
PHY–396 K/L. Solutions for homework set #15.

Problem 1(a):

Feynman rules for the diagram (1) evaluate to

−iΣ(p2) =
(−iλ)2

3!

∫

d4q1
(2π)4

∫

d4q2
(2π)4

i

q21 −m2 + iǫ
× i

q22 −m2 + iǫ
× i

q23 −m2 + iǫ
(S.1)

where q3 ≡ p − q1 − q2 while the overall 1/3! factor comes from the permutation symmetry

between the 3 propagators. Using Feynman’s parameter tricks — specifically, eq. (F.d) from

the homework set#13 — we may combine the denominators of the three propagators into a

complete cube,

3
∏

i=1

1

q2i −m2 + iǫ
=

∫

△

d(FP )
2

D3

def
=

∫∫∫

ξ,η,ζ≥0

dξ dη dζ δ(ξ + η + ζ − 1)× 2

D3
(13.F.d)

where

D(ξ, η, ζ) = ξ × (q21 −m2 + iǫ) + η × (q22 −m2 + iǫ) + ζ × (q23 −m2 + iǫ)

= ξ × q21 + η × q22 + ζ × (q3 = p− q1 − q2)
2 − m2 + iǫ.

(S.2)

Consequently, we may rewrite eq. (S.1) as

Σ(p2) = −λ2

3

∫

△

d(FP )

∫

d4q1
(2π)4

∫

d4q2
(2π)4

1

D3
, (S.3)

cf. eq. (2).

Problem 1(b):

As a function of the momenta q1, q2, and p, the D in eq. (S.2) is a quadratic polynomial. So

let us shift the loop momentum variables from q1 and q2 to some k1 and k2 so that D takes the

sum-of-squares form (3).

1

http://web2.ph.utexas.edu/~vadim/Classes/2024f-qft/hw13.pdf


We start by expanding the ζ(q3 = p− q1− q2)
2 term in eq. (S.2) and then collecting all the

terms containing the q1 momentum into a full square,

D + m2 = ξ × q21 + η × q22 + ζ × (p− q1 − q2)
2

= (ξ + ζ)× q21 + 2ζ × qµ1 (q2 − p)µ + ζ × (q2 − p)2 + η × q22

= (ξ + ζ)×
(

q1 +
ζ

ξ + ζ
(q2 − p)

)2

+
ξζ

ξ + ζ
× (q2 − p)2 + η × q22 .

(S.4)

Naturally, we interpret the first term on the last line as α× k21, thus

α = (ξ + ζ), k1 = q1 +
ζ

ξ + ζ
× (q2 − p). (S.5)

For the other two terms on the last line of (S.4), we expand the (q2 − p)2 and collect all terms

containing the q2 momentum into another full square, thus

ξζ

ξ + ζ
× (q2 − p)2 + η × q22 =

(

ξζ

ξ + ζ
+ η

)

q22 − 2ξζ

ξ + ζ
(q2p) +

ξζ

ξ + ζ
p2

=
ξζ + η(ξ + ζ)

ξ + ζ
×
(

q2 − ξζ

ξζ + η(ξ + ζ)
p

)2

+

(

ξζ

ξ + ζ
− (ξζ)2

(ξ + ζ)(ξζ + η(ξ + ζ))

)

× p2

= β × k22 + γ × p2

(S.6)

for

β =
ξζ + η(ξ + ζ) = ξη + ξζ + ηζ

ξ + ζ
, (S.7)

kµ2 = qµ2 − ξζ

ξη + ξζ + ηζ
pµ, (S.8)

γ =
ξζ

ξ + ζ
− (ξζ)2

(ξ + ζ)(ξη + ξζ + ηζ)
=

ξηζ

ξη + ξζ + ηζ
. (S.9)
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Altogether, we end up with

ξ × q21 + η × q22 + ζ × q23 = α× k21 + β × k22 + γ × p2 (S.10)

and hence

D = α× k21 + β × k22 + γ × p2 − m2 + iǫ (3)

for the Feynman-parameter-dependent coefficients α, β, and γ being precisely as in eq. (4).

Finally, we need to check the Jacobian of replacing the original independent loop momenta

q1 and q2 with k1 and k2. In light of eqs. (S.5) and (S.8), it is easy to see that

∂(k1, k2)

∂(q1, q2)
= det

(

1 ζ
ξ+ζ

0 1

)

= 1, (S.11)

and therefore dk1 dk2 = dq1 dq2, dimension by dimension. In other words, for fixed Feynman

parameters
∫

d4q1
(2π)4

∫

d4q2
(2π)4

=

∫

d4k1
(2π)4

∫

d4k2
(2π)4

, (S.12)

and therefore

Σ2 loop(p2) = −λ2

3

∫

△

d(FP )

∫∫

d4k1 d
4k2

(2π)8
1

[D = αk21 + βk22 + γp2 −m2 + iǫ]3
. (S.13)

Problem 1(c):

The momentum integral in eq. (S.13) has form

∫

d8k

[k2 + · · ·]3 , (S.14)

which is quadratically divergent for k → ∞. However, the quadratic divergence here is a p–

independent constant, so it does not affect the derivative dΣ/dp2 and hence the field strength

renormalization factor Z. Instead, the derivative is only logarithmically divergent.
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To see how this works, let’s take d/dp2 derivatives of both sides of eq. (S.13). On the right

hand side, the only p-dependent thing is the γp2 term in D, hence

∂D
∂p2

= γ =⇒ ∂

∂p2
1

D3
=

−3γ

D4
(S.15)

and therefore

dΣ

dp2
= +λ2

∫

△

d(FP ) γ ×
∫∫

d4k1 d
4k2

(2π)8
1

D4
. (S.16)

Here, the momentum integral has form

∫

d8k

[k2 + · · ·]4 , (S.17)

so its UV divergence for k → ∞ is logarithmic rather than quadratic.

Problem 1(d–e):

Rotating both loop momenta k1 and k2 into the Euclidean momentum space, we have d4k1 →
id4kE1 , d

4k2 → id4kE2 , and

D → −α× (kE1 )
2 − β × (kE2 )

2 + γ × p2 − m2 (S.18)

hence

dΣ

dp2
= −λ2

∫

△

d(FP ) γ ×
∫

d4kE1
(2π)4

∫

d4kE2
(2π)4

1

[α(kE1 )
2 + β(kE2 )

2 + m2 − γp2]4
. (S.19)

Next, we need dimensional regularization to actually perform the momentum integrals.
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Changing

∫

d4k1
(2π)4

∫

d4k2
(2π)4

→ µ2(4−D)

∫

dDk1
(2π)D

∫

dDk2
(2π)D

(S.20)

(Euclidean signature for all dimensions), we have

µ8−2D

∫

dDk1
(2π)D

∫

dDk2
(2π)D

1

[α(kE1 )
2 + β(kE2 )

2 + m2 − γp2]4
=

〈〈using eq. (6)〉〉

=
µ8−2D

6

∫

dDk1
(2π)D

∫

dDk2
(2π)D

∞
∫

0

dt t3 exp
(

−t×
[

α(kE1 )
2 + β(kE2 )

2 + m2 − γp2
]

)

=
µ8−2D

6

∞
∫

0

dt t3e−t(m
2−γp2)

∫

dDk1
(2π)D

∫

dDk2
(2π)D

e−tαk
2

1e−tβk
2

2

〈〈using eq. (7)〉〉

=
µ8−2D

6

∞
∫

0

dt t3e−t(m
2−γp2) × (4παt)−D/2(4πβt)−D/2

=
µ8−2D

6(4π)D(αβ)D/2
×

∞
∫

0

dt t3−De−t(m
2−γp2)

=
µ8−2D

6(4π)D(αβ)D/2
× Γ(4−D)(m2 − γp2)D−4.

(S.21)

Note the Γ(4 −D) factor: It has a pole at D = 4 but no poles at D < 4. This is dimensional

regularization’s way to show that the momentum integrals diverge, but only logarithmically.

At this point, we may take D = 4− 2ǫ for an infinitesimally small ǫ. Hence, the last line of

eq. (S.21) becomes

1

6(4π)4(αβ)2
× Γ(2ǫ)×

(

4πµ2
√
αβ

m2 − γp2

)2ǫ

−−→
ǫ→0

1

6(4π)4(αβ)2
×
(

1

2ǫ
− γE + log

4πµ2
√
αβ

m2 − γp2

)

,

(S.22)

where the limit is taken according to eq. (8). Plugging this formula back into eq. (S.19) and
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assembling all the factors, we finally arrive at

dΣ

dp2
= − λ2

12(4π)4

∫

△

d(FP )
γ

(αβ)2
×
{

1

ǫ
− 2γE + 2 log

4πµ2

m2
+ log

αβ

[1− (p2/m2)γ]2

}

(S.23)

where α, β, and γ depend on the Feynman parameters ξ, η, ζ according to eq. (4). Plugging

in their explicit form — and also the explicit form of the Feynman parameter integral — we

immediately obtain eq. (9). Quod erat demonstrandum.

Problem 1(f):

When a divergent diagram is regularized using DR (dimensional regularization), the 1/ǫ poles

could come from several places. Most commonly, they appear as Γ(ǫ) or Γ(2ǫ) factors from

integrals over t–like parameters introduced to make the momentum integral Gaussian, for ex-

ample see the last couple of lines of eq. (S.21). But for some diagrams — especially with nested

or overlapping divergences, see §10.5 of the textbook for an example — there are additional

singularities for ǫ → 0 coming from divergent integrals over the Feynman parameters.

Fortunately, this does not happen for the two-loop amplitude in question, and that’s what

we need to verify in this part of the problem.

We have 3 Feynman parameters ξ, η, ζ satisfying ξ + η + ζ = 1 and ξ, η, ζ ≥ 0; together,

they span a 2D area (since only 2 are independent) in the shape of an equilateral triangle

η

ζ

ξ (S.24)
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We are to verify that the functions

F (ξ, η, ζ) =
ξηζ

[ξη + ξζ + ηζ ]3
(S.25)

and

H(ξ, η, ζ) = F (ξ, η, ζ)× logG(ξ, η, ζ)

where G =
[ξη + ξζ + ηζ ]3

[ξη + ξζ + ηζ − ξηζ(p2/m2)]2
(S.26)

may be safely integrated over the triangle (S.24), so let’s start with the F (ξ, η, ζ) and check it for

singularities. The denominator [ξη+ξζ+ηζ ]3 stays positive in the interior of the triangle (green

area in fig. (S.24) where all three of ξ, η, ζ are positive) and also along the edges (blue lines

where precisely one of the ξ, η, ζ becomes zero), but it vanishes in the vertices (red dots where

two variables go to zero at the same time). So as far as the first integral (14) is concerned, the

only potentially dangerous parts of the triangle are the vertices, all other places are completely

safe.

Let’s take a closer look at any one vertex (they are related by symmetry), say ξ, η → 0

while ζ ≈ 1. Near this vertex

F ≈ ξη

(ξ + η)3
, (S.27)

and if we approach this vertex along a line η = ξ × a constant, then

F ∝ 1

ξ
→ ∞ as ξ → 0. (S.28)

This behavior would create a divergence in one-dimensional integral
∫

dξ, but not for the 2D

integral we are interested in. Indeed, let’s change our coordinates according to eq. (15) and

consider what happens for w → 0. In this limit — which corresponds to the corner ξ, ζ → 0 —

we have

F ≈ x(1− x)

w
(S.29)

but the differential

F dξ dη = F × w dw dx ≈ x(1 − x) dx× dw (S.30)

remains perfectly finite for w → 0, so the integral converges just fine.
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Now consider the second integral (14) where we have an extra logG(ξ, η, ζ) factor in the

integrand. Since G is a rational function, logG does not have any singularities worse than

logarithmic, and log singularities may be safely integrated over. The only potential danger

comes from singularities of the logG coinciding with singularities of the F factor, so the net

singularity becomes worse.

Since F ’s singularities lie at the 3 corner of the triangle, let’s see how the G function and

its log behave hear the corners. Going back to the ξ, η → 0, ζ ≈ 1 corner, we have

G ≈ (ξ + η)3

[ξ + η − ξη(p2/m2)]2
≈ (ξ + η) (S.31)

so logG has a logarithmic singularity on top of the “pole” of F . However, in terms of the w, x

coordinates, the differential

F × logG× dξ dη ≈ x(1 − x) dx× log(w) dw (S.32)

has only a mild logarithmic singularity at w → 0 and the integral converges.

Optional problem 1(⋆): my Mathematica code; my numeric code.

Problem 1(g):

Having verified that the integral (9) over the Feynman parameters converges, we now face the

daunting task of actually evaluating the integral. Fortunately, we do not need to evaluate

its as an analytic function of the external momentum p2 — for the purpose of calculating

the field strength renormalization factor Z we are interested in only one value of p2, namely

p2 = physical mass2. Moreover, since we are working at the leading order of perturbation

theory which contributes to the dΣ/dp2, we may neglect the difference between the physical

and the bare masses as higher-order correction and set p2 = m2. Consequently, the integral (9)

reduces to a combination of the integrals (14), thus

dΣ2 loops

dp2

∣

∣

∣

∣

p2=m2

= − λ2

24(4π)4
×
{

1

ǫ
− 2γE + 2 log

4πµ2

m2
− 3

2

}

. (S.33)
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Note: there are two two-loop 1PI diagrams for the Σ(p2), namely (1) and also

(S.34)

However, the diagram (S.32) produces a p–independent Σ, so it does not contribute to the

dΣ/dp2. This means that eq. (S.33) is the entire two-loop contribution to the derivative. Also,

this two-loop contribution is leading (in the power series in λ) because the one-loop contribution

happens to vanish in the λφ4 theory, thus

dΣnet

dp2

∣

∣

∣

∣

p2=M2

= − λ2

24(4π)4
×
{

1

ǫ
− 2γE + 2 log

4πµ2

m2
− 3

2

}

+ O(λ3). (S.35)

Consequently, the field strength renormalization factor is

Z =
1

1 − dΣ
dp2

∣

∣

∣

∣

∣

p2=M2

= 1 +
λ2

6144π4

{

1

ǫ
+ 2 log

µ2

m2
+ C

}

+ O(λ3) (S.36)

where C is a numeric constant, specifically

C = 2 log(4π) − 2γE − 3

2
≈ 2.41. (S.37)

Problem 2(a):

Consider a connected Feynman diagram with L loops, PB bosonic propagators, and PF fermionic

propagators. At large momenta, bosonic propagators behave as 1/q2 while fermionic propa-

gators behave as 1/q, hence in 4 dimensions the diagram has the superficial degree of UV

divergence

D = 4L − 2PB − PF . (S.38)

As in the λφ4 theory, we can relate this expression to the numbers of external legs using the

vertex valences. The Feynman rules of the theory has two vertex types — Yukawa and 4-scalar,
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— so let VY and Vλ be the respective numbers such vertioces in the diagram. Counting the line

ends connected tho these vertices, we have

2PF + EF = 2VY ,

2PB + EB = VY + 4Vλ ,
(S.39)

while the Euler formula says

L − P + V ≡ L − PB − PF + VY + Vλ = 1, (S.40)

Combining these three equations, we obtain

D = 4L− 2PB − PF = 4(L− PB − PF ) + 3PF + 2PB

= 4(1− VY − Vλ) + 3
2(2VY − EF ) + (VY + 4Vλ − EB)

= 4 − 3
2EF − EB .

(S.41)

Thus, the external legs of a diagram completely determine its superficial degree of divergence.

Consequently, for any number of loops, there are only seven superficially divergent ampli-

tudes, namely

(a)

D = 4

(b)

D = 3

(c)

D = 2

(d)

D = 1

(e)

D = 0

(f)

D = 1

(g)

D = 0

Furthermore, the amplitude (a) here is the vacuum energy while the amplitudes (b) and (d)

vanish because of the parity symmetry. Indeed, the pseudo-scalar field Φ is parity-odd, hence the

amplitudes involving odd number of pseudoscalar particles and no fermions must have parity-

odd dependence on the particles’ momenta. But to construct a parity-odd Lorentz-invariant
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combination of the Lorentz vectors pα1 , p
β
2 , . . ., one needs ǫ tensors, e.g. ǫαβγδp

α
1p

β
2p

γ
3p
δ
4, which

requires at least 4 linearly independent momenta (in d = 4 spacetime) and hence n ≥ 5 external

legs. For the amplitudes (b) and (d) involving one or three pseudoscalars only and no fermions,

such construction is not available and the amplitudes vanish identically.

Altogether, the Yukawa theory has only 4 UV-divergent amplitudes, namely

(c) Σφ(p
2), D = 2,

(e) V (p1, p2, p3, p4), D = 0,

(f) Σψ(6p), D = 1,

(g) Γ5(p′, p), D = 0.

(S.42)

Problem 2(b):

Now consider the divergent parts of the amplitudes (S.42). Similar to the λΦ4 theory, for the

(c) amplitude

D[Σφ] = +2, D[dΣφ/dp
2] = 0, D[d2Σφ/(dp

2)2] = −2, (S.43)

hence

Σφ(p
2) = O(Λ2)× 1 + O(logΛ)× p2 + finite(p2). (S.44)

Likewise, for the (e) amplitude

D[V ] = 0, D[any ∂V/∂pi] = −1, (S.45)

hence

V (p1, p2, p3, p4) = O(log Λ)× 1 + finite(p1, p2, p3, p4). (S.46)

Next, the (f) amplitude behaves similar to (e), except in terms of 6p instead of p2, thus

D[Σψ] = +1, D[dΣφ/d 6p] = 0, D[d2Σφ/(d 6p)2] = −1, (S.47)
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hence

Σψ(6p) = O(Λ1)× 1 + O(log Λ)×6p + finite(6p). (S.48)

Finally, for the (g) amplitude we have

D[Γ5] = 0, D[∂Γ5/∂p] = D[∂Γ5/∂p′] = −1, (S.49)

hence

Γ5(p′, p) = O(log Λ)× γ5 + finite(p′, p). (S.50)

where the γ5 factor in the divergent term follows from the negative parity of the Φ field.

Altogether, all the divergences are fixed-degree polynomials of the momenta, so they may

be canceled in situ by just 4 types of counterterm vertices, namely

= −iδφm + ip2 δφZ ,

= −iδλ ,

= −iδψm + i 6p δψZ ,

= −δgγ
5

(S.51)

parametrized by 6 divergent counterterm coefficients

δφm = O(Λ2),

δφZ = O(log Λ),

δλ = O(log Λ),

δψm = O(Λ1),

δψZ = O(log Λ),

δg = O(log Λ).

(S.52)

In terms of the Feynman rules of the theory, the counterterm vertices (S.51) stems from
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the local( in x) counterterm Lagrangian

Lcounter
terms = 1

2δ
φ
Z (∂Φ)2 − 1

2δ
φ
m Φ2 − 1

4!δλ Φ
4 + iδψZ Ψ 6∂Ψ − δψmΨΨ − iδg ΦΨγ5Ψ. (S.53)

Physically, this counterterm Lagrangian is the difference between the bare Lagrangian of the

quantum theory and the physical Lagrangian (16). To see how this works, we start with the

bare Lagrangian

Lbare = 1
2(∂Φb)

2 − 1
2m

2
bΦ

2
b − 1

4!λbΦ
4
b + Ψb(i 6∂ −Mb)Ψb − igbΦbΨbγ

5Ψb , (S.54)

relate the bare fields to the renormalized fields as

Φb(x) =
√

ZφΦr(x), Ψb(x) =
√

ZψΨr(x), (S.55)

hence

Lbare =
Zφ
2
(∂Φr)

2 − Zφm
2
b

2
Φ2
r −

Z2
φλb

24
Φ4
r + ZψΨr(i 6∂−Mb)Ψr − igbZψ

√

Zφ×ΦrΨrγ
5Ψr ,

(S.56)

and then spit this bare Lagrangian into the Physical Lagrangian and the counterterms:

Lbare = Lphys + Lcounter
terms ,

where Lphys and Lcounter
terms are exactly as in eqs. (16) and (S.53) (in terms of Φ = Φr and Ψ = Ψr),

while the counterterm coefficients (S.52) are

δφZ = Zφ − 1, δψZ = Zψ − 1, δφm = Zφm
2
b −m2

ph , δψm = ZψMb −Mph,

δλ = Z2
φλb − λph , and δg = ZψZ

1/2
φ gb − gph .

Thus, we see that all the counterterms (S.52) we need to cancel the divergences of the Yukawa

theory are already included in the bare Lagrangian of the theory.
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Problem 2(c):

In the next homework set#16 we are going to calculate the divergences of the YUkawa theory at

the one-loop level, and the counterterms we need to cancel these divergences. That calculation

will show that we do need all 6 of the counterterms (S.52) to cancel all the divergences. In

particular, we shall see that even for λph = 0 we still need an infinite δλ counterterm to cancel

the divergences of the fermionic loop diagrams

+ five similar. (S.57)

For the moment, we do not need to evaluate such diagrams, all we need is the fact that such

diagrams exist, diverge logarithmically (since they have D = 0), and do not vanich (since they

have no reason to). Consequently, to cancel the divergences of such diagrams, we do need an

infinite δλ 6= 0.

Thus, from the bare Lagrangian point of view, λphys = 0 has no special meaning: the bare

coupling λb would be infinite in any case, so vanishing of a particular scattering amplitude we

use to define the physical coupling λph would be just an accident. In other words, we may fine

tune λb to achieve λph = 0 just as we can fine tune λb to achieve any other experimental value

of the physical coupling, but it would not have any special meaning for the theory itself.

This is an example of the general rule: barring fine tuning of the coupling parameters,

a renormalizable quantum field theory has all the renormalizable couplings consistent with the

theory’s symmetries. For the theory at hand, we have a Dirac field Ψ, a real pseudoscalar

field Φ, and all the Lagrangian terms involving these fields should be invariant under Lorentz

and parity transformations and have canonical dimensions ≤ 4 (for renormalizability’s sake).

There is only a finite number of such terms, and it is easy to see that the Lagrangian (16)

comprises all such terms and no others. Consequently, the renormalized theory would not have

any additional interactions.

Sometimes, in absence of some coupling the theory has an additional symmetry that would

not be present otherwise. In such case, the extra symmetry would prevent such coupling from
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being restored by the renormalization procedure. For example, consider the Lagrangian (16)

for g = 0 (but λ 6= 0): In the absence of the Yukawa coupling, the theory would have an

extra symmetry Φ(x) → −Φ(x) (without parity), and this extra symmetry would prevent the

renormalization procedure from restoring the Yukawa coupling. On the other hand, when λ = 0

but g 6= 0, the theory does not has any additional symmetries it wouldn’t have for λ 6= 0, and

that’s why the renormalization gives rise to the λΦ4 coupling even if it wasn’t there to begin

with.
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