PHY-396 K. Solutions for problem set #10.

Problem 1(a):

In the first diagram (1), the virtual photon has momentum ¢ = pj — p1 = p2 — pj, hence
¢®> = t. In the second diagram, the virtual photon’s momentum is § = p1+p2 = Py +ph, hence
§?> = s. Accordingly, the two diagrams are called the s-channel diagram and the ¢-channel

diagram.
The t-channel diagram evaluates to
_Zng

¢* (S.1)

iMy = —(a(eﬂ(ie%)v(ﬁ’)) x (ﬂ(e_’)(ie%)u(e_)) x

—ie?
= —— X v(e)yuo(e™) x ale™ )y ule)

where the overall minus sign is due to the positron-out to positron-in fermionic line. And
the s-channel diagram evaluates to
_Zng

¢ (S.2)

iMy = +<@(e+)(iewu)u(e*)> X (ﬂ(e*')(ie%)v(eﬂ) X

ie?
B +s x (e )ypule”) x ale™ )y o(e™)

where the overall sign is plus because both fermionic lines have an incoming or outgoing

electron at one end.

Problem 1(b):
Summing /averaging the |Ms|? over spins works exactly as for the muon pair production

discussed in class:
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(neglecting the mass relative to the momenta )
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= 16 (;) [2(p’2p2)(p’1p1) + 2(php1) (P p2).

— 2(pyp) (p2p1) — 2(paph) (p2p1) + 4(29’229’1)(172191)]

62 2
= 32 (;) [(Pop2) (Pip1) + (Php1) (Pip2)]

=8 <£)2 [t* + ? (S.3)

S

where the last equality follows from the kinematic relations (4). Altogether,

1 9 4 t2 + U2
spins

Problem 1(c):
The two diagrams for Bhabha scattering are related by the crossing symmetry, so the ampli-
tudes M7 and M are related to each other via analytic continuation of particle’s momenta.

In terms of the spin-summed |M|? and Mandelstam’s variables,

O IMis, )P = > (Mot s,u)?, (S.4)

spins spins
hence eq. (5) for the second amplitude implies a similar equation for the first amplitude, but
with s and ¢ exchanged with each other — i.e., eq. (6).

Alternatively, we may sum the |M;|? over all the spins in the same way as we summed

the | Ms|? in part (b):

2\’
Z IMy* = (—) Z [a(e™ )Y u(e™) x a(e™ )y ule™)] x [o(e™)yuv(e™) x v(e™)pv(e™)]

spins spins
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= 16( ) [2(p’1p’2)(p1pz) + 2(p1p2)(p1p3)
— 2(pip1) (Php2) — 2(pip1)(Pap2) + 4(Pip1)(php2)
6
= ) [(D195) (p1p2) + (p1p2)(P1p2)]
2

. (7) 5 + o (5.5)

and hence

1 2 2
T IMP = 2t x B (6)

t2
spins

Problem 1(d):
The interference term between the two diagrams is more complicated:

2
M x My = —7<ﬂ(6_)7”u(6_') X T)(e+')7yv(e+)) X

X — (6(e+)fyuu(ef) X ﬂ(efl)’YHU@JH))

= ——xale )Y ule™) x ale” )y v(e™) x v(e)pu(e™) x v(e")yuule”)
(S.6)
where on the last line I have re-ordered the factors so that each u is followed by wu of the
same electron and each v is followed by v for the same positron. After summing over all the
spins, each u x @ becomes (p + m), each v X v becomes (p — m), and the whole product
becomes a single big trace rather than a product of two traces,

4

* € v
DO Mix My = =St +m)y O+ my i — m) (e — m)
spins (87)
64 v L
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This trace looks more complicated than it is, and we may drastically simplify it by summing



over v and u before taking the trace. Back in we saw that
VY e = —24Fd and "d o = 4(ab). (S.8)
For the problem at hand, this gives us v” | v* #hy, = —2 gy ¥} and hence

% VB X | = =20 i X ] = =2t < A e
= —2tr[ﬂ1%’2 ><4(p’1pz)] = —8(pip2) Xtr[ﬂm’z}
= —8(pyp2) X 4(p1rh)

= —8u?

Plugging this trace back into eq. (S.6), we arrive at

1 2
ZZM{XM2:+264><Z—7§. (7)

spins

Problem 1(e):
Assembling the spin sums / averages (5—7) together according to eq. (3), we get

def 1

2
MP

Z |./\/l1 +M2|2
spins
1
= 1D (IM + (Mol + 2ReMiM,)
spins
% + u? g tE4u? u? (S5.10)

2¢t x det x =
t2 +oae 52 + e st

J (50 1 u? 2, 2 2 2
= 2e t—2+§+ﬁx(s+t+2$t:(s+t) :u>
s4+t4+u4
52 x t2

Consequently, the un-polarized partial cross-section for the Bhabha scattering is

do |M|? a? " sttt ot (8.2)
= = — X ———. a
dQe.m. 6472 s 2s s2 x t2



http://web2.ph.utexas.edu/~vadim/Classes/2024f-qft/hw07.pdf

To complete the problem, let’s work out the kinematics in the center of mass frame:

t = —(pi —p1)’ = —2p*(1 —cosb), (S.11)
u = —(py—p1)? = —2p*(1 +cosh),
hence
sttt +ut (4pH)* + (2pH)* x (1 —cosO) + (2p?)* x (1 + cos)?
s2 12 B (4p?)2 x (2p?)%(1 — cos 0)?
16+ (1—cosO)? + (1+cos)t 18+ 12cos?f + 2cos’ 6 (S.12)
B 4 x (1 —cosf)? B 4 x (1 —cosh)? '
(34 cos?)?
~ 2(1 —cosh)?”
Plugging this formula into eq. (8.a), we finally obtain
doBhabha _ a_2 y (3 + cos?0)? ' (8.b)
dQem 4s = (1 —cosf)?
Quod erat demonstrandum.
Problem 3(a):
There are two tree diagrams for the e”e™ — S process, namely
v S U S
(S.13)

These two diagrams are related by the ¢ <+ w crossing, and also by the charge conjugation

(which exchanges the initial e~ and e™). The net tree-level amplitude is

Mtree = g}tf&(7) X Mua (S.14.a)



ME = ME 4+ MY (S.14.b)

MY = o) (ig) == (e ule”)
= o o, ($140)

iMY = B(et) (ier)

(—ig)u(e™)

1
q—me
ieg

= o mou, (S.14.4)

where

(S.15)

Problem 3(b):
The Ward identity for the one-photon amplitude (S.14.a) says k& x M, = 0. To verify it,
let’s start with the first diagram:

B 0 me)yu = ol +me)
= (P—— Ky +me) fyu
— (/- +m) ku (because f, k= K2 = 0)
- 17(2(]),/67) — o — me)>u ( anticommuting #_ and £, )
= 2p_k)xTu — 0 {(because (J— —me) x u(e~) =0

= (m?—1t) x vu,

(S.16)

and hence

K x My, = —eg X vu. (S.17)

We see that by itself, the first diagram does not satisfy the Ward entity. Instead, we need



to add the second diagram’s contribution

RS X oy (d + me)u = 0Ky (d + me)u
= 0 fy(fy— Py +me)u
= Ok (— Py T me)u  ((because kK, fy = k2 =0)
= @(—2(p+k7) + @+ +me) %W>u (( anticommuting ¢, and f, ))
= —2(pyky) xou + 0 {(because 5(eT) x (fs +me) =0)

= u—m2 X VU
( e :

(S.18)

and hence
K X Mgy, = +eg x vu. (S.19)

Again, the second diagram does not satisfy the Ward identity by itself, but the net amplitude

does:

X (M, = My, + Ma,) = 0, (S.20)

Problem 3(c):

Thanks to the Ward identity, summing [M|? over the photon’s polarizations is easy:

Z |/\/l|2 = —M’“‘MZ (( see my notes on Ward identitied ))
A
= —./\/l’f/\/lfu — M’;M;H — 2Re (M’f./\/léﬂ)

€2g2
= e X U ey w (e (S.21)

€2g2
T w—m2z Y + me)u X U(f + me) v
e
26292
(t —mg)(u—mZ

) x Re <17(g’+ me)yHu x u(f + me)fyuv).

Consequently, averaging this formula over the electron’s and the positron’s spins yields

1 A A 2Re A
7 _ - 2 _ 22 11 22 12
e DD R (e e e R e =)

S_,S+ A —m; e

(10)
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where

1 _ _
A = 7 D 0l + me)y u X auld + me)v,

S—,5+
1
Ay = 1 Z oYM (d 4+ me)u x a(f + me)y,0,
S—,5+
1
A = Zszs: o(f + me) Y u x a(f + me)y,v.
—9+

At this point, we use the spin sums

Zuxﬂ = (B— +me), va@ = (B4 — me)

S— S+

to convert egs. (S.22) to Dirac traces (11):

A =

Tr ((ZS+ v X 27) (d + me) V" (ZS_ u X ﬂ) Yuld + me)>
(s = me ) + ey (6 + me) vl +me) ).

S = s =

and likewise

Aw = 11 ((30, v o) v me) (X, wxn) @+me))
= (0 — @+ O+ m) - mo),

Apg = iTr (<ZS+U X v) (d + me) V" (Z uxu)(f+ me)fyu)
= 3T (0 = mO o G+ m)F me) ).

Quod erat demonstrandum.

Problem 3(d):

(S.22)

(S.23)

(S.24)

(S.25)

(S.26)

Evaluating the Dirac traces (11) is straightforward but tedious. Fortunately, it becomes



much simpler when we neglect the electron’s mass. In that limit, the first trace becomes

A

Q

Q

Q

—1 Te(@y V" By o)

+3 T dp- o) (using Py, = 2§ )

2(p+9)(p-q) X2 — 2(p1p-) ¢ (S.27)
(M2 —t)xt — sxt = (M?—t—s)xt

u Xt,

where the last two lines follow from

q2

2(pyp-)
2(p—q)

2(p1q)

t,

(p-+p1)* — (P2 +p5) = s —2m = s,
2p-(p- —ky) = (p,—k7)2—|—p% - ki =t+m -0~ t

(ks —pi) = —(hs —pi)® = P4 + k] = ~t —mZ + M =~ M —t,

s+1t+u M? 4+ 2m? ~ M?,
(S.28)
Likewise, the second trace becomes
Ay ~ —3 Tr(Br" A V- dv)
= — 1 Te(yu " A Y- 1)
= +5 T 46— 7) ((using v, g = =244 ) (5.29)
= 2(p+@)(p-@) x 2 = 2(p+p-) T
~ (M2—u)xu — sxu = (M?>—u—s)xu
~ tXu,
where the last two lines follow from (S.28) and
i = u,
2p1q) = 2ps(ky —py) = —(ky—py)® —pF — +k = —u—m + 0 ~ —u,
20-0) = 2-(p— —ks) = (- —ko)® = kI + 9% = u— MI + m? = u— M.



Finally, the third trace becomes

Agy ~ =1 Te(s " V- i)

—(p-@) x Tr(+ )  (using v* p— g = +4(p-9) )
—4(p-3)(p+q)

+(u — M2)(t — M?).

(S.31)

Q

Quad erat demonstrandum.

Problem 3(e):
Now let’s evaluate eq. (10) for the spin summed/averaged |M]2. Neglecting the m? terms

in the denominators and plugging in eqs. (12) for the Aj;, A2, and Aj2, we have

tu ut 2(t — M2)(u — M?)
tu

2 2
|M|2:69(t—2+$+

2g?
- L x (u2 S 2(t—M52)(u—M82)>
u
(S.32)
_ e*g® 22 4
= — X ((t+u— M) + M,
tu
2 4
M.
— 2% x ST M

tu

Now let’s work out the kinematics in the center of mass frame. The initial electron
and positron have 4-momenta pt. = (E, £p) where E. ~ |p|. But since the scalar and
the photon produced in the collision have different masses, they have equal and opposite
3-momenta (in the CM frame) but different energies: k% = (w,+k) while ki = (E,, —k),
where w = |k| # By = \/k2 + M2 . By energy conservation

w+ Es = 2B, = /s. (S.33)
To solve this equation, we rewrite it as

w4+ M?2 = E2 = (Vs —w)? = s — 25 xw +u? (S.34)



which gives us

5 — ]\452 54+ M?
“ NG s NG (5:35)
Given all these momenta, Mandelstam’s ¢ and u obtain as
t = —2(p_ky) = —2Ew + 2p-k~ —2F.w x (1 —cos?h)
= —1(s— M2) x (1 - cosb), (S.36)
u = —2(pyky) = —2Bw — 2p-k~ —2E.w x (14 cosh)
= —%(S—MSQ) X (14 cosf). (S.37)
Hence, plugging these values into eq. (S.32) gives us
2 M4 1
M = detg? x 0 (5.38)

X :
(s — M2)? " sin?0

Finally, the partial cross-section for a 2 particles — 2 particles inelastic scattering in

the CM frame is given by

do M [P
= —_—. 3
dQem 64nZs Ip| (5-39)

For the problem at hand, the inelasticity factor |p’|/|p| is

Mww

5 — M?
|p| Ee S .

(S.40)

Combining this factor with eq. (S.38), we finally arrive at the following formula for the partial
cross-section:
do(e”et — 7S) _ ag? " s2+ M} . 1
dQe m. 4 s2(s— M2) " sin?6°

(S.41)

Note the forward-backward symmetry 6 <> m — 6 of this cross section. Physically, it is due

to the charge-conjugation symmetry which exchanges the initial electron and positron.

11



As usual for annihilation processes in the ultra-relativistic limit, the cross-section (S.41)
has divergent peaks in forward and backward directions, § — 0 or § — 7. The divergence

here is an artefact of the m2 = 0 approximation, which becomes inaccurate at very small

angles 0 < (me/E) (or m — 0 < (me/F)).

A more careful analysis — which was not a required part of this homework — leads to

for < 41, do(e"e™ — 7S) ~ 9 (s 5 o N s 0
(S.42)
— where 77! = m./E < 1 — instead of eq. (S.41). Consequently, the total cross-section

turns out to be finite rather then divergent, namely

2 4 2 2
. 9 (87 M) 2F, sM. m
Tor(eTe 75) = agx s%(s — MSSQ) log me 82 +JS\4§ o E; - B4

e

Problem 4(a):

The scalar potential part of the linear sigma model’s Lagrangian (13) is

Vo) = 2(X,6 - 1)~ AP xome (5.44)

where the last term explicitly breaks the O(N + 1) symmetry of the first term down to the
O(N). To find the minimum of this potential, let’s first find the stationary points where all
the first derivatives OV /0¢; are zero:

. v A
fori=1..N, o = §<§ :jqb?—ﬂ)x@ — 0, (S.45)
U §<§ 6~ f ) X éni1 — BAE = 0. (S.46)

From eq. (S.46) we immediately see that at any stationary point (3 ¢* — f2) # 0, hence
egs. (S.45) tell us that ¢ = -+ = ¢ = 0. In other words, all the stationary points lie on

12



the ¢y 11 axis in the (N + 1) dimensional space of the scalar field values. And in this space,

eq. (S.46) becomes a simple cubic equation

a1 — fPx Oy — 28f% = 0. (S.47)

For small g < f, this cubic equation has 3 real solutions, approximately
(Ont1)1 = =28, (dnt1)y & —f + B, (dn+1)g = +f + 5 (5.48)

Now let’s find out which of the three stationary points is a minimum (or at least a local
minimum) by looking at the second derivatives of the potential (S.44). Along the ¢y axis

in the field space, the second derivatives amount to

(3631 — 2 fori=j=N+1,

2V A
2

- 2x{o0 fori<N, j=N+1lorj<N,i=N=+1, (S.49
P6i00,] J J (S.49)

(p% 1 — f?) x & fori,j<N.

Evaluating these derivatives for the 3 stationary points (S.48) — while assuming small 5 > 0

— gives us
2 2
v
Q (pn+41)y (85]\]# < 0 while other (2@)2 < 0 = maximum,
Q (Ppn11)9 - 627‘/ > 0 while other 827‘/ < 0 = saddle point, (S.50)
N+1/)2 * (8¢J¥+1)2 w (8251')2 p 3 .

oV . oV -

Q (pN41)5 onii > 0 while other CIE > 0 = minimum.

Thus, the potential (S.44) has a unique minimum at

($1) = -+ = (¢n) = 0, (dn41) = +f + B + O(B*/f). (14)

Quod erat demonstrandum.
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Problem 4(b—c):
Let’s shift the fields as in eq. (15). In terms of the shifted fields,

def 2
T = ZZ o7 —f* = E2 + (a+(¢N+1>) -2 = [2 + 02+ 2(pn11) X0 + (<¢N+1)2—f2),
(S.51)
where 7 is a short-hand for N-vector (7T1, o ,7TN) of the pion fields, thus Q2 = (7T1)2 44

(mN)2. Therefore, expanding the scalar potential (S.44) into powers of the shifted fields, we

obtain
Vo= gx T? — BAf? x (0 + (dn41))
I PSR VS S
TGS (U6 ko PR o
+ (% x ((pn41)° = f2) — 5)‘f2) X ¢ -+ const.

On the last line here, the coefficient of o vanishes thanks to (¢n11) obeying the cubic
equation (S.47). For the same reason, the coefficient of (72 + o) on the line before the last

may be simplified as

Mone)2 — 2 BAf?
4  2(dN41) (5.53)

Altogether, we have

A M? M?
V(o,m) = e (EQ + 02)2 + g x (0% + o1?) + 7‘7 x 0% + 7” x 2 + const, (S.54)
where
quartic coupling A = A,
cubic coupling & = A x {(dn11) ~ A(f+f),
pion mass? Mg = bAf ~ BAf,
(Pn+1)

sigma mass® M2 = M? + A(¢N+1>2 ~ MN(f+30).

Note that

K2 = M ona1)® = Ax Agnva)® = Ax (M2 - M), (S.56)
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precisely as in eq. (16).

Finally, let’s take a closer look at the pion’s mass?, Mz ~ [BxAf. Inthe § =0
limit, the pions are massless in accordance with the Goldstone theorem. Indeed, for § =0
the sigma model’s Lagrangian has an exact SO(N + 1) symmetry which is spontaneously
broken down to an SO(N) subgroup; there are N spontaneously broken generators, so there
should be N massless Goldstone bosons. But for § # 0, the SO(N + 1) symmetry of the
Lagrangian is only approximate, and its explicit breaking by the SAf2 x ¢ term spoils
the Goldstone theorem. Thus, instead of exactly massless Goldstone bosons we should get
2

light but not quite massless pseudo-Goldstone bosons; to the first order in 3, their mass

should be proportional to 3. And indeed, in the linear sigma model M2 ~ 3 x \f.

Still, for f < f, the pions should be much lighter than the sigma particle. And indeed,
according to egs. (S.55),

Mz A

g

< 1. (S.57)

M2 BN B
f

Problem 4(d): Back in (problem 4), we wrote the Lagrangian (HW9.3) for the
fields o(x) and 7(z) without explaining where it came from. Now we see that it came from
the shifted fields of the linear sigma model with § = 0 and hence exact O(N + 1) symmetry
spontaneously broken down to O(N). In the present set up for § # 0, the pions are not
exactly massless but are merely much lighter than the sigma. Also, eq. (16) relates the cubic
and the quartic couplings to the difference M2 — M? rather than just the M? as we had in
the homework#9.

Consequently, when we calculate the tree-level pion-pion scattering amplitudes in the

present setup, we get exactly the same formula in terms of A, x, and M, as in eq. (S9.33)

from the polutions to homework#9, namely

A+ i ) (S.58)

15


http://web2.ph.utexas.edu/~vadim/Classes/2024f-qft/hw09.pdf
http://web2.ph.utexas.edu/~vadim/Classes/2024f-qft/sol09.pdf

Furthermore, in light of eq. (16),

- RS A= AMZ 4R (s — M7) (5.50)
s — M?2 s — M? s— M2’ '
and likewise
K2 At — M?) K2 Mu — M?)
)‘th—MQ = t—MQW , A+U_M2 = u—MQW , (S.60)
so the amplitude (S.58) becomes
; s — M2 ~ At — M? .
M(ﬂ']—l—ﬂ'k —>7T£—|—7Tm) — (S 7T) Xé]k‘(sém o ( 7T) X(sﬂdk‘m
s — M?2 t — M?2
N (S.61)
S e VAN VALY (1O
u— M?2

o

Moreover, when the pions’ energies become low compared to M, — or in Lorentz-invariant
terms, when s,,u < M2 — we may simplify the amplitude (S.61) by approximating all the

denominators as —M2, thus

. s — M2) x 6§t (t — M2) x §¢5tm
M@ +a7b 52l & (iz%)x ( ) ( ) , ,
+ (u— M?) x Mgt

(S.62)

3
-

exactly as in eq. (17).

Note: in the 8 — 0 and hence M2 — 0 limit, the amplitude (17) becomes exactly as
in homework#9. But for 3 # 0 we have extra M? terms in the numerators, and these M2

terms significantly change the very low-energy limit s, ¢,u ~ M2 of pion scattering.

Also, since the pions become massive for 8 # 0, we cannot take all 4 components of a
pion’s p* to zero. The best we can do is to take p — 0 while p’ — m, which is the non-
relativistic limit. However, if only one pion is non-relativistic while the other 3 pions have

E > M, (but E < M,), we generally have s,t,u = O(E x M) > M2 (albeit s,t,u < M2),

16



and the scattering amplitude becomes

M = 0(%) 4 0. (S.63)

The strongest low-energy limit we an take for massive pions is to make all four pions non-

relativistic. In this limit, s = E2, ~ 4M2 while u,t = O(p?) < M2, so the scattering

T

amplitude (17) becomes

AM2 B . . ,
T o jk sfm  cjlckm  cjm skl
Mg,\,f)x<355 575 55). (18)

M@l + 7% = 7t ™) & <

This amplitude is suppressed by the factor 5/ f, but it does not vanish! And even if all 4 pions
belong to the same species, the scattering amplitude does not vanish in the non-relativistic
limit,

Mt +al 57t 7l =

% £ 0, (S.64)

unlike what we had back in pomework#9.
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