
PHY–396 K. Solutions for problem set #12b.

Problem 1(a):

The diagram (III) with the Higgs scalar in the s channel has two Yukawa vertices and a scalar

propagator, thus

iMH =
i

s−M2
H + iMHΓH

×
[

−iye v̄(e
+)u(e−)

]

×
[

−iyµ ū(µ
−)v(µ+)

]

, (S.1)

where ye and yµ are the respective Yukawa couplings of the electrons and the muons to the

Higgs scalar. In the Standard Model, these same Yukawa couplings also determine the electron

and the muon masses once the Higgs gets its VEV,

me = ye ×
v√
2
, mµ = yµ × v√

2
, v ≈ 247 GeV. (S.2)

Since the muon and the electron — especially the electron — are rather light compared to

the Higgs VEV, the Yukawa couplings

yµ =
√
2
mµ

v
≈ 6.1 · 10−4 and ye =

√
2
me

v
≈ 2.9 · 10−6 (S.3)

are rather small, much smaller than the gauge couplings e ≈ 0.31 or (g′/4) ≈ 0.18. Conse-

quently, the Higgs-mediated amplitude MH is almost 9 orders of magnitude weaker than the

Z0-mediated amplitude MH and its effect is completely negligible; indeed, it’s much smaller

than the higher orders of perturbation theory in αQED or α′
SM . Therefore, for our purposes

we may approximate

Mnet ≈ Mγ + MZ . (S.4)
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Problem 1(b):

The Zee and Zµµ vertices follow from the neutral weak current (3) and from the SU(2)W ×
U(1)Y quantum numbers of the the charged leptons e− and µ−: They both have T 3 = −1

2

and Q = −1, hence

Z

λ

e− or µ−

e− or µ−

= −ig′γλ
(

1
4
γ5 − 1

4
+ sin2 θWeinberg

)

≈ −ig′

4
γλγ5. (S.5)

The Z propagator is spelled out in eq. (2), so altogether the amplitude of the diagram (II)

evaluates to

iMZ =
i
(

−gλν + qλqν

M2

Z

)

q2 −M2
Z + iMZΓZ

×
[

−ig′

4
ū(µ−)γλγ

5v(µ+)

]

×
[

−ig′

4
v̄(e+)γνγ

5u(e−)

]

(S.6)

where q = p− + p+ = p′− + p′+ and q2 = s.

Problem 1(c):

Proceeding similarly to the homework#10 (problem#2), we start by evaluating the electron-

positron neutral current

v̄γνγ5 u = v†γ0γνγ
5u = v†

(

−σ̄ν 0

0 +σν

)

u (S.7)

for the ultra-relativistic electron and positron. As we saw back in homework#7, in the ultra-

relativistic limit

u(e−
L
) =

√
2E

(

ξL

0

)

, u(e−
R
) =

√
2E

(

0

ξR

)

, v(e+
L
) = −

√
2E

(

0

ηL

)

, v(e+
R
) =

√
2E

(

ηR

0

)

, (S.8)

hence

v̄(e+L )γνγ
5u(e−L ) = 0, (S.9)
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v̄(e+L )γνγ
5u(e−R) = −2E η†LσνξR , (S.10)

v̄(e+R)γνγ
5u(e−L ) = −2E η†Rσ̄νξL , (S.11)

v̄(e+R)γνγ
5u(e−R) = 0. (S.12)

Specifically, for the electron and the positron colliding in the CM frame along the z axis,

η†LσνξR = (0,+1,−i, 0)ν , η†Rσ̄νξL = (0,−1,−i, 0)ν , (S.13)

thus

v̄(e+L )γνγ
5u(e−R) = 2E(0,−1,+i, 0)ν , (S.14)

v̄(e+R)γνγ
5u(e−L) = 2E(0,+1,+i, 0)ν , (S.15)

while v̄(e+L )γνγ
5u(e−L) = v̄(e+R)γνγ

5u(e−R) = 0. (S.16)

Note that similarly to QED pair production (diagram (I)), the electron and the positron must

have opposite helicities, otherwise the amplitude vanishes.

Likewise, for the muon neutral current we have

ū(µ−L)γλγ
5v(µ+L) = ū(µ−R)γλγ

5v(µ+R) = 0

— which means that the µ+ and the µ− must have opposite helicities, — while

ū(µ−R)γλγ
5v(µ+L) = −2E ξ†RσληL , (S.17)

ū(µ−L )γλγ
5v(µ+R) = −2E ξ†Lσ̄ληR . (S.18)

For the muons scattered through angle θ away from the electron-positron axis in the zx plane,

these formulae yield

ū(µ−R)γλγ
5v(µ+L ) = 2E(0,− cos θ,−i,− sin θ)λ , (S.19)

ū(µ−L)γλγ
5v(µ+R) = 2E(0,+cos θ,−i,+ sin θ)λ . (S.20)
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Note that both the electron-positron and the muon neutral currents have no ν = 0 com-

ponents in the CM frame, which makes them both transverse to qν . Consequently, in the

amplitude (S.6) the

−gλν +
qλqν

M2
Z

factor in the numerator of the Z0 propagator can be reduced to just the −gλν term. Thus

MZ =
(g′/4)2gνλ

s−M2
Z + iMZΓZ

× v̄(E+)γνγ
5u(e−)× ū(µ−)γλγ

5v(µ+), (S.21)

which evaluates to

〈

e−L , e
+
R

∣

∣MZ

∣

∣µ−L , µ
+
R

〉

=
〈

e−R, e
+
L

∣

∣MZ

∣

∣µ−R, µ
+
L

〉

= − (g′/4)2s

s−M2
Z + iMZΓZ

× (1 + cos θ), (S.22)

〈

e−L , e
+
R

∣

∣MZ

∣

∣µ−R, µ
+
L

〉

=
〈

e−L , e
+
R

∣

∣MZ

∣

∣µ−R, µ
+
L

〉

= +
(g′/4)2s

s−M2
Z + iMZΓZ

× (1− cos θ), (S.23)

while for all other helicity combinations MZ = 0.

Problem 1(d):

The diagram (I) with the virtual photon in the s channel was evaluated in the homework#10.

In the ultra-relativistic-fermions limit,

〈

e−L , e
+
R

∣

∣Mγ

∣

∣µ−L , µ
+
R

〉

=
〈

e−R, e
+
L

∣

∣Mγ

∣

∣µ−R, µ
+
L

〉

= −e2 × (1 + cos θ), (S.24)

〈

e−L , e
+
R

∣

∣Mγ

∣

∣µ−R, µ
+
L

〉

=
〈

e−L , e
+
R

∣

∣Mγ

∣

∣µ−R, µ
+
L

〉

= −e2 × (1− cos θ), (S.25)

while for all other helicity combinations Mγ = 0. Comparing these photon-mediated am-

plitudes to the Z0-mediated amplitudes (S.22) and (S.23), we see exactly similar helicity
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dependence and angular dependence for both amplitudes. The only difference is the overall

energy-dependent factor and the helicity-dependent overall sign,

MZ = ±F (s)×Mγ , (5)

F (s) =

(

g′/4

e

)2

× s

s−M2
Z + iMZΓZ

(6)

where in the Glashow–Weinberg–Salam theory

g′/4

e
=

1

4 sin θw cos θw
→ 1√

3
for sin2 θw = 1

4 . (S.26)

In light of eqs. (5),

Mnet = (1± F (s))×Mγ , (S.27)

specifically

〈

e−L , e
+
R

∣

∣Mnet

∣

∣µ−L , µ
+
R

〉

=
〈

e−R, e
+
L

∣

∣Mγ

∣

∣µ−R, µ
+
L

〉

= −e2 × (1+F (s))× (1 + cos θ), (S.28)

〈

e−L , e
+
R

∣

∣Mnet

∣

∣µ−R, µ
+
L

〉

=
〈

e−L , e
+
R

∣

∣Mγ

∣

∣µ−R, µ
+
L

〉

= −e2 × (1−F (s))× (1− cos θ), (S.29)

while
〈

e−L , e
+
L

∣

∣Mnet

∣

∣µ−any, µ
+
any

〉

=
〈

e−R, e
+
R

∣

∣Mnet

∣

∣µ−any, µ
+
any

〉

= 0, (S.30)
〈

e−any, e
+
any

∣

∣Mnet

∣

∣µ−L , µ
+
L

〉

=
〈

e−any, e
+
any

∣

∣Mnet

∣

∣µ−R, µ
+
R

〉

= 0. (S.31)

The partial cross-sections (7) and (8) immediately follow from these amplitudes.

Problem 1(e):

Let’s start with the polarized partial cross-sections (8), whose angular dependence is either
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(1 + cos θ)2 or (1− cos θ)2. Integrating over the solid angle, we have

∫

d2Ω (1± cos θ)2 = 4π ± 0 +
4π

3
=

16π

3
, (S.32)

and also

∫

θ<
π
2

d2Ω (1± cos θ)2 = 2π

1
∫

0

d cos θ (1± cos θ)2 = 2π(1± 1 + 1
3) =

(8± 6)π

3
(S.33)

while
∫

θ>
π
2

d2Ω (1± cos θ)2 =
(8∓ 6)π

3
. (S.34)

Consequently, the polarized cross-sections have forward-backward asymmetries A = ±3
4
.

Now consider the un-polarized cross-sections. Summing the partial cross-sections (7–8)

over the muon spins and averaging over the electron’s and positron spins, we get

dσ

dΩ
=

α2

4s
× 1

4

(

2× |1 + F (s)|2(1 + cos θ)2 + 2× |1− F (s)|2(1− cos θ)2 + 12× 0
)

=
α2

8s

(

|1 + F (s)|2(1 + cos θ)2 + |1− F (s)|2(1− cos θ)2
)

.

(S.35)

Integrating this partial cross-section over the forward and the backward hemispheres, we get

σforward =
πα2

12s
×
(

7× |1 + F (s)|2 + |1− F (s)|2
)

, (S.36)

σbackward =
πα2

12s
×
(

|1 + F (s)|2 + 7× |1− F (s)|2
)

, (S.37)

and therefore the total cross-section

σtotal =
2πα2

3

(

|1 + F |2 + |1− F |2
)

=
4πα2

3

(

1 + |F (s)|2
)

, (S.38)
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and the forward-backward asymmetry

A =
6(|1 + F |2 − |1− F |2)
8(|1 + F |2 + |1− F |2) =

3

4
× 2Re(F (s))

1 + |F (s)|2 . (S.39)

Specifically, for F (s) as in eq. (6),

σtotal =
4πα2

3s

(

1 +
1

9

s2

(s−MZ)2 +M2
ZΓ

2
Z

)

(S.40)

s

σtot

M2
Z

while

A =
9

2

s(s−M2
Z)

s2 + 9(s−MZ)2 + 9M2
ZΓ

2
Z

≈ 9

2

s(s−M2
Z)

s2 + 9(s−MZ)2
. (S.41)

s

A

M2
Z

+3
4

−3
4
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Problem 2(a):

The vertex connecting a top quark, a bottom quark, and a W boson obtains from eq. (10) as

W+

µ

b

t

= − ig

2
√
2
γµ(1− γ5), (S.42)

hence the top quark decay amplitude

M(t → b+W+) = MµE∗
µ(kW , λW ) for Mµ = − g

2
√
2
× ū(b)γµ(1− γ5)u(t). (S.43)

Problem 1(b):

Let p be the initial top quark’s momentum, p′ the momentum of the final bottom quark,

and k = p − p′ the momentum of the final W+ boson. Then instead of the Ward identity

Mµkµ = 0 we have

ū(b)γµ(1− γ5)u(t)× kµ = ū(b) 6k(1− γ5)u(t)

= −ū(b) 6p′(1− γ5)u(t) + ū(b) 6p(1− γ5)u(t)

= −ū(b) 6p′(1− γ5)u(t) + ū(b)(1 + γ5) 6pu(t)

= −mbū(b)× (1− γ5)u(t) + ū(b)(1 + γ5)×mtu(t)

= ū(b)[(mt −mb) + (mt +mb)γ
5]u(t) 6= 0.

(S.44)

and hence

Mµkµ = − g

2
√
2
ū(b)[(mt −mb) + (mt +mb)γ

5]u(t) 6= 0. (S.45)
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Problem 1(c):

For the massive vector particle W µ at rest, kµ = (mW , 0), its 3 polarization/spin states

correspond to 3 orthonormal purely spatial vectors Eµ(k, λ) = (0, eλ). Consequently,

∑

λ

Eµ(k, λ)Eν∗(k, λ) =

{

+δij for µ = i and ν = j,

0 otherwise,

}

= −gµν +
kµkν

m2
W

. (S.46)

For a moving W µ particle, the polarization vectors Eµ(k, λ) obtain by Lorentz-boosting the

(0, eλ)
µ 4-vector to the frame of the moving particle. Therefore, the polarization sum on the

LHS of eq. (S.46) obtains by Lorentz boosting the tensor on the RHS of eq. (S.46), — which

we may do by simply boosting the kµ vector from (mw, 0) to the momentum of the moving

W µ particle. And this is how we get eq. (11) for all on-shell momenta kµ.

Finally, eq. (12) follows immediately from M = MνE∗ν and eq. (12). Indeed,

∑

λ

|M|2 =
∑

λ

MνEν∗ ×M∗
µEµ = MνM∗

µ ×
∑

λ

Eν∗Eµ

= MνM∗
µ ×

(

−gµν +
kµkν

M2
W

)

= −MµM∗
µ +

|Mµkµ|2
M2

W

.

(S.47)

Problem 1(d):

For the top quark decay amplitude (S.43),

Mµ∗ = − g

2
√
2
ū(t)γµ(1− γ5)u(b), (S.48)

where

γµ(1− γ5) = (1− γ5) γµ = (1 + γ5)γµ = γµ(1− γ5). (S.49)

Consequently, summing over the final W particle’s spin states, we get

∑

λ

|M|2 =
g2

8
× ū(b)γµ(1− γ5)u(b)× ū(b)γν(1− γ5)u(t)×

(

−gµν +
kµkν

M2
W

)

. (S.50)
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Further summing over the b quark spins and averaging over the t quark spins, we arrive at

|M|2 =
1

2

∑

λ,s,s′

|M|2

=
g2

8

(

−gµν +
kµkν

M2
W

)

× 1

2

∑

s,s′

ū(p′, s′)γµ(1− γ5)u(p, s)× ū(p, s)γν(1− γ5)u(p′, s′)

=
g2

8

(

−gµν +
kµkν

M2
W

)

× 1

2
tr
(

(6p′ +mb)γ
µ(1− γ5)(6p+mt)γ

ν(1− γ5)
)

.

(S.51)

Next, we need to evaluate the Dirac trace here. Opening the brackets (6p′ +mb) and (6p+mt)

and discarding the terms comprising odd numbers of Dirac matrices inside the trace, we get

tr
(

(6p′ +mb)γ
µ(1− γ5)(6p +mt)γ

ν(1− γ5)
)

=

= tr
(

6p′γµ(1− γ5) 6pγν(1− γ5)
)

+ mbmt tr
(

γµ(1− γ5)γν(1− γ5)
)

= tr
(

6p′γµ 6pγν(1− γ5)2
)

+ mbmt tr
(

γµγν(1 + γ5)(1− γ5)
)

〈〈 using (1− γ5)2 = 2(1− γ5) and (1 + γ5)(1− γ5) = 0 〉〉

= 2 tr
(

6p′γµ 6pγν(1− γ5)
)

+ mbmt × 0

= 2 tr(6p′γµ 6pγν) − 2 tr(6p′γµ 6pγνγ5)

= 8p′µpν + 8p′νpµ − 8(p′p)gµν + 8iǫαµβνp′αpβ .

Plugging this trace into eq. (S.51), we get

|M|2 =
g2

8

(

−gµν +
kµkν

M2
W

)

× 4
(

p′µpν + p′νpµ − (p′p)gµν + iǫαµβνp′αpβ

)

=
g2

2

[(

−(p′p) +
(kp)(kp′)

m2
W

)

× 2 − (pp′)×
(

−4 +
k2

m2
W

= −3

)

+ 0

]

= g2
(

(pp′)

2
+

(kp)(kp′)

M2
W

)

.

(S.52)

At this point, all that’s left to do is kinematics. For a two-body decay t → b +W+, we

have

2(pp′) = p2 + p′2 − (p− p′ = k)2 = m2
t + m2

b − M2
W ,

2(pk) = p2 + k2 − (p− k = p′)2 = m2
t + M2

W − m2
b ,

2(p′k) = (p′ + k = p)2 − p′2 − k2 = m2
t − m2

b − M2
W .

(S.53)
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Consequently, (after a bit of algebra)

|M|2 =
g2

4M2
W

(

M2
W (m2

t +m2
b −M2

W ) + (m2
t −m2

b)
2 − M4

W

)

=
g2

4M2
W

(

(m4
t +m2

tM
2
W − 2M4

W ) − m2
b(2m

2
t −M2

W ) + m4
b

)

,

(S.54)

and since m2
b ≪ M2

W , m2
t , we may neglect the bottom quark mass and approximate

|M|2 =
g2

4M2
W

(

m4
t + m2

tM
2
W − 2M4

W

)

. (S.55)

Now let’s calculate the decay rate of the top quark. As explained in my notes on phase

space, for a 2-body decay like t → b+W+

Γ =
|k|

8πm2
t

× |M|2 (S.56)

where k is the 3-momentum of the W+ (or minus the 3-momentum p′ of the b quark) in the

top quark’s rest frame. In that frame (pp′) = mtEb, hence by the first eq. (S.53)

Eb =
2(pp′)

2mt
=

m2
t +m2

b −M2
W

2mt
≈ m2

t −M2
W

2mt
, (S.57)

and hence

|k| = |p′| ≈ Eb ≈ m2
t −M2

W

2mt
. (S.58)

Plugging this value onto eq. (S.56), we finally arrive at

Γ =
(m2

t −M2
W )

16πm3
t

× |M|2 =
g2

64π
× (m2

t −M2
W )2(m2

t + 2M2
W )

m3
tM

2
W

, (S.59)

or in terms of the Fermi constant GF ,

Γ =
GFm

3
t

4
√
2π

(

1− M2
W

m2
t

)2(

1 + 2
M2

W

m2
t

)

. (S.60)

Numerically, using (g2/4π) = 1/30, mt = 173 GeV, and MW = 80 GeV, we get Γ(t →
b+W+) ≈ 1.47 GeV. Or rather, this is the net decay rate of the top quark into a W+ and a b′
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quark, which due to CKM mixing may turn out to be a b, an s, or a d quark. Experimentally,

about 91% of top quark decays produces a bottom quark, the remaining 9% of decays yield a

strange or down quark. Also, the experimental net width of the top quark is about 1.32 GeV,

about 10% smaller than we have calculated. This discrepancy is due to QCD loop corrections

which we did not take into account.
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