PHY-396 K. Solutions for problem set #13.

Problem 1(a):
Change the integration variable from £ to C' = (A + (1 — §)B. Then dC = (A — B)d¢ and

hence
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which proves (F.a).

Problem 1(b):
Let’s take n — 1 derivatives of both sides of eq. (F.a) with respect to A. On one hand,
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on the other hand
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Comparing these two formulae and dividing by (n — 1)!, we immediately obtain
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Problem 1(c):
Now let’s take m — 1 derivatives of both sides of eq. (F.b) with respect to B. On the left
hand side
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while on the right hand side
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Comparing these two formulae, we immediately obtain
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Problem 1(d):
To evaluate the product of 3 denominators, we may first combine two of them using eq. (F.a),
and then use eq. (F.c) to combine with the third denominator. Thus, using integration

variables z and w instead of £, we obtain
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Now let’s change variables from w and z to

E =wxz and n = wx(1l—2) (S.7)

which span the triangle

>0, n>0, £+ =w<1 (S.8)

In terms of the new variables,

wzA4+(1—-2)B] + (1—w)C = ExA +nxB + (1-&—n)xC (S.9)

while

dédn = wdwdz. (S.10)
Consequently, eq. (S.6) becomes
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Note: there are two ways to parametrize the triangle (S.8), hence two lines of eq (F.d) in
the problem text. On the top line, the triangle is a part of the (£,7) plane delimited by the
conditions (S.8), or equivalently 0 <7 <1 —¢ for 0 < ¢ < 1. On the bottom line, the same
triangle is embedded into a 2D plane £ + 71+ (¢ = 1 in the 3D space, hence formal integration
over three variables d¢ dn d{ accompanied by the 6(¢ +n+ ¢ — 1) function that restricts us
to the 2D plane in 3D. Within that plane, the triangle is delimited by the conditions £ > 0,
n>0,and(=1—-&—n>0.



Problem 1(e):
Note: the integral on the RHS of eq. (F.e) is over the (k — 1)-dimensional simplex embedded
into the & + -+ &, = 1 hyperplane in the k-dimensional space (1, ...,&;).

The simplest way to prove eq. (F.e) is by induction in k. The induction base is provided
by egs. (F.a) for k = 2 and (F.d) for £ = 3. Now, the induction step: assuming eq. (F.e) is

valid for some k, let’s prove it for k£ 4 1. Similar to the previous sub-problem, we obtain
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where the last equality follows from eq. (F.b) where w plays the role of £, {1 A1 + - + § Ag
plays the role of A, and Ay, plays the role of B.

Now let’s change variables from w and &7, ...,&; to

(1 =wxé&, @ =wxl, ... G =wxf, and Gy =1 — w, (S.12)

which parametrize a k-dimensional simplex in the (3 + --- 4+ (x4+1 = 1 hyperplane in the

(k + 1) dimensional space of the ((1,...,(x+1). Indeed,
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Also, for the integral on the last 2 lines of eq. (S.11), we have
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Altogether, assuming eq. (F.e) works for some k, we have proved it also works for k + 1.

By induction, the formula should work for all k.

Problem 1(f):
Eq. (F.f) follows from eq. (F.e) by taking derivatives of both sides with respect to Ay, ..., Ag.
Indeed, on the left hand side,
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while on the right hand side
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Comparing these two formulae, we immediately obtain
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Problem 2:

The one-loop diagram (1) yields amplitude
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but the momentum integral here diverges logarithmically as q; — oo. In class, we have

regularized this diagram using a hard-edge cutoff and obtained
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where J(t/m?) is as in eq. (3) and ‘negligible’ means ‘vanishes as a negative power of the

cutoff scale A — oo. Clearly, the amplitude (S.20) has form (2) for

Cyp = —1. (S.21)

Now lets re-calculate the amplitude using the Pauli—Villars regularization scheme, where
one subtracts from (1) a similar diagram where internal lines belong to ghost fields of ex-
tremely large mass A > m. The subtraction is done before the momentum integration,
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so for ¢ > A? the net integrand behaves as O(A?/¢%) instead of 1/¢*, which makes the

integral convergent.



Out task is to evaluate the integral (S.22), so let’s start with the Feynman’s trick for

simplifying the propagator product. As discussed in class,
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for exactly same k = q1 — {gnet- Hence, we plug both propagator products into eq. (S.22),

change the order of integration, and than change the momentum variable from ¢; to k,
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Next, we analytically continue the momentum integral from the Minkowski momentum k*



to the Euclidean Momentum k%, thus
d'k — id'ky, k2 — —k%, (S.27)

and consequently
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At this point, we go to spherical coordinates in the 4D Euclidean space and focus on the

radial coordinate k. = |kp|. This gives us
Ay = 202 k2 dke = 7 k2 dk? (S.29)
and hence
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This last integral has form
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which evaluates to log(B/A). Indeed,

[e.9]

Jor (i~ o) = [ (s o~ o * )
\w+a?  w+b2) JY\yva y+¥B w+A? " y+B)y
0 0

B (10 y+A+ A B >

N gy+B y+ A y+BJ|,
(o At 1A+£_é_§_§
T\ ®Brx B ~ A ~ B
= (0—log%> + (0—1) — (0-1)

= log—.

oo

(S.32)



Therefore,
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since we assume not only A > m but also A% > |t], |ul, |s|.
Integrating this formula over £, we arrive at the Pauli—Villars regularized amplitude,
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where J(t/m?) is as in eq. (3). Clearly, the amplitude (S.34) has the requisite form (2), but

this time

Cpy = 0. (S.35)

At first glance, having different constant terms Cpy # Cyg looks like the two regula-
tors yield different amplitudes. However, this difference can be canceled by having slightly
different cutoff scale parameters Apy # Agg for the two regulators. Indeed, the cutoff scale
Apg of the hard-edge regulator — the maximal value of the Euclidean momenta allowed in
that scheme — does not have to be exactly the same as the mass Apy of the ghost fields in
the Pauli—Villars regularization scheme. To produce a similar physical effect, the two scales

should have similar orders of magnitude, but this generally means
A%y = A%p x an O(1) constant (S.36)
rather than naive identification Apy = Agg. In particular, we may set

Apy = A x exp(Cim — Coy = 1) (S.37)



to obtain

and hence perfect agreement between the amplitudes (S.34) and (S.20).

Now consider the higher-derivative regularization scheme. In this scheme, the scalar field
¢ has very small higher-derivative terms in its Lagrangian,
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which softens the scalar’s propagator for very high momenta ¢ 2 A?:
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Consequently, in the higher-derivative regularization scheme, the one-loop amplitude (1)

becomes
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where g2 = quet — q1. For all but extremely large momenta ¢?> < A2, the integrand here is
indistinguishable from the un-regularized loop integral (S.19), but for ¢*> 2 A? it becomes

softer — behaves like A*/¢® for ¢ — oo instead of 1/¢* — so the integral (S.41) converges.

Our task is to evaluate this integral, so let’s start by simplifying the propagator product
by using the Feynman’s trick. Specifically, let’s apply the trick to the un-regulated factors
1/(¢2 — m? +i0) and 1/(g3 — m? + i0) only,
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As to the regulating factors —A2/(¢? — A% +ie) and —A2%/(¢2 — A? + ic), they are indis-

tinguishable from 1 unless the momenta ¢; and ¢y are of order A or larger. But for so
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large momenta, the O(gnet) < A differences between the ¢p, the —ga = ¢1 — qnet and the

k = q1 — £qnet become unimportant, so we may approximate
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The € on the RHS here is as in eq. (S.42). That is, we first put the regulating factors inside
the Feynman-trick integral (S.42) and then apply the approximation (9). Altogether, this

gives us
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product of HD regulated propagators

where k = g1 — {qnet and t = qget-

To integrate this product of regulated propagators over the loop momentum ¢}, we
integrate over the momentum before integrating over the Feynman parameter ¢, and for

each ¢ we change the momentum variable from ¢{' to k* = ¢}’ — £¢l.;, thus

1
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Next, we analytically continue the momentum integral from the Minkowski momentum k* to

the Euclidean momentum kly: d*k becomes id%kp, k? becomes —k%, and the integral (S.45)

becomes
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The remaining radial integral has form

o0

yB?
/dy AT (S.47)
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where A = m? — £(1 — &)t is much less than B = A?. The simplest way to evaluate this
integral is to split it at some point C' which is much bigger than A but much smaller that
B, thus

(0. ] C o
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for A < C < B. In the first integral on the RHS we have y < C < B, which allows us to

approximate y + B ~ B and hence
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In the second integral on the RHS of (S.48) we have y > C' > A, which allows for a different

approximation y + A &~ y and hence
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o
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Altogether, for A < C < B,
T B? C B B
Y
~ log— — 1 log— — 1 = log— — 2. .01
[ arEe ~ e A oo

Note that C' drops out of net result; if it did not, our approximations would be inconsistent.
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Alternatively, we may evaluate the integral (S.47) without using any approximations by
expanding the integrand — which is a rational function of y — into its poles:
yB? Q@ 6] v o

W+ A2W+B°  W+A? T w+B?  y+A  y 1B (S.52)

for some constants «, 5,7,9. The values of o and  follow by matching the coefficients of

the double poles at y = —A and y = —B at both sides, thus

—AB? -B3

o= ——s B:m.

T (8.53)

Subtracting the double poles from both sides of eq. (S.52) and matching the residues of the

remaining single poles, we obtain

B B +B%(B + A)
Consequently,
dy =
(y + APy + B)?
0

- XCZ{B+A( 1 1 ) A B
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0

= x[g+ xlog——l—l} (for any B> A >0))

A logz - 2 (for B> A)),

in perfect agreement with eq. (S.51).

Plugging this formula into the momentum integral (S.46), we obtain

2

A A?
3973 % (log e 2) (S.56)
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and consequently

(S.57)

where J(t/m?) is as in eq. (3). As promised the higher-derivative regularization also yields
the amplitude of the form (2), but for a different constant C' that the other two regulators,

namely

Cup = —2. (S.58)

Therefore, to identify the amplitude (S.57) with the amplitudes produced by the other two

regularization schemes, we should set the HD cutoff scale Agp to

Afip = Ay X exp (CPV —Cup = +2> = Afp x exp(CHE —Cuap = +1>. (S.59)
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