
PHY–396 K/L. Solutions for homework set #18.

Problem 1:

First of all, note that in QED the counterterm vertex is ieδ1γ
µ, so it’s e(E)× δ1(E) which

acts as the counterterm coupling δg(E), that’s why in eq. (2) the derivative WRT logE acts

on the product e(E) × δ1(E) rather than on just the δ1(E). Consequently, that derivative

amounts to

d(e× δ1)

d logE
= e×

dδ1
d log e

+
de

d logE
× δ1 = e×

dδ1
d log e

+ βe × δ1 . (S.1)

Plugging this formula into eq. (2) gives us (after a bit of algebra)

βe = (2γe + γγ)× e(1 + δ1) − e×
dδ1

d log e
− β1 × δ1 (S.2)

⇐
=

βe × (1 + δ1) = (2γe + γγ)× e(1 + δ1) − e×
dδ1

d log e
(S.3)

⇐
=

βe = e× (2γe + γγ) −
e

1 + δ1
×

dδ1
d logE

. (S.4)

Now, in the last term here

1

1 + δ1
×

dδ1
d logE

=
d log(1 + δ1)

d logE
=

d logZ1

d logE
. (S.5)

But thanks to the Ward identity δ1(E) = δ2(E) at all energies, hence logZ1(E) = logZ2(E)

at all energies and therefore

d logZ1

d logE
=

d logZ2

d logE
= 2γe . (S.6)

Plugging the last two formulae into eq. (S.4), we end up with

βe = e× (2γe + γγ) − e× 2γe = e× γγ . (3)

Quod erat demonstrandum.
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Problem 2(a):

By the power-counting analysis, the electron’s two-point function Σe(6 p) has superficial de-

gree of divergence D = +1, so naively one expects δm to be linearly divergent while δ2 is

logarithmically divergent. However, in the me → 0 limit, QED gets an additional axial sym-

metry Ψ(x) → exp(iθγ5)Ψ(x), and this symmetry forbids the δm counterterm altogether.

Consequently, for a small but non-zero electron mass, we end up with

δm ∼ me × log Λ rather than δm ∼ Λ. (S.7)

To see how this works, consider the chiral structure of the electron’s two-point function

Σloops
e (6p) for a massless electron. The massless electron’s propagator i 6 q/(q2 + iǫ) anti-

commutes with the γ5 matrix, and so does the QED vertex ieγµ. In a general 1PI diagram

for the Σloops
e (6p), the electron line connecting the incoming and the outgoing lines has n

propagators and n+1 vertices, which altogether makes for an odd number 2n+1 of matrices

anticommuting with the γ5. Consequently, as a Dirac matrix, the Σthis diagram
e (6 p) anti-

commutes with the γ5, and this is true for every diagram contributing to the Σloops
e (6 p), so

altogether

γ5Σloops
e (6p) = −Σloops

e (6p)γ5. (S.8)

At the same time, by the Lorentz invariance we have

Σloops
e (6p) = Aloops(p2) + Bloops(p2)×6p. (S.9)

In terms of A(p2) and B(p2) eq. (S.8) means Aloops = 0, and hence — for the off-shell

conditions (6) — δm = 0 to all loop orders.

For a small but non-zero electron mass, we no longer have axial symmetry and hence do

not expect A = 0. But for me ≪ E, Aloops should be an analytic function of me, hence

Aloops(p2, me) = Aloops(p2;me = 0) + me ×
∂Aloops

∂me
+ O(m2

e), (S.10)

where the first term on the RHS vanishes because A(me = 0) = 0. Also, the superficial
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degree of divergence of the derivative ∂A/∂me is

D

[

∂A

∂me

]

= D[A] − 1 = 0, (S.11)

so this derivative is logarithmically rather than linearly divergent. Thus altogether

Aloops = me ×
(

O(log Λ) constant + finite
)

(S.12)

and therefore

δm = me ×
(

O(log Λ) constant + finite
)

. (S.13)

Quod erat demonstrandum.

Problem 2(b):

At the one-loop level, the electron’s self-energy correction is

−iΣorderα
e (6p) = +

= iδorderα2 6p − iδorderαm − iΣ1 loop
e (6p)

(S.14)

where the loop diagram evaluates to

−iΣ1 loop
e (6p) =

∫

reg

d4k

(2π)4
(ieγµ)

i

6p+ 6k −m+ i0
(ieγν)×

−i

k2 + i0

[

gµν + (ξ − 1)
kνkν

k2 + i0

]

.

(S.15)

In other words,

Σ1 loop
e (6p) = −ie2

∫

reg

d4k

(2π)4
N

D
(S.16)

where

1

D
=

1

(p+ k)2 −m2 + i0
×

1

(k2 + i0)2
(S.17)
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while

N = k2 × γµ(6p+ 6k +m)γµ + (ξ − 1)×6k(6p+ 6k +m) 6k. (S.18)

As usual, we use the Feynman parameter trick to simplify the denominator

1

D
=

1
∫

0

2(1− x) dx

[ℓ2 −∆+ i0]3
(S.19)

for

ℓ2 − ∆ = (1− x)k2 + x[(p + k)2 −m2] = (k + xp)2 + x(1− x)p2 − xm2 (S.20)

and hence

ℓ = k + xp, ∆ = xm2 − x(1− x)p2. (S.21)

Consequently, changing the order of
∫

dx and momentum integration and changing the mo-

mentum integration variable from k to ℓ, we get

Σ1 loop
e (6p) = −2ie2

1
∫

0

dx(1− x)

∫

reg

d4ℓ

(2π)4
N (ℓ)

[ℓ2 −∆+ i0]3
(S.22)

where

N (ℓ) = (ℓ−xp)2×γµ(6ℓ+(1−x) 6p+m)γµ + (ξ−1)(6ℓ−x 6p)(6ℓ+(1−x) 6p+m)(6ℓ−x 6p). (S.23)

The numerator (S.23) is a cubic polynomial in ℓµ, but in the context of the momentum

integral (S.22) the odd cubic and linear terms integrate to zero. As to the even quadratic

and constant terms, only the quadratic terms contribute to the UV divergence of the inte-

gral (S.22) while the constant terms affect only its finite part. For our present purposes, we

care only about the UV divergent part of the self-energy (S.22), so we are going to truncate
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the numerator N to the terms which are quadratic in ℓµ and discard the rest of the terms,

thus

Ndiv
∼= ℓ2 × γµ((1− x) 6p +m)γµ − 2x(ℓp)× γµ 6ℓγ

µ

+ (ξ − 1)×
[

−2xℓ2 6p+ 6ℓ((1− x) 6p+m) 6ℓ
] (S.24)

Furthermore, the difference between the numerator algebras in D = 4 − 2ǫ dimensions v. 4

dimensions is ∆N = O(ǫ), which after multiplying by the O(1/ǫ) UV divergence becomes fi-

nite rather than infinite. Consequently, for the purposes of calculating only the UV-divergent

part of the momentum integral, we may use the 4D algebra to simplify the numerator (S.24)

in the context of the integral (S.22). Thus:

γµ 6ℓγ
µ = −2 6ℓ, (S.25)

γµ((1− x) 6p +m)γµ = 4m − 2(1− x) 6p, (S.26)

(ℓp)×6ℓ = ℓµℓν × pµγν ∼=
ℓ4

4
gµν × pµγν =

ℓ4

4
×6p, (S.27)

and 6ℓ 6p 6ℓ = ℓµℓν × γµ 6pγν ∼=
ℓ2

4
gµν × γµ 6pγν =

ℓ2

4
× (−2 6p). (S.28)

Applying these formulae to eq. (S.24) for the numerator gives us

Ndiv
∼= ℓ2

(

4m− 2(1− x) 6p
)

+ xℓ2 6p + (ξ − 1)
[

−2xℓ2 6p + ℓ2m −
1− x

2
ℓ2 6p

]

= ℓ2 ×
[

(3 + ξ)m + 1
2

(

(9x− 3) − (3x+ 1)ξ
)

6p
]

.
(S.29)

Plugging this divergent part of the numerator into eq. (S.22), we arrive at

Σ1 loop
div (6p) = 2e2

1
∫

0

dx(1−x)×
[

(3+ξ)m + 1
2

(

(9x−3)− (3x+1)ξ
)

6p
]

×

∫

reg

d4ℓ

(2π)4
−iℓ2

[ℓ2 −∆+ i0]3

(S.30)

where the momentum integral evaluates to

∫

reg

d4ℓ

(2π)4
−iℓ2

[ℓ2 −∆+ i0]3
=

1

16π2

(

1

ǫ
+ log

µ2

∆
+ const

)

. (S.31)
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For an off-shell p2 = −E2 (with E2 ≫ m2), we may approximate

∆ ≈ x(1− x)×E2, (S.32)

hence

log
µ2

∆(x)
= log

µ2

E2
+ finite f (x) (S.33)

and therefore

∫

reg

d4ℓ

(2π)4
−iℓ2

[ℓ2 −∆+ i0]3
=

1

16π2

(

1

ǫ
+ log

µ2

E2
+ finite f (x)

)

. (S.34)

Thus, the divergent part of the Σ1 loop
e amounts to

Σ1 loop
div

(6p) =
α

2π

(

1

ǫ
+ log

µ2

E2

)

×

1
∫

0

dx(1−x)
[

(3+ξ)m + 1
2

(

(9x−3) − (3x+1)ξ
)

6p
]

, (S.35)

where the remaining integral over the Feynman parameter x yields

1
∫

0

dx(1− x)
[

(3 + ξ)m + 1
2

(

(9x− 3) − (3x+ 1)ξ
)

6p
]

= 1
2
(3 + ξ)m − 1

2
ξ 6p, (S.36)

hence

Σ1 loop
div (6p) =

α

4π

(

1

ǫ
+ log

µ2

E2

)

×
(

(3 + ξ)m − ξ 6p
)

. (S.37)

Finally, to cancel this divergence we need the counterterms

δorderα2 = −
ξα

4π

(

1

ǫ
+ log

µ2

E2
+ const

)

, (S.38)

δorderαm = −
(3 + ξ)αm

4π

(

1

ǫ
+ log

µ2

E2
+ const

)

, (S.39)

in perfect agreement with eqs. (7) and (8) for

C2(ξ) = −
ξ

2
and Cm(ξ) = −

3 + ξ

2
. (S.40)
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Problem 2(c):

By inspection of eq. (S.40), Cm(ξ)− C2(ξ) = −3
2
for any ξ.

Problem 2(d):

Taking the derivatives of eqs. (7) and (8) WRT logE, we find

dδ2(E)

d logE
= −2×

C2α

2π
+ O(α2), (S.41)

dδm(E)

d logE
= −2×

Cmαm

2π
+ O(α2). (S.42)

Consequently, to the one-loop order O(α), the electron’s anomalous dimension is

γe =
1

2

d logZ2

d logE
≈

1

2

dδ2
d logE

= −
C2α

2π
+ O(α)2. (S.43)

As to the electron mass β-function, eq. (9) gives us

βm = 2γe×m +
(

2γe× δm = O(α2m)
)

−
dδm

d logE
= −

2C2αm

2π
+

2Cmαm

2π
+ O(α2m),

(S.44)

in perfect agreement with eq. (10). Specifically, we found in part (a) that 2(Cm −C2) = −3

for any ξ, hence

βm = −
3αm

2π
+ O(α2m). (S.45)

Problem 2(e):

To solve the differential equation (S.45), we start by letting the running electron mass be

some unknown function of the running coupling,

m(E) = F (α(E)), (S.46)

hence

dm

d logE
=

dF (α)

dα
×

dα(E)

d logE
=

dF

dα
× βα(α) ≈

dF

dα
×

(

2α2

3π
+ O(α3)

)

. (S.47)

where the last equality follows from the known one-loop beta-function (11). Plugging this
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formula into eq. (S.45) gives us

dF

dα
×

2α2

3π
× (1 +O(α)) = −

3αF

2π
× (1 +O(α)) (S.48)

and hence

dF

dα
= −

9

4
×

F

α
× (1 + (Oα)). (S.49)

To solve this equation, we rewrite it as

dF

F
= −

9

4

dα

α
× (1 +O(α)), (S.50)

hence

d log(F ) = d

(

−
9

4
× log(α) + O(α)

)

, (S.51)

which integrates to

logF (α) = const −
9

4
log(α) + O(α) (S.52)

and therefore

F (α) = const× α−9/4 × (1 +O(α)). (S.53)

Disregarding the two-loop and higher-order corrections on the RHS, we have

F (α) = const× α−9/4 (S.54)

and therefore

m(E) = const×
(

α(E)
)

−9/4
, (S.55)

in perfect agreement with eq. (12) for r = −9
4
.
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Finally, the constant pre-factor in eq. (S.55) obtains from the boundary condition at the

particle’s mass m0. Indeed, for E ∼ me eq. (S.55) should yield m(E) ≈ m0 (up to small

O(αm) threshold corrections we neglect here), thus

m0 = const× (α0)
−9/4 (S.56)

for the same constant as in eq. (S.55). Consequently,

m(E) =
m0

(α0)9/4
×

(

α(E)
)9/4

= m0 ×

(

α(E)

α0

)

−9/4

, (S.57)

in perfect agreement with eq. (12). Quod erat demonstrandum.

PS: While the renormalization group equation (10) for the electron’s mass applies at all

energies, the solution (S.57) is valid only for E <∼ masses of other charged particles besides

the electron; in practice, this means E <∼ mmuon ≈ 100 MeV. The reason for this limitation

is that above 100 MeV, the muon — and eventually the other charge particles — start

contributing to the electric charge renormalization, which changes the coefficient of the one-

loop beta-function (11) for the α(E). This changes the numeric factor in eq. (S.49) and hence

the power of α(E) in eq. (S.55). Thus, above 100 MeV m(E) start scaling as a different

power r′ 6= −9
4
of the α(E), and at higher energies this power r′ keeps changing as more and

more charged particles come into play.
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