
PHY–396 K. Solutions for problem set #12.

Problem 1(a):

By inspection,

W = Re(Φ2)× 12×2 − i Im(Φ2)× σ3 + i Im(Φ1)× σ1 + iRe(Φ1)× σ2

= (a real number)× (an SU(2) matrix),
(S.1)

and it is easy to see that any linear combination of 1, iσ1, iσ2, iσ3 with real coefficients obeys

σ2W ∗σ2 = W . Conversely, any 2 × 2 matrix is a linear combination of 1, iσ1, iσ2, iσ3, and if

W happens to obey σ2W ∗σ2 = W then the coefficients of such linear combination must be

real. Identifying these coefficients with (respectively) Re(Φ2), Im(Π1), Re(Φ2), and − Im(Φ2)

according to eq. (S.1), we immediately put W to the form (3) for the appropriate Φ1 and Φ2.

Problem 1(b):

Let’s split the W matrix into two columns W (1) and W (2) and treat each column as a column-

vector. In terms of the Φ doublet,

W (2) = Φ while W (1) = iσ2Φ
∗. (S.2)

Consequently, when Φ is gauge transformed by some SU(2) matrix U , Φ′ = UΦ, we have

W ′(2) = Φ′ = U × Φ = U ×W (2),

W ′(1) = iσ2Φ
′∗ = iσ2U

∗ × Φ∗ = iσ2U
∗ × (−i)σ2W

(1)

= U ×W (1),

(S.3)

where the last equality follows from σ2U
∗σ2 = U for any SU(2) matrix U , cf. part(a). Note

that both columns of the W matrix transform in a similar way — they get multiplied from

the left by the same matrix U , — so me may combine these transformation laws into matrix

multiplication

W ′ = U ×W. (S.4)

Finally, note that the matrix W (x) follows from Φ(x) at the same point x, so if we have
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different U(x) ∈ SU(2) at different points x, this would not affect the above argument. Thus,

if Φ′(x) = U(x)× Φ(x) then W ′(x) = U(x)×W (x), (4)

quod erat demonstrandum.

Problem 1(c):

Let’s start by comparing the Lagrangians (1) and (5). Both Lagrangians have the same Yang–

Mills terms for the SU(2) gauge fields. The scalar potential terms are also the same since

tr(W †W ) = 2Φ†Φ; indeed

tr(W †W ) = |Φ∗
2| + |−Φ∗

1|
2
+
∣

∣Φ1
∣

∣

2
+
∣

∣Φ2
∣

∣

2

= 2
∣

∣Φ1
∣

∣

2
+ 2

∣

∣Φ2
∣

∣

2
= 2Φ†Φ.

(S.5)

hence

λ

8

(

tr(W †W ) − v2
)2

=
λ

8

(

2Φ†Φ − v2
)2

=
λ

2

(

Φ†Φ − v2

2

)2

. (S.6)

As to the gauge-covariant kinetic term for the scalars, note that eq. (4) for the gauge trans-

formation of the W (x) matrix implies

DµW (x) = ∂µW (x) +
ig

2
Aa
µ(x)σ

a ×W (x). (S.7)

In terms of the two columns of the W matrix, this means

DµW
(2) = ∂µW

(2) +
ig

2
Aa
µσ

a ×W (2) = ∂µΦ +
ig

2
Aa
µσ

a × Φ

= DµΦ, (S.8)

DµW
(1) = ∂µW

(1) +
ig

2
Aa
µσ

a ×W (1) = ∂µ(iσ2Φ
∗) +

ig

2
Aa
µσ

a × (iσ2Φ∗)

= iσ2

(

∂µΦ − ig

2
Aa
µ(σ2σ

aσ2)
∗ × Φ

)∗

= iσ2

(

∂µΦ +
ig

2
Aa
µσ

a × Φ

)∗

〈〈 because (σ2σ
aσ2)

∗ = −σa 〉〉

= iσ2
(

DµΦ
)∗
. (S.9)
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Consequently,

tr
(

DµW
†DµW

)

= tr
(

(DµW )†(DµW )
)

=
(

DµW
(1)
)†(

DµW (1)
)

+
(

DµW
(2)
)†(

DµW (2)
)

=
(

iσ2(DµΦ)
∗
)†(

iσ2(D
µΦ)∗

)

+
(

DµΦ
)†(

DµΦ
)

= (DµΦ)
⊤ × (−iσ2 × iσ2 = 1)× (DµΦ)∗ + (DµΦ)

†(DµΦ)

= (DµΦ)
⊤(DµΦ)∗ + (DµΦ)

†(DµΦ) = 2× (DµΦ)
†(DµΦ)

= 2(DµΦ
†)(DµΦ),

(S.10)

and that’s how the Lagrangians (1) and (5) have similar gauge-covariant kinetic terms for the

scalars.

Altogether, the Lagrangian (5) is indeed the same as the Lagrangian (1) rephrased in

terms of the W (x) instead of the Φ(x).

Now consider the symmetry (6) of the W (x). The second line of eq. (6) is the usual

non-abelian gauge symmetry of the vector field Aµ(x) = Aa
µ(x)× 1

2σ
a, which assures that the

DµW transforms covariantly,

D′
µW (x) = UL(x)×DµW (x)× U†

G. (S.11)

Consequently,

D′
µW

†(x) =
(

D′
µW (x)

)†
= UG ×DµW

†(x)× U†
L(x), (S.12)

and therefore

(

tr
(

DµW
†(x)DµW (x)

))′
= tr

(

UGDµW
†(x)U†

L(x)× UL(x)D
µW (x)U†

G

)

= tr
(

UGDµW
†(x)DµW (x)U†

G

)

〈〈 by the cyclic symmetry of the trace 〉〉

= tr
(

DµW
†(x)DµW (x)× U†

GUG

)

= tr
(

DµW
†(x)DµW (x)

)

.

(S.13)

This makes the covariant kinetic term for the W (x) invariant under both SU(2)local and

SU(2)global symmetries.
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The scalar potential is invariant in the similar way:

(

tr(W †W )
)′

= tr
(

UGW
†U†

L × ULWU†
G

)

= tr
(

UGW
†WU†

G

)

= tr
(

W †W × U†
GUG

)

= tr
(

W †W
)

,

(S.14)

and therefore

V ′ =
λ

8

(

tr(W ′†W ′) − v2
)2

=
λ

8

(

tr(W †W ) − v2
)2

= V. (S.15)

Finally, the Yang–Mills term −1
4F

a
µνF

aµν is gauge-invariant under the SU(2)local symme-

tries and is completely unaffected by the SU(2)global symmetries, so it also invariant.

Problem 1(d–e):

Since 〈W 〉 is proportional to a unit matrix, it is obviously invariant under transforms

〈W 〉 → U × 〈W 〉 × U† (S.16)

for any unitary matrix U . In terms of the symmetries (6), this means

any UG ∈ SU(2), but ∀x : UL(x) = UG . (S.17)

Thus, we still have an unbroken SU(2)′global symmetry, but now each UG ∈ SU(2) has to be

accompanied by a matching gauge transform with x-independent UL = UG. Consequently,

the second line of eq.(6) becomes

A′a
µ (x)× 1

2σ
a = Ab

µ(x)× UG
1
2σ

bU†
G, (S.18)

which makes the vector fields Aa=1,2,3
µ (x) a triplet of the unbroken global symmetry SU(2)′global.

And since this global symmetry remains unbroken by the Higgs mechanism, all members of
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the same multiplet must acquire exactly the same mass. In particular, all three vector fields

acquire exactly the same mass

Mv = 1
2gv + perturbations. (S.19)

Note: our analysis in class was semiclassical, so our value of the vector fields’ mass is sub-

ject to perturbative (and even non-perturbative) corrections. However, thanks to unbroken

SU(2)′global symmetry, all such corrections to the vector mass would be exactly the same for

all 3 vector fields.

Finally, under infinitesimal SU(2)local × SU(2)global symmetries, various fields transform

according to

δϕ(x) = iǫaL(x)× T̂ a
localϕ(x) + iǫaG × T̂ a

globalϕ(x). (S.20)

where T̂ a
local and T̂ a

global are the generators of the two SU(2) symmetry groups while ǫaL(x) and

ǫG are the infinitesimal parameters of the transform in question. For the surviving SU(2)′global

symmetry we have UL(x) ≡ UG, hence for infinitesimal symmetries ǫaL(x) ≡ ǫaG, and therefore

δϕ(x) = iǫaG ×
(

T̂ a
localϕ(x) + T̂ a

globalϕ(x)
)

= iǫaG × T̂ a
global′ϕ(x) (S.21)

where

T̂ a
global′ = T̂ a

global + T̂ a
local . (9)

In other words, the combined charges (9) act as generators of the surviving SU(2)′global sym-

metry group.

Problem 2(a):

given Φ → e+iθULΦU
†
R , (11)

we have Φ† → e−iθURΦ
†U†

L , (S.22)

hence Φ†Φ → UR(Φ
†Φ)U†

R , (S.23)
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(

Φ†Φ
)2 → URΦ

†ΦU†
R URΦ

†ΦU†
R = UR

(

Φ†Φ
)2
U†
R , (S.24)

likewise
(

Φ†Φ
)n → UR

(

Φ†Φ
)n
U†
R ∀n = 1, 2, 3, . . . , (S.25)

and therefore

all traces tr
(

(

Φ†Φ
)n
)

are invariant under symmetries (12), (S.26)

thanks to the cyclic invariance rule for traces, tr
(

URXU†
R

)

= tr
(

XU†
RUR

)

= tr
(

X
)

for any

X =
(

Φ†Φ
)n
. Consequently, the scalar potential (11) is invariant under the symmetries (12).

For the global symmetries where eiθ, UL, and UR do not depend on x, the kinetic term in

the Lagrangian (10) is also invariant. Indeed,

for constant eiθ, UL, UR,

∂µΦ → e+iθUL(∂µΦ)U
†
R ,

∂µΦ
† → e−iθUR(∂µΦ

†)U†
L ,

∂µΦ† ∂µΦ → UR(∂
µΦ† ∂µΦ)U

†
R ,

and tr
(

∂µΦ† ∂µΦ
)

is invariant.

(S.27)

Altogether, the whole Lagrangian (10) is invariant, Q.E .D.

Problem 2(b):

Given the eigenvalues (κ1, . . . , κN ) of the Φ†Φ matrix, the invariant traces (S.26) obtain as

tr
(

(

Φ†Φ
)n
)

=

N
∑

i=1

κni . (S.28)

Consequently, the scalar potential is

V =
α

2

∑

i

κ2i +
β

2

(

∑

i

κi

)2

+ m2
∑

i

κi . (S.29)

Now let’s minimize this potential. Since the matrix Φ†Φ cannot have any negative eigen-
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values, we are looking for a minimum of V (κ1, . . . , κN ) under constraints κi ≥ 0. This requires

∀i = 1, . . . , N, either κi ≥ 0 and
∂V

∂κi
= 0, or else κi = 0 and

∂V

∂κi
> 0, (S.30)

where

∂V

∂κi
= ακi + m2 + β

∑

j

κj . (S.31)

These derivatives are linear functions of the eigenvalues κi, so all the non-zero eigenvalues

must obey the same linear equation

α× κi = −m2 − β ×
∑

j

κj , same for all κi 6= 0,

which means that all non-zero κi have the same value. Thus, up to a permutation of eigen-

values,

κ1 = · · · = κk = C2, κk+1 = · · · = κN = 0, (S.32)

for some k = 0, 1, 2, . . . , N , and C2 obtains from

α× C2 + m2 + β × kC2 = 0 −→ C2 =
−m2

α + kβ
. (S.33)

To make sure that the solution (S.32) is a minimum rather that a maximum or a saddle point,

we need

C2 =
−m2

α + kβ
> 0 unless k = 0,

m2 + βkC2 =
αm2

α + kβ
> 0 unless k = N.

(S.34)

Depending on the signs of α, β and m2 parameters, this limits the solutions to the following:

• For α > 0, β > 0, and m2 > 0, the only solution is k = 0, which means κ1 = · · ·κN = 0

and hence 〈Φ〉 = 0.
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• For α > 0, β > 0, and m2 < 0, the only solutions is k = N , which means

κ1 = · · · = κN = C2 =
−m2

α +Nβ
> 0, (12)

and hence 〈Φ〉 = C × a unitary matrix as in eq. (13). We shall focus on this regime

through the rest of this problem.

• For α < 0 or β < 0, the situation is more complicated:

∗ When α+ β < 0 or α+Nβ < 0, the scalar potential (10) is unbounded from below

and the theory is sick.

∗ When α > 0 and β < 0 but α+Nβ > 0, the solutions are similar to the β > 0 case:

For m2 > 0 all κi = 0, while for m2 < 0 the κi are as in eq. (12).

∗ When β > 0 and α < 0 but α + β > 0: for m2 > 0 the only solution is k = 0,

meaning 〈Φ〉 = 0, but for m2 < 0 all the solutions (S.32) with k = 1, 2, . . . , N are

good local minima.

To find the global minimum, we compare the potentials at the local minima,

V (minimum#k) =
α

2
× kC4 +

β

2
× (kC2)2 + m2 × kC2

=
kα + k2β

2
× m4

(α + kβ)2
+ km2 × −m2

(α + kβ)

= −m4

2
× k

kβ + α
.

(S.35)

Since α < 0 but α+ β > 0, the deepest minimum obtains for k = 1, thus

κ1 =
−m2

α + β
, κ2 = · · · = κN = 0. (S.36)
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Problem 2(c):

Let’s act with some SU(N)L × SU(N)R × U(1) symmetry (11) on the vacuum expectation

values (14):

〈Φ〉 = C × 1N×N → eiθUL 〈Φ〉U†
R = C × eiθULU

†
R . (S.37)

Clearly, to keep the VEVs 〈Φ〉 invariant, we need

eiθULU
†
R = 1N×N (S.38)

and hence

UR = eiθ × UL . (S.39)

Moreover, since the UL and UR matrices have unit determinants, this requires

det
(

eiθ × 1N×N

)

= 1 =⇒ N × θ = 0 (mod 2π). (S.40)

Such a phase can be absorbed into the UL ∈ SU(N), so without loss of generality we need

eiθ = 1 and UL = UR ∈ SU(N). (S.41)

In other words, the unbroken symmetry group is SU(N)V which acts on the scalar fields as

Φ(x) → UΦ(x)U† , U ∈ SU(N). (S.42)

Problem 2(d):

In terms of the shifted fields δΦ = Φ− C × 1N×N and δΦ† = Φ† − C × 1N×N ,

tr(Φ†Φ) = C2 ×N + C tr(δΦ† + δΦ) + tr(δΦ†δΦ), (S.43)

tr2(Φ†Φ) = N2C4 + 2NC3 tr(δΦ† + δΦ)

+ 2NC2 tr(δΦ†δΦ) + C2 tr2(δΦ† + δΦ)

+ 2C tr(δΦ† + δΦ)× tr(δΦ†δΦ) + tr2(δΦ†δΦ), (S.44)
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tr(Φ†ΦΦ†Φ) = C4 ×N + 2C3 tr(δΦ† + δΦ)

+ C2 tr
(

(δΦ)2 + (δΦ†)2 + 4(δΦ†)(δΦ)
)

+ 2C tr
(

(δΦ†)2(δΦ) + (δΦ†)(δΦ)2
)

+ tr
(

(δΦ†)(δΦ)(δΦ†)(δΦ)
)

. (S.45)

Plugging these formulae into the potential (10) and arranging by the powers of δΦ and δΦ†

according to eq. (14), we get

V1 =
(

αC3 + βNC3 +m2C
)

× tr(δΦ† + δΦ), (S.46)

V2 =
(

2αC2 + βNC2 +m2
)

× tr(δΦ†δΦ)

+
αC2

2
× tr

(

(δΦ)2 + (δΦ†)2
)

+
βC2

2
× tr2(δΦ† + δΦ), (S.47)

V3 = αC × tr
(

(δΦ†)2(δΦ) + (δΦ†)(δΦ)2
)

+ βC × tr(δΦ† + δΦ)× tr(δΦ†δΦ), (S.48)

V4 =
α

2
× tr

(

(δΦ†)(δΦ)(δΦ†)(δΦ)
)

+
β

2
× tr2(δΦ†δΦ). (S.49)

Furthermore, the specific value of C2 in eq. (13) leads to

αC2 + βNC2 + m2 = 0 (S.50)

and hence V1 = 0. Also, eq. (S.47) for the V2 simplifies to

V2 = αC2 × tr(δΦ†δΦ) +
αC2

2
× tr

(

(δΦ)2 + (δΦ†)2
)

+
βC2

2
× tr2(δΦ† + δΦ)

=
αC2

2
× tr

(

(δΦ† + δΦ)2
)

+
βC2

2
× tr2(δΦ† + δΦ),

(S.51)

exactly as in eq. (16).
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Problem 2(e):

First, let’s check that the fields χ1, χ2, ϕ1, and ϕ2 have properly normalized kinetic terms.

Since the ϕ1 and ϕ2 matrices are traceless, we immediately have

Lkin = tr
(

∂µΦ
† × ∂µΦ

)

= tr
(

∂µδΦ
† × ∂µδΦ

)

=
1

2N
∂µ(χ1 − iχ2)∂

µ(χ1 + iχ2)× tr(1N×N) +
1

2
tr
(

∂µ(ϕ1 − iϕ2)∂
µ(ϕ1 + iϕ2

)

=
1

2

(

(∂µχ1)
2 + (∂µχ2)

2
)

+
1

2
tr
(

(∂µϕ1)
2 + (∂µϕ2)

2
)

,

(S.52)

so all the kinetic terms are indeed properly normalized.

Now consider the mass terms V2 in the scalar potential. Both terms in eq. (16) involve

δΦ† + δΦ =

√

2

N
χ1 × 1N×N +

√
2ϕ1 , (S.53)

hence

V2 = αC2 × tr

(

(

ϕ1 +
χ1√
N

× 1N×N

)2
)

+ βC2 × tr2
(

ϕ1 +
χ1√
N

× 1N×N

)

= αC2 ×
(

tr
(

ϕ2
1

)

+ χ2
1

)

+ βC2 ×
(

χ1√
N

×N

)2

= αC2 × tr
(

ϕ2
1

)

+ (αC2 + βNC2)× χ2
1.

(S.54)

Therefore:

• The χ1 field has mass 2(α+Nβ)C2.

• All components of the traceless matrix ϕ1 have mass 2αC2.

• The χ2 field and all components of the ϕ2 matrix are massless.

Problem 2(f):

The unbroken SU(N)V symmetry acts on the scalar fields according to

Φ(x) → U × Φ(x)× U†. (S.42)

and since the VEV (14) is invariant, the shifted fields δΦ(x) = Φ(x) − 〈Φ〉 also transform
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according to

δΦ(x) → U × δΦ(x)× U†. (S.55)

Moreover, the unitarity transforms like this preserve the decomposition (17) of δΦ into its

hermitian and antihermitian parts and also into the traces χ1,2 and the traceless parts ϕ1,2.

In particular, the trace parts χ1(x) and χ2(x) remain invariant — which makes them singlets

of the SU(N)V symmetry, — while the traceless matrices ϕ1(x) and ϕ2(x) transform as

ϕ1(x) → Uϕ1(x)U
†, ϕ2(x) → Uϕ2(x)U

†, (S.56)

which makes them adjoint multiplets of the SU(N)V .

Clearly, this multiplet structure agrees with the masses we have obtained in part (e):

All N2 − 1 members of the adjoint multiplet ϕ1 have the same mass M = 2αC2, while all

N2 − 1 members of the adjoint multiplet ϕ2 have M = 0. On the other hand, the singlet χ1

has a different mass from the adjoint fields ϕ2, but that’s OK since they belong to different

multiplets.

However, the second singlet χ2 has the same zero mass as the second adjoint multiplet ϕ2,

but that’s because they are both Goldstone bosons of the spontaneously broken continuous

symmetries

G/H =
(

SU(N)L × SU(N)R × U(1)
) /

SU(N) . (S.57)

Specifically, the singlet χ2 is the Goldstone boson of the broken U(1) symmetry. Indeed, the

U(1)’s generator commutes with all the other generators, so it belongs in its own singlet of

the symmetry, and the corresponding Goldstone particle should also be a singlet.

Now consider the non-abelian generators. Generators T a
L of the SU(N)L form an adjoint

multiplet of the SU(N)L, but are invariant under the SU(N)R. Likewise, generators T a
R of

the SU(N)R form an adjoint multiplet of the SU(N)R, but are invariant under the SU(N)L.

In other words, under an (UL, UR) ∈ SU(N)L × SU(N)R they transform as

T a
L → ULT

a
L U†

L , T a
R → URT

a
R U†

R . (S.58)

When the SU(N)L × SU(N)R is broken down to a single SU(N) spanning UL = UR = U ,
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both T a
L and T a

R transform as

T a
L → UT a

L U†, T a
R → UT a

R U†, (S.59)

which puts them into two adjoint multiplets of the unbroken SU(N). Equivalently, we may

form two adjoint multiplets out of

T a
V = T a

L + T a
R and T a

A = T a
L − T a

R , (S.60)

which act on the scalar fields according to

T a
V Φ = i

2 [λ
a,Φ], T a

AΦ = i
2{λ

a,Φ}. (S.61)

The T a
V generate the unbroken SU(N)V symmetry, cf. eq. (S.42). The T a

A generators are spon-

taneously broken, hence there should be an adjoint multiplet of massless Goldstone bosons.

And indeed there is — the ϕ2.

Problem 3(a):

When a gauge symmetry is spontaneously broken, the gauge fields acquire masses — which

come from the gauge-covariant kinetic terms for the scalar fields with non-zero VEVs (vacuum

expectation values). The simplest way to separate the vectors’ mass terms from the shifted

scalars’ kinetic energies and from the scalar-vector interactions is to freeze the scalar fields to

their VEVs. Indeed, let’s freeze Φ(x) ≡ 〈Φ〉 = C × 1N×N . Then according to eqs. (19),

Dµ 〈Φ〉 = ig′Bµ 〈Φ〉 + igLµ 〈Φ〉 − ig 〈Φ〉Rµ

= ig′C Bµ × 1N×N + igC × (Lµ − Rµ)

= ig′C Bµ × 1N×N +
igC

2

∑

a

(La
µ − Ra

µ)× λa,

(S.62)

and consequently

tr
(

(

Dµ 〈Φ〉†
)(

Dµ 〈Φ〉
)

)

= Ng′2C2 × BµB
µ +

g2C2

2

∑

a

(La
µ −Ra

µ)(L
aµ −Raµ). (S.63)

Thus, the abelian Bµ field has mass M2
B = 2Ng′2C2 while the non-abelian fields La

µ and Ra
µ

13



have non-diagonal mass terms. To diagonalize those terms, let’s mix the fields according to

V a
µ =

1√
2

(

La
µ + Ra

µ

)

, Xa
µ =

1√
2

(

La
µ − Ra

µ

)

, (S.64)

where the 1/
√
2 coefficients make the V a

µ and Xa
µ canonically normalized, i.e.

Lkin
L,R = −1

4

∑

a

(

(

∂[µL
a
ν]

)2
+
(

∂[µR
a
ν]

)2
)

= −1

4

∑

a

(

(

∂[µX
a
ν]

)2
+
(

∂[µV
a
ν]

)2
)

. (S.65)

In terms of the V a
µ and Xa

µ, the mass terms for La
µ and Ra

µ in eq. (S.63) become

Lmasses
L,R = g2C2 ×Xa

µX
aµ. (S.66)

Thus, the V a
µ fields remain massless while the Xa

µ acquire common mass M2
X = 2g2C2.

Problem 3(b):

To write down an effective theory for the massless fields, we simply freeze all the massive

vector fields Bµ and Xa
µ as well as all the scalar fields comprising the δΦ = Φ− 〈Φ〉; only the

massless vector fields V a
µ remain un-frozen. In other words, we let

Φ(x) ≡ 〈Φ〉 = C × 1N×N , Bµ(x) ≡ 0, La
µ(x) = Ra

µ(x) =
1√
2
V a
µ (x), (S.67)

and then substitute these values into the Lagrangian (15). According to eq. (S.62), for fields

as in eq. (S.67) DµΦ = 0, so the only un-frozen terms in the Lagrangian are

Lunfrozen = −1
2 tr(LµνL

µν) − 1
2 tr(RµνR

µν) 〈〈 for La
µν = Ra

µν 〉〉

= − tr(LµνL
µν) = −1

2

∑

a

(

La
µν

)2

= −1

4

∑

a

(

V a
µν

)2

(S.68)

— which is precisely the Yang-Mills Lagrangian for the canonically normalized tension fields

V a
µν =

La
µν +Ra

µν√
2

→
√
2La

µν when La
µν = Ra

µν . (S.69)

of the un-broken SU(N)V gauge theory. Indeed, in terms of the canonically normalized
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SU(N)V potential fields V a
µ ,

V a
µν =

√
2
(

∂µL
a
ν − ∂νL

a
µ − gfabcLb

µL
c
ν

)

=
√
2

(

∂µ
V a
ν√
2
− ∂ν

V a
µ√
2
− gfabc

V b
µ√
2

V c
ν√
2

)

= ∂µV
a
ν − ∂νV

a
µ − g√

2
fabcV b

µV
c
ν .

(S.70)

The coefficient of the non-abelian last term on the bottom line is the gauge coupling of the

unbroken SU(N)V gauge group

gv =
g√
2
. (S.71)

Problem 3(⋆):

For gL 6= gR, the covariant derivatives of the scalar fields become

DµΦ = ∂µΦ + ig′BµΦ + igLLµΦ − igRΦRµ . (S.72)

As in part (a), the mass terms for the vector fields obtain from plugging 〈Φ〉 into these

covariant derivatives and then expanding the kinetic terms for the scalars:

Dµ 〈Φ〉 = ig′CBµ × 1N×N + iC(gLL
a
µ − gRR

a
µ)×

λa

2
(S.73)

and hence

L ⊃ tr(DµΦ
†DµΦ) ⊃ Ng′2C2 ×BµB

µ +
C2

2
× (gLL

a
µ − gRR

a
µ)(gLL

aµ − gRR
aµ). (S.74)

As in part (a), the abelian gauge fields gets mass M2
B = 2Ng′2C2, while the non-abelian vector

mass is more tricky.
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Let’s define the coupling g̃ and the mixing angle θ according to

gL = g̃ × cos θ, gR = g̃ × sin θ =⇒ g̃2 = g2L + g2R , tan θ =
gR
gL

. (S.75)

Then the non-abelian mass term in eq. (S.74) becomes

C2g̃2

2
×
(

La
µ cos θ − Ra

µ sin θ
)2
, (S.76)

which tells us which particular combination of the non-abelian gauge fields become massive.

Indeed, if we let

Xa
µ = cos θ × La

µ − sin θ ×Ra
µ ,

Y a
µ = sin θ × La

µ + cos θ ×Ra
µ ,

(S.77)

then both combinations of vector fields are canonically normalized — indeed,

Lkin
L,R = −1

4

∑

a

(

(

∂[µL
a
ν]

)2
+
(

∂[µR
a
ν]

)2
)

= −1

4

∑

a

(

(

∂[µX
a
ν]

)2
+
(

∂[µY
a
ν]

)2
)

, (S.78)

— while the mass term (S.76) becomes

Lmass
L,R =

C2g̃2

2
×Xa

µX
aµ . (S.79)

Thus, the Xa
µ fields have mass MX = g̃C, while the Y a

µ fields remain massless.

Now let’s derive the effective Lagrangian for just the massless vector fields Y a
µ (x) while

freezing all the other fields, i.e. setting Φ(x) ≡ 〈Φ〉, Bµ(x) ≡ 0, and Xa
µ(x) ≡ 0. In terms of

the La
µ and Ra

µ fields, this means

La
µ = Y a

µ × sin θ, Ra
µ = Y a

µ × cos θ, (S.80)

or in terms of the group-normalized gauge fields

Lµ = gL × Lµ = gL sin θ × Yµ , Rµ = gR ×Rµ = gR cos θ × Yµ . (S.81)
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However, for the mixing angle θ related to the couplings as in eq. (S.75), we have

gL sin θ = gR cos θ =
gLgR
g̃

def
= gY , (S.82)

and therefore

Lµ(x) = Rµ(x) = gY × Yµ(x)
def
= Yµ(x). (S.83)

In terms of the Yµ(x) gauge field, the non-abelian tension fields are

Lµν(x) = Rµν(x) = Yµν(x) = ∂µYν(x) − ∂νYµ(x) + i[Yµ,Yν ] (S.84)

— precisely as for a group-normalized SU(N) connection Yµ(x) — while the net YM La-

grangian is

LYM = − 1

2g2L
tr
(

LµνLµν
)

− 1

2g2R
tr
(

RµνRµν
)

= −1

2

(

1

g2L
+

1

g2R

)

× tr
(

YµνYµν
)

(S.85)

— precisely as for the SU(N) YM theory with inverse gauge coupling

1

g2Y
=

1

g2L
+

1

g2R
. (S.86)

After a bit of algebra, this formula becomes

gY =
gLgR

√

g2L + g2R

, (24)

in perfect agreement with Ya
µ(x) = gY × Y a

µ (x) for the canonically normalized gauge fields

Y a
µ (x).
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