
PHY–396 K/L. Solutions for homework set #16.

Problem 1:

In problem 2 from the previous homework#15 you should have shown that the Yukawa theory

needs 6 counterterms to cancel all its UV divergences. These 6 counterterms lead to 4 types of

counterterm vertices:

= −iδφm + ip2 δφZ ,

= −iδλ ,

= −iδψm + i 6p δψZ ,

= −δgγ
5

(S.1)

see the solutions to the homework#15 for details. And in this problem our task is to calculate the

divergent parts (for d → 4) of all 6 counterterm coefficients δφz , δ
φ
m, δ

ψ
Z , δ

ψ
m, δg, and δλ.

Let’s start with the δλ counterterm which cancels the divergence of the four-scalar 1PI ampli-

tude V(k1, k2, k3, k4). At the one-loop level of analysis, we have the following Feynman diagrams:

iM1 loop(k1, k2, k3, k4) = +

+ + two similar

+ + five similar.

(S.2)

The similar diagrams here are related by non-trivial permutations of the external legs. For the

scalar loops, non-trivial means different pairing of the external legs at the vertices (modulo vertex
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permutations), hence 3 distinct diagrams, while for the fermionic loops non-trivial means different

cyclic order of the 4 legs, hence 6 distinct diagrams.

Since we have done the scalar loops in class, let’s focus on the fermionic loop at the bottom

line of (S.2). Each such loop yields

−

∫

d4p1
(2π)4

Tr

{

(−gγ5)
i

6p1 −M + i0
(−gγ5)

i

6p2 −M + i0
(−gγ5)

i

6p3 −M + i0
(−gγ5)

i

6p4 −M + i0

}

(S.3)

where

p2 = p1 + k1 , p3 = p2 + k2, p4 = p3 + k3, and p1 = p4 + k4 .

For generic values of the external momenta k1, . . . , k4, the integral (S.3) is quite complicated, but

its divergence is k-independent and hence may be evaluated for any particular choice of ki we find

convenient. Clearly, the simplest set of the ki is k1 = k2 = k3 = k4 = 0; this is off-shell, but that’s

OK. Consequently, the integral (S.3) becomes

iVψ loop(0, 0, 0, 0) = −

∫

d4p1
(2π)4

tr

[

(

(−gγ5)
i

6p−M + i0

)4
]

= −g4
∫

d4p1
(2π)4

tr
[

(

γ5(6p +M)
)4
]

(p2 −M2 + i0)4

= −g4
∫

d4p1
(2π)4

4

(p2 −M2 + i0)2

(S.4)

where the last equality follows from

(

γ5(6p +M)
)2

= γ5(6p +M)γ5(6p+M) = (−6p +M)(6p +M) = −p2 + M2 (S.5)

and hence

tr
[

(

γ5(6p+M)
)4
]

= 4(p2 −M2)2. (S.6)

Evaluating the integral on the last line of eq. (S.4) using dimensional regularization, we obtain

Vψ loop(k1 = k2 = k3 = k4 = 0) =
−4g4

16π2

(

1

ǭ
+ log

µ2

M2

)

(S.7)
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where

1

ǭ
def
=

1

ǫ
− γE + log(4π). (S.8)

This notation is common in dimensional regularization: because the 1/ǫ divergence is usually

accompanied by the finite −γE + log(4π) constant, it’s convenient to combine them into a single

term denoted 1/ǭ.

It remains to multiply the amplitude (S.7) by 6 (for six similar diagrams) and add contributions

of the other diagrams (S.2). The latter diagrams have been evaluated in class in the context of

the scalar λΦ4 theory, thus to order O(λ2 or g4),

V(k1 = k2 = k3 = k4 = 0) = −λ − δλ +
3λ2

32π2

(

1

ǭ
+ log

µ2

m2

)

−
24g4

16π2

(

1

ǭ
+ log

µ2

M2

)

. (S.9)

The renormalization condition for the physical λ coupling is the on-shell four-particle ampli-

tude M(threshold) = −λ, or in other words V = −λ when all external momenta are on shell and

at the threshold (s = 4m2, t = u = 0). At other values of external momenta, we should have

V(k1, k2, k3, k4) = −λ −
λ2

32π2
× finite −

4g4

16π2
× finite + higher loop orders. (S.10)

Comparing this formula with eq. (S.9) gives us

δ1 loopλ =
3λ2

32π2

(

1

ǭ
+ log

µ2

m2
+ finite

)

−
24g4

16π2

(

1

ǭ
+ log

µ2

M2
+ finite

)

. (S.11)

As promised, the fermionic loops provide for δλ 6= 0 even if were to start from λ = 0.

⋆ ⋆ ⋆

Next, we want to calculate the δg counterterm, so let us consider the ΦΨγ5Ψ vertex correction.

By analogy with the QED vertex, we denote Γ(5)(p′, p) the 1PI amplitude for two fermions of

respective momenta p and p′ and one pseudoscalar of momentum k = p′−p. At the one-loop level
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of analysis,

−Γ(5)(p′, p) = + + (S.12)

= −gγ5 − δgγ
5

+

∫

d4q

(2π)4
i

q2 −m2 + i0
× (−gγ5)

i

6p′+ 6q −M + i0
(−gγ5)

i

6p+ 6q −M + i0
(−gγ5).

As in the previous calculation, the loop integral here diverges logarithmically, and the divergent

part does not depend on the external momenta. Consequently, we may calculate this divergence

for any values of p, p′, and k = p′ − p we like, for example p = p′ = k = 0, which makes for a

much simpler integral. Indeed, for zero external momenta, the fermionic line becomes

(−gγ5)
i

0+ 6q −M + i0
(−gγ5)

i

0+ 6q −M + i0
(−gγ5) = g3

γ5(6q +M)γ5(6q +M)γ5

(q2 −M2 + i0)2

= g3
−γ5

q2 −M2 + i0

(S.13)

where the second equality follows from eq. (S.5). Consequently, the loop integral in eq. (S.12)

becomes easy to evaluate:

∫

d4q

(2π)4
−ig3γ5

(q2 −m2 + i0)(q2 −M2 + i0)
= g3γ5 ×

∫

d4qE
(2π)4

1

(q2E +m2)(q2E +M2)

= g3γ5 ×

1
∫

0

dx

∫

d4qE
(2π)4

1

[q2e + xM2 + (1− x)m2]2

〈〈using dimensional regularization〉〉

=
g3γ5

16π2

1
∫

0

dx

(

1

ǭ
+ log

µ2

xM2 + (1− x)m2

)

=
g3γ5

16π2

(

1

ǭ
+ log

µ2

M2
+ 1 −

m2

M2 −m2
log

M2

m2

)

.

(S.14)
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Thus, to the order g3,

Γ(5)(p′ = p = 0) = −gγ5 − δgγ
5 +

g3γ5

16π2

(

1

ǭ
+ log

µ2

M2
+ finite

)

. (S.15)

And since the divergent part is momentum independent, it follows that for any external momenta,

Γ(5)(p′, p) = −gγ5 − δgγ
5 +

g3γ5

16π2

(

1

ǭ
+ log

µ2

M2
+ finite function of(p′, p)

)

+ O(g5 or g3λ).

(S.16)

In class, I have not explained the renormalization condition for the Yukawa coupling g, but

it’s clear that such condition should have form Γ(5) = −gγ5 for the on-shell fermions and some

particular value of the pseudoscalar’s q2, for example q2 = 0 or on-shell q2 = m2 (allowed for

m ≥ 2M). In light of eq. (S.16), this means

δ1 loopg =
g3

16π2

(

1

ǭ
+ log

µ2

M2
+ finite

)

(S.17)

where the finite part depends on the specific renormalization condition (and in general is a painfully

complicated function of the m/M mass ratio), but the infinite part is clear and unambiguous.

⋆ ⋆ ⋆

Our next targets are the fermion’s mass and kinetic energy counterterms δψM and δψZ . At the

one-loop level of analysis, the Dirac field’s 1PI two-point Green’s function is

−iΣ1 loop order
ψ (6p) = +

= −iδψM + iδψZ 6p +

∫

d4k

(2π)4
i

q2 −m2 + i0
× (−gγ5)

i

6p+ 6q −M + i0
(−gγ5).

(S.18)

This time, we cannot set p = 0 so we must be more careful. Let us re-write the integrand of the
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loop integral as

−g2
N

D
(S.19)

where

N = γ5(6q+ 6p +M)γ5 and D =
(

q2 −m2 + i0
)

×
(

(p+ q)2 −M2 + i0
)

. (S.20)

Using the Feynman’s parameter trick we may simplify the denominator as

1

D
=

1
∫

0

dx
1

[

(1− x)(q2 −m2) + x((p+ q)2 −M2) + i0
]2

=

1
∫

0

dx
1

[

ℓ2 − ∆ + i0
]2

(S.21)

where

ℓ = q + xp and ∆ = xM2 + (1− x)m2 − x(1− x)p2. (S.22)

As usual, we take the
∫

dx integral after integrating over momentum, which allows us to shift the

momentum variable from pµ to ℓµ, thus

Σ1 loop
ψ (6p) = − ig2

1
∫

0

dx

∫

d4ℓ

(2π)4
N

[ℓ2 −∆+ i0]2
. (S.23)

In terms of the shifted loop momentum ℓ, the numerator becomes

N = γ5
(

6ℓ + (1− x) 6p + M
)

γ5 = M − (1− x) 6p − 6ℓ, (S.24)

where the last term 6 ℓ does not contribute to the momentum integral because it’s odd under the
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ℓ → −ℓ symmetry, thus
∫

d4ℓ

(2π)4
6ℓ

[ℓ2 −∆+ i0]2
= 0 (S.25)

and therefore

Σ1 loop
ψ (6p) = −ig2

1
∫

0

dx [M − (1− x) 6p ]

∫

d4ℓ

(2π)4
1

(ℓ2 −∆+ i0)2
. (S.26)

Note that although the two-fermion amplitude Σψ has superficial degree of divergence D = +1,

the leading linear divergence (S.25) vanishes by Lorentz symmetry, and the remaining momentum

integral (S.26) has only the sub-leading logarithmic UV divergence. Evaluating this integral by

going to the Euclidean momentum space and using dimensional regularization, we obtain

∫

d4ℓ

(2π)4
1

(ℓ2 −∆+ i0)2
=

i

16π2

(

1

ǭ
+ log

µ2

∆

)

, (S.27)

and therefore

Σ1 loop
ψ (6p) = δψM − δψZ 6p +

g2

16π2

1
∫

0

dx [M−(1−x) 6p ]

(

1

ǭ
+ log

µ2

(1− x)m2 + xM2 − x(1− x)p2

)

.

(S.28)

The renormalization conditions for the fermion’s propagator correction Σψ(6p) are

Σ

∣

∣

∣

∣

6p = M
= 0 and

dΣ

d 6p

∣

∣

∣

∣

6p = M
= 0. (S.29)

In light of eq. (S.28), the second condition (S.29) becomes

δψZ [1 loop] =
g2

16π2
∂

∂ 6p

1
∫

0

dx [M − (1− x) 6p ]

(

1

ǭ
+ log

µ2

(1− x)m2 + xM2 − x(1− x)p2

)

∣

∣

∣

∣

∣

∣

6p = M

=
g2

16π2

1
∫

0

dx

[

(x− 1)

(

1

ǭ
+ log

µ2

x2M2 + (1− x)m2

)

+
2x2(1− x)M2

x2M2 + (1− x)m2

]

= −
g2

32π2

(

1

ǭ
+ log

µ2

M2
+ finite

)

.

(S.30)
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At the same time, the first condition (S.29) implies

δψM [1 loop] − MδψZ [1 loop]

= −
g2

16π2

1
∫

0

dx [M − (1− x) 6p ]

(

1

ǭ
+ log

µ2

(1− x)m2 + xM2 − x(1 − x)p2

)

∣

∣

∣

∣

∣

∣

6p = M

= −
g2

16π2

1
∫

0

dx xM ×

(

1

ǭ
+ log

µ2

x2M2 + (1− x)m2

)

= −
g2M

32π2

(

1

ǭ
+ log

µ2

M2
+ finite

)

(S.31)

and consequently

δψM [1 loop] = −
g2M

16π2

(

1

ǭ
+ log

µ2

M2
+ finite

)

. (S.32)

Note that similarly to QED, the fermionic mass counterterm in the Yukawa theory is propor-

tional to the mass itself and diverges logarithmically rather than linearly in the UV cutoff (cf.

integral (S.26) prior to dimensional regularization). As in QED, this behavior is due to an addi-

tional symmetry of the Yukawa theory when the fermion mass happens to vanish. Specifically, for

M = 0 we have a discrete chiral symmetry

Ψ(x) → γ5Ψ(x), Ψ(x) → −Ψ(x)γ5, Φ(x) → −Φ(x). (S.33)

Unlike the gauge coupling in QED, the pseudoscalar Yukawa coupling does not respect continuous

chiral transforms Ψ(x) → exp(iαγ5)Ψ(x), but the discrete symmetry is sufficient for preventing

the massless Yukawa theory from developing a mass shift via loop corrections.

⋆ ⋆ ⋆

Finally, consider the boson’s mass and kinetic energy counterterms δφM and δφZ . At the one-loop
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level of analysis, the pseudoscalar field’s 1PI two-point Green’s function is

−iΣ1 loop
φ (k2) = + +

= −iδφm + iδφZ k2 −
iλm2

32π2

(

1

ǭ
+ 1 + log

µ2

m2

)

−

∫

d4p

(2π)4
tr

(

i

6p−M + i0
(−gγ5)

i

6p+ 6k −M + i0
(−gγ5)

)

.

(S.34)

Again, we re-write the fermionic loop integral as

+ g2
∫

d4p

(2π)4
N

D
(S.35)

where the denominator is the usual

D =
(

p2 −M2 + i0
)

×
(

(p+ k)2 −M2 + i0
)

(S.36)

and hence

1

D
=

1
∫

0

dx
1

[ℓ2 −∆+ i0]2

for ℓ = p + kx

and ∆ = M2 − x(1− x)k2,

(S.37)

and the numerator is

N = tr
[

(6p +M)γ5(6p+ 6k +M)γ5
]

= tr
[

(M+ 6p)(M−6p−6k)
]

= 4M2 − 4p(p+ k)

= 4M2 − 4(ℓ− xk)(ℓ + k − xk)

= 4M2 − 4ℓ2 + 4x(1− x)k2 − 4(1− 2x)(ℓ · k).

(S.38)

The last term here is odd with respect to ℓ → −ℓ and hence does not contribute to the
∫

d4ℓ
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integral. Effectively

N ∼= 4M2 − 4ℓ2 + 4x(1− x)k2 ,

so the integral (S.35) becomes

= 4g2
1

∫

0

dx

∫

d4ℓ

(2π)4
M2 + x(1− x)k2 − ℓ2

(ℓ2 −∆+ i0)2

= 4ig2
1

∫

0

dx

∫

d4ℓE
(2π)4

2M2 −∆+ ℓ2E
(ℓ2E +∆)2

.

(S.39)

In four dimensions, the momentum integral (S.39) diverges quadratically. Hence, in dimen-

sional regularization, we need to analytically continue from D = 4 Euclidean dimensions down to

D < 2, evaluate the integral for D < 2, and only then continue back to D = 4−2ǫ. Thus, working

in the Euclidean momentum space, we have

∫

d4ℓE
(2π)4

2M2 −∆+ ℓ2E
(ℓ2E +∆)2

−→ µ4−D
∫

dDℓE
(2π)D

2M2 −∆+ ℓ2E
(ℓ2E +∆)2

= µ4−D
∫

dDℓE
(2π)D

∞
∫

0

dt t e−t∆
(

2M2 −∆−
∂

∂t

)

e−tℓ
2

E

= µ4−D
∞
∫

0

dt t e−t∆
(

2M2 −∆−
∂

∂t

)[
∫

dDℓE
(2π)D

e−tℓ
2

E = (4πt)−D/2
]

=
µ4−D

(4π)D/2

∞
∫

0

dt t e−t∆
(

(2M2 −∆)t−(D/2) + D
2 t−(D/2)−1

)

=
µ4−D

(4π)D/2

(

(2M2 −∆)Γ(2− D
2 )∆

(D/2)−2 + D
2 Γ(1−

D
2 )∆

(D/2)−1
)

〈〈now take D = 4− 2ǫ〉〉

=
1

16π2
Γ(ǫ)

(

4πµ2

∆

)ǫ(

2M2 − ∆ +
2− ǫ

ǫ− 1
∆

)

−−→
ǫ→0

1

16π2

[

(2M2 − 3∆)

(

1

ǭ
+ log

µ2

∆

)

− ∆

]

.

(S.40)
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Altogether,

Σ1 loop
φ (k2) = δφm − δφZ k2 +

λm2

32π2

(

1

ǭ
+ 1 + log

µ2

m2

)

−
g2

4π2

1
∫

0

dx

[

(2M2 − 3∆)

(

1

ǭ
+ log

µ2

∆

)

− ∆

]

.

(S.41)

Similarly to the fermion’s propagator correction Σψ discussed above, the renormalization con-

ditions for a scalar or a pseudoscalar field are

Σφ

∣

∣

∣

∣

k2=m2

= 0 and
∂Σφ
∂k2

∣

∣

∣

∣

k2=m2

= 0. (S.42)

Therefore, in light of eq. (S.41),

δφZ [1 loop] = −
g2

4π2
∂

∂k2

1
∫

0

dx

[

(2M2 − 3∆)

(

1

ǭ
+ log

µ2

∆

)

− ∆

]

k2=m2

= +
g2

4π2

1
∫

0

dx x(1− x)×
∂

∂∆

(

(2M2 − 3∆)

(

1

ǭ
+ log

µ2

∆

)

− ∆

)
∣

∣

∣

∣

k2=m2

= −
g2

4π2

1
∫

0

dx x(1− x)

[

3

ǭ
+ 3 log

µ2

M2 − x(1− x)m2
+

2x(1− x)k2

M2 − x(1− x)m2

]

= −
g2

8π2

(

1

ǭ
+ log

µ2

M2
+ finite

)

.

(S.43)

Likewise,

δφm[1 loop] − m2 δφZ [1 loop] +
λm2

32π2

(

1

ǭ
+ 1 + log

µ2

m2

)

=

= −
g2

4π2

1
∫

0

dx

[

(2M2 − 3∆)

(

1

ǭ
+ log

µ2

∆

)

− ∆

]

k2=m2

= −
g2

4π2

1
∫

0

dx

[

(

3x(1− x)m2 −M2
)

×

(

1

ǭ
+ log

µ2

M2 − x(1− x)m2

)

+ finite

]

= −
g2

4π2

[

(12m
2 −M2)

(

1

ǭ
+ log

µ2

M2

)

+ finite

]

(S.44)
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and hence

δφm[1 loop] =

[

−
λm2

32π2
+

g2M2

4π2
−

g2m2

8π2

]

×

(

1

ǭ
+ log

µ2

M2

)

+ finite. (S.45)

Note that unlike the other counterterms of the Yukawa theory, the pseudoscalar mass correction

δφm diverges quadratically rather than logarithmically. The dimensional regularization however

does not see the quadratic divergence itself, all it sees is the sub-leading logarithmic divergence

accompanying the quadratic divergence. Thus, in terms of a different UV cutoff, eq. (S.45) means

δφm[1 loop] = (unknown)× Λ2 +

[

−
λm2

32π2
+

g2M2

4π2
−

g2m2

8π2

]

× log
Λ2

M2
+ finite, (S.46)

where the coefficient of the leading Λ2 divergence depends on the cutoff’s details — such as the

exact definition of Λ2 for each cutoff.
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