B+ M)V (1= ")y + ml’))

% tr (a1 =7) (= mi) a1 = 7) (e + 1))

(S.32)



Problem 4(c):

Our next task is to evaluate the traces in eq. (S.32). For the first trace, we have

tr (721 = 9" + M7 (=270 + ) =
= (190 =) AU =) ) + Mumy x 1 (12(1 =220 (1= 7))
+ vanishing traces of odd numbers of 4 matrices
{{ next, move the (1 — ~°) factors left using 7 (1 F+°) = (1 £+°)7*)
=t (L4277 Br” (L= + My x tr (14971997 (1= 7))
=t (L4972 B )+ Mume x tr (1497)(1 = 77)77)
{(use (1++°) =2(14+°) while (1++°)(1—~°)=0)
= 2t (19" W W) + 0

= 2tr (vam‘%) + 2tr (757‘%051%)-

(S.33)

Furthermore, the traces on the last line here were explicitly evaluated in iy notes on Dirad
£y

tr (7"%7’3 m) = 4p%pl + Apipl — 49°%(p, - D), s

3
tr (75704%/}/5%”) = _42'606755131”291/6’

hence

tr (151 =2") 0 + M)y (1 =)0 + 1)) = (3.35)

= 8 [pﬁpf + 90 — g™ (o p)| — 8i€ P puypys.
In exactly the same way, the second big trace in eq. (S.32) evaluates to
tr (Ya(l = 7°) e +me)rp(1 = 7)o —mp) = (S.36)

= 8 [(peabsp + PepPia — Gap(Pe - D5)] — 8Bi€apsolopl .


http://localhost/~vsk1958/Classes/2024f-qft/traceology.pdf
http://localhost/~vsk1958/Classes/2024f-qft/traceology.pdf

Problem 4(d):
Let’s plug the traces (S.35) and (S.36) back into eq. (S.32) and contract the Lorentz indices
« and f:

M2 = 16GF x ([pfjpf + pp — 9% (pu -pu)} — ie*?” 5pwpu5) X S
37
X <|:peapl75 + DepPra — gaﬂ(pe 'pﬂ)] - iEapﬂaPéP?)-

Note that inside each pair of () here, the first term is symmetric WRT « <  while the
second term is antisymmetric, so when we multiply the two factors together and contract
the indices, only the symmetric x symmetric and antisymmetric x antisymmetric products

contribute to the

|M|2 _ 16G% pgpg + pﬁpg - gaﬂ(pu 'pu)] X [peapy,g + PepPoa — gaﬁ(p6 -pp)]

— 0 —0 — Eafy’gdp;wpyé X Eoepﬂapgpg
(S.38)

Moreover, when we open the brackets on the top line here, several terms cancel each other:

Pl + papls — 9°° (b -py)} X [peapﬁﬂ + DepPra — Jap(Pe -pp)} =
= 2(pu - pe) Py - P5) + 2(pu - 10) Py - Pe)
— Xt by) — XD pre o)
+ (9% = - D)

= 2(pu -pe)(pl, -py) + 2(]9# 'pz’/)(py 'pe)'

(5.39)
As to the second line of eq. (S.38), contracting the two Levi-Civita tensors gives us
P X €appe = —26)05 + 26707, (S.40)
hence
—e P ppus X eappollyp] = +2(pu - 05) (P - pe) — 2(pu - pe) Py - Po)- (841)

10



Finally, combining the two lines of eq. (S.38) gives us one more cancellation, thus

M + 2(pu - p5) (P * Pe)
+ 2(pu po)(Pv - Pe) — M

Quod erat demonstrandum.

(M[? = 16G%< ) = 64GT: X (D po) (v - pe).

(21)

Problem 4(e):

€9 Schroeder textbook, — the partial rate of a decay process (in the rest frame of the initial

particle) is given by
dl = [MP x dP (S.42)

where M is the decay’s amplitude, W is [M|? averaged over the unknown initial spins
and summed over the unmeasured final spins, and dP is the infinitesimal phase space factor.
For three final-state particles,
aP - 1 d*py d*py d’p3 "
2Mo — (2m)3(2En) (2m)3(2E3) (27)3(2E5) (S.43)
x (2m)363) (p1 + p2 + p3) X (2m)8(E1 4 Eo + E3 — M)

where the energy-momentum conservation laws apply in the rest frame, thus p; +p2 + p3 =

Ptot = 0 and E1 + EQ + E3 = Etot = M().

We start by using the momentum-conservation d—function to eliminate the p3 as inde-

pendent variable, thus

d3p1d®py  §(Ey + By + E3 — Fioy)

AP = X (S.44)
5
5127 MOE1E2E3 p3=—(p1+p2)
Next, we use spherical coordinates for the two remaining momenta,
d’p1 = pidp d*Q, d’py = p3dpyd°Qy, (S.45)

and then replace the d?Qy describing the direction of the second particle’s momentum relative

11


http://localhost/~vsk1958/Classes/2024f-qft/FGR.pdf

to the fixed external frame with
szgl) = d912 sin 912 d(bgl)
describing the same direction of po relative to the frame centered on the p;. Consequently,

P20, d2Qy = a2y 20l = [dml d¢§”} b1 sinfry = d3Q x d(cosfz)  (S.46)

and hence
B30 p2p2
dP = 2 dpydpy x d(cosbhs) 6(Fy + Fy+ B3 — E :
5127® MOE1E2E3 prap = (COS 12) ( LT tOt) p3=—(P1+pP2)
(S.47)
Next, we use the cosine theorem
pi = (P1+p2)° = pi + p3 + 2p1p2cos by
which gives
d
d(cosfiz) = Ps aps
p1p2
(for fixed p1,p2), and therefore
d3Q
aP = wx DAP2DS o 1 dpo dpg x 8(Ey + Es + B3 — Eioy). (S.48)

5127T5M0 E1E2E3

Finally, we notice that for a relativistic particle of any mass, pdp = FdFE, hence

P1P2p3
———— X dpydpaydps = dE1dEydFE 4
E1E2E3X p1 dp2 dps3 1dEydEs (S.49)
and therefore
dP—ﬂxdEdEdEé(E + By + B3 — Eiop) (8.50)
= 51200 1dEp dE3o(En + Lo + B3 — Eiot). :

Plugging this formula into eq. (S.42) immediately gives us eq. (22) for the partial 3-body

decay rate, quod erat demonstrandum.

12



Problem 4(f):
The kinematic limits on the final particles’ energies follow from the triangle inequalities for

the magnitudes of three momentum vectors which add up to zero:

pi+p2+p3 =0 = p <p+p3 and po < p1 +p3 and p3 < pr + po.
(S.51)

These inequalities look simple in terms of momenta but generally produce rather compli-

cated inequalities for the energies £ = \/p% + m%, Ey = @/p% + m%, and E3 = @/p?)) + m%.

However, when all three final particles are massless, the kinematic restrictions become simply

Eq Ey + Es= M — Ep,
Ey < EhW + E3= M — Es, (S5.52)
FE3s < By + Eo= M — L3,

IN

where the second expression on each right hand side follows from the net energy conservation
E1+ Es + E5 = M. In other words, the kinematically allowed energies of the three final

particles’ range over
0 < Ey, By E3 < My, while Ei + Ey +F3 = M. (23)

The picture below shows this range in the (F1, Eq, E3) space:

Eq

the Fh + E3 + E5 = M plane

/

the allowed range

E3 B> (3.53)

13



Problem 4(g):

In the muon’s rest frame
(pp - pw) = MuEjp (S.54)

while

(Pe - pv) = EeEy — pepy cos ey
{( by the cosine theorem ))

{( neglecting me, m,, my ))

~ E.E, + $E2 + 1E2 — LEZ (S.55)

{(using E. + E, = M, — Ep))
= %(Mu —E;)* — 1E?
= M, (M, —2Ey).

Consequently, the spin-averaged muon decay amplitude? (21) becomes

IM]? = 32G3M; Ey(M, — 2Ej). (S.56)

Plugging this formula into eq. (22) for the decay rate gives us

G

T M, Ey(M,, — 2F;) x dE. dE, dE; d*Q (B + E, + E; — M,,),

(S.57)

dU'(p~ — e vule) =

and all we need to do now is to integrate this formula over the final-state variables.

The integration variables comprise 3 angles d®Q) — which integrate to i d3Q = 872 —

and 3 particles’ energies subject to the constraint F. + E, + E; = M, and the kinematic

14



limits

(23). Integrating the decay rate (S.57) over these variables, we have

o Mu2 M2 M, /2
G2 M,
I = % /dE /dEE —2F;) x /dE,,cS(Ee+EV+Eg—MM)
0 0
My/2 M,/
G3M,, 1
= 53 dE. dEyEy (M, — 2E5) x restrict to(E, = M — E, — Ey < 5M)
0 0
2 My My
— 5“%3 / dE, / dEy By (M, — 2Ey)
0 iM,—E.

(( where the lower limit of the [dEj; comes from E, < M, = E. + Ep > $M,,))

1=

=

n

G%M,,
273

o~

a5 (3

MNEE —

29k

(.58)

In other words, the partial muon decay rate with respect to the final electron’s energy is

given by
or rather

ar
Graphically,

dl’ GEM,
= EZ(3M,, — AE S.59
B, = 12w < BeBMu— k) (5.59)
G
15tz My E?(3M,, — 4E.) for E. < $M,, (5.60)
0 for B, > $M,,.

15



dr' /dE,

My,

N|—

1

Note how this curve smoothly reaches its maximum at E. = 5M;, and then abruptly falls

down to zero.

It remains to calculate the total decay rate of the muon by integrating the partial rate

(S.60) over the electron’s energy. The result is

g

_ GMy, ) 2

GEM;,
19273 7

(S.61)

o

or numerically I' = 3.01 - 107" GeV = 4.57 - 10° s~!. This tree level result is in good
agreement with the experimental muon lifetime 7 = 2.197-107% s or I' = 4.55- 10° 571, the

small discrepancy being due to QED loop corrections.
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