
PHY–396 L. Solutions for homework set #14.

Problem 2(a):

At the tree level, the scalar decay amplitude is simply

iM(S → f + f̄) =

S

f f̄

= ūf (−ig)vf̄ . (S.1)

Summing over spins of the outgoing fermions, we get

∑

|M|2 = g2× tr
[

(6p1 +mf )(6p2 −mf )
]

= g2× (4p1p2−4m2
f ) = 2g2× (M2

s −4m2
f ), (S.2)

where the last equality follows from

2p1p2 − 2m2
f = (p1 + p2)

2 − p21 − p22 − 2m2
f = M2

s − 4m2
f . (S.3)

The phase space factor for one particle decaying into two — in the frame of the initial particle

where the momenta of the final particles are ±p — is

P =

∫

d3p

(2π)3
1

(2Ms)(2E1)(2E2)
× (2π)δ(E1 + E2 −Ms)

=

∞
∫

0

4π|p|2 d|p|

32π2MsE1E2
δ(E1 + E2 −Ms)

=
4π|p|2

32π2MsE1E2
×

(

d(E1 + E2)

d|p|
=

|p|Ms

E1E2

)

−1

=
|p|

8πM2
s

.

(S.4)

Consequently, the net tree-level decay rate is

Γ(S → f + f̄) = P ×
∑

|M|2 =
g2

4π
×

M2
s − 4m2

f

M2
s

× |p|. (S.5)
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By energy conservation,

|p| =
√

(12Ms)2 −m2
f =

βMs

2
where β =

√

1−
4m2

f

M2
s

, (S.6)

so in terms of the fermions’ speed β,

Γtree(S → f + f̄) =
g2

8π
× β3Ms . (S.7)

Note that for weak Yukawa coupling g2 ≪ 8π, the decay rate is small compared to the scalar’s

mass, Γ ≪ Ms, so the resonance in the scalar’s correlation function should be narrow.

Problem 2(b):

For real p2, everything under the integral in eq. (2) is real — except for the logarithm when

∆(ξ) happens to be negative, in which case log = real ± πi. To determine the sign, we let

p2 = real + iǫ, hence

∆ = m2
f − ξ(1− ξ)× p2 = real − iǫ (S.8)

and therefore

Im log
4πm2

∆
= − Im log(∆− iǫ) = +π ×Θ(∆ < 0)

def
= +π ×

{

1 when ∆ < 0,

0 when ∆ > 0.
(S.9)

Consequently, the imaginary part of Σφ is given by

ImΣ1 loop
φ (p2 + iǫ) =

12g2

16π
×

1
∫

0

dξ (m2
f − ξ(1− ξ)p2)×Θ(m2

f − ξ(1− ξ)p2 < 0). (S.10)

Technically, the mf here is the bare fermion mass, but at the O(g2) level of accuracy we may

neglect the difference between mbare
f and mphys

f . Consequently, the threshold for the imaginary

part (S.9) lies at p2min = (2mphys
f )2 — which is precisely the lowest scalar mass (Mphys

s )2 that

allows for decay S → f + f̄ .
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Letting p2 = M2
s > 4m2

f , we have

m2
f

p2
=

1− β2

4
=⇒ ∆(ξ) =

M2
s

4
×
(

1− β2 − 4ξ(1−ξ)
)

=
M2

s

4
×
(

(1−2ξ)2 − β2
)

. (S.11)

This expression becomes negative for 1−β
2 < ξ < 1+β

2 . Consequently, the integral in eq. (S.10)

evaluates to

M2
s

4
×

1
2 (1+β)
∫

1
2(1−β)

dξ
[

(1−2ξ)2 − β2
]

= −
M2

s

8
×

+β
∫

−β

d(1−2ξ)
[

β2− (1−2ξ)2
]

= −
M2

s

8
×

4β3

3
(S.12)

and therefore

ImΣ1 loop
φ (M2

s + iǫ) = −
g2

8π
× β3M2

s . (S.13)

Problem 2(c):

By inspection of eqs. (S.7) and (S.13), eq. (4) holds true:

ImΣ1 loop
φ (p2 = M2

s + iǫ) = −
g2

8π
× β3M2

s = −Ms × Γtree(S → f + f̄). (1)

Higher-loop imaginary parts are similarly related to the decay rates calculated to higher orders.

In the bare perturbation theory (using the bare coupling and mass parameters and Z factors

instead of the counterterms),

ImΣbare pert. theory
φ (p2 = (Mphys

s )2 + iǫ) = −Mphys
s × Γtotal(S → anything)× Zφ; (S.14)

in the perturbation theory using counterterms, the Σφ(p
2) amplitude has a different normal-

ization by a 1/Zφ factor, so we have simply

ImΣcountertermpert. theory
φ (p2 = (Mphys

s )2 + iǫ) = −Mphys
s × Γtotal(S → anything). (S.15)

Eqs. (S.14) and (S.15) work in all quantum field theories. For any field φ̂(x) which can create

an unstable particle U of physical mass MU and lifetime 1/ΓU ≫ 1/MU , the imaginary part of
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Σφ for that field satisfies

ImΣbare pert. theory
φ (p2 = (Mphys

U )2 + iǫ) = −Mphys
U × Γtotal(U → anything)× Zφ ,

ImΣcountertermpert. theory
φ (p2 = (Mphys

U )2 + iǫ) = −Mphys
U × Γtotal(U → anything).

(S.16)

The relation (S.16) follows from the optical theorem, which makes a narrow resonance out

of any slowly-decaying particle. Consequently, the propagator of the field creating such particles

should have form

Fφφ(p
2 + iǫ) =

iZ

p2 − (Mphys
U )2 + iMphys

U × Γtot(U → anything)
+ smooth (S.17)

for p2 near (Mphys
U )2. The bare perturbation theory gives this propagator as

Fφφ(p
2) =

i

p2 − m2
bare − Σφ(p2)

, (S.18)

so to make a Breit–Wigner resonance (S.17) out of this formula, we need

(Mphys
U )2 − (mbare

φ )2 = ReΣφ(p
2 = (Mphys

U )2 + iǫ), (S.19)

1

Zφ

= 1 − Re
dΣφ

dp2

∣

∣

∣

∣

p2=(Mphys

U
)2+iǫ

, (S.20)

ImΣφ(p
2 = (Mphys

U )2 + iǫ) < 0 (this is essential!), (S.21)

Mphys
U × Γtot(U → anything)× Zφ = − ImΣφ(p

2 = (Mphys
U )2 + iǫ). (S.22)

In addition, we also assume that Γtot(U) ≪ Mphys
U and that the imaginary part ImΣφ(p

2 + iǫ)

does not change much for p2 = (Mphys
U )2 ± O(Mphys

U × Γtot(U)). If these assumptions fail, the

resonance looks wide and/or deformed rather than a nice Breit–Wigner peak (S.17).
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