PHY-396 K/L. Solutions for homework set #18.

Problem 1:

First of all, note that in QED the counterterm vertex is ied1y#, so it’s e(E) x §1(F) which

acts as the counterterm coupling 69(E), that’s why in eq. (2) the derivative WRT log E' acts

on the product e(E) x 01(E) rather than on just the d;(F). Consequently, that derivative

amounts to

d(e X 51) d51 de d51
—— = 01 = 01 .
dlog K € dloge * dlog E o= ex dloge + De o
Plugging this formula into eq. (2) gives us (after a bit of algebra)
Be = (27e +7y) xe(l+d1) — ><d51 — pf1 x4
e = \&YeT Ty e 1 € dloge 1 1
5x(1+5)%(2 ) xe(l46) — ex 4oy
e 1) = (&% T Vy € 1 € dlog e
H e dd
= 2 — .
fe ex (2% +7) 1+51XdlogE
Now, in the last term here
1 " déy  dlog(1+d1)  dlogZy
146  dlogE  dlogE dlogE '

(S.5)

But thanks to the Ward identity d;(E) = da(E) at all energies, hence log Z1(F) = log Z2(FE)

at all energies and therefore

dlogZy  dlog Zy
dlogE  dlogE

= 27.
Plugging the last two formulae into eq. (S.4), we end up with

Be = €X(%+%) — eX e = €X 7y

Quod erat demonstrandum.

(S.6)



Problem 2(a):

By the power-counting analysis, the electron’s two-point function Y. () has superficial de-
gree of divergence D = +1, so naively one expects d,, to be linearly divergent while d9 is
logarithmically divergent. However, in the m, — 0 limit, QED gets an additional axial sym-
metry W(z) — exp(i#y°)¥(x), and this symmetry forbids the &, counterterm altogether.

Consequently, for a small but non-zero electron mass, we end up with
Om ~ me X logA rather than 4, ~ A. (S.7)

To see how this works, consider the chiral structure of the electron’s two-point function
S0P () for a massless electron. The massless electron’s propagator i 4/(q> + ie) anti-
commutes with the 7° matrix, and so does the QED vertex iey”. In a general 1PI diagram
for the SI°P*(), the electron line connecting the incoming and the outgoing lines has n
propagators and n+ 1 vertices, which altogether makes for an odd number 2n + 1 of matrices
anticommuting with the 7. Consequently, as a Dirac matrix, the ZZhiSdiagram(jy) anti-
commutes with the 4°, and this is true for every diagram contributing to the ZLOOPS (p), so

altogether
75213001)5@) _ —ZLOOPS(]D/)’YE). (S.8)

At the same time, by the Lorentz invariance we have
ZLOOPS (ﬂ) _ Aloops (p2> + Bloops (p2)>< ]j (89)

In terms of A(p?) and B(p?) eq. (S.8) means A°°P* = (0, and hence — for the off-shell

conditions (6) — d,, = 0 to all loop orders.

For a small but non-zero electron mass, we no longer have axial symmetry and hence do

not expect A = 0. But for m. < E, A°°PS should be an analytic function of m,, hence

loops

AP (2 ) = AP (p2ime = 0) + me X + O(my), (5.10)

Ome

where the first term on the RHS vanishes because A(m. = 0) = 0. Also, the superficial



degree of divergence of the derivative 0A/Om, is

D{ﬁA} = DlA] -1 = 0, (S.11)

Oome

so this derivative is logarithmically rather than linearly divergent. Thus altogether
AloPs — (O(log A) constant + ﬁnite) (S.12)

and therefore
Om = me X (O(logA) constant + ﬁnite). (S.13)

Quod erat demonstrandum.

Problem 2(b):

At the one-loop level, the electron’s self-energy correction is

(S.14)

_ 5order e ﬂ 5order a 21 loop @

where the loop diagram evaluates to

_jxLloop () _/ﬂ(ie ) ’ (ievy) X —t pv (5_1)ﬂ
e ~ ) etV T —m a0 o |9 k2 140
reg
(S.15)
In other words,
0o d*k N
siloopn = _je? / @1 D (S.16)
reg
where
1 1 1
— = X (S.17)

D (p+ k)2 —m2+i0  (k*+i0)?



while

N = B xy+§F+my" + (€= 1D)x @+ Kk +m) k. (S.18)

As usual, we use the Feynman parameter trick to simplify the denominator

1
2(1 — z)dx
1
/ — A +40]3 (5.19)
0

for
- A= (1-2)k + 2[p+k)?—m? = (k+ap)? + z(1 —2)p* — 2m?  (S.20)

and hence

( =k + xp, A= azm® — 2(1—2)p° (S.21)

Consequently, changing the order of [dr and momentum integration and changing the mo-

mentum integration variable from k to ¢, we get

1
4
0

reg

N(0) = (t=ap)* <y (f+(1—a) p+mpy* + (E=1)~z P+ (1) p+m)(f—z §). (S.23)

The numerator (S.23) is a cubic polynomial in ¢# but in the context of the momentum
integral (S.22) the odd cubic and linear terms integrate to zero. As to the even quadratic
and constant terms, only the quadratic terms contribute to the UV divergence of the inte-
gral (S.22) while the constant terms affect only its finite part. For our present purposes, we

care only about the UV divergent part of the self-energy (S.22), so we are going to truncate



the numerator A to the terms which are quadratic in ¢# and discard the rest of the terms,
thus
Naiy = X 7,(1=2) p+mpy* — 2u(lp) X 3, 4"

) (S.24)
+(E=1)x [-20 g+ f((L-2)p+m)/

Furthermore, the difference between the numerator algebras in D = 4 — 2¢ dimensions v. 4
dimensions is AN = O(e), which after multiplying by the O(1/¢) UV divergence becomes fi-
nite rather than infinite. Consequently, for the purposes of calculating only the UV-divergent
part of the momentum integral, we may use the 4D algebra to simplify the numerator (S.24)

in the context of the integral (S.22). Thus:

Tt = -2/, (S.25)
YWl =2)p+mnt = dm — 2(1 —x)p, (S.26)
4 4
(fp)x J = Eufu X pM'VV = Zg;w x phy” = ZX », (8.27)
2 2
and  fpf = b, x A* Y = T Xyt gy = T X (—29). (S.28)

Applying these formulae to eq. (S.24) for the numerator gives us

Naw = Clam =201 -2)§) + 2§ + €~ 1)[-285 + Cm — 22
2 (8.29)

— 2 x [(3+£)m + (9w —3) - (3x+1>g)¢]

Plugging this divergent part of the numerator into eq. (S.22), we arrive at

1
shoop = 9¢2 /da:(l—x)x [(3+§)m+ $((92-3) — (3z+1)¢) ]é] x/ d* —i&
div 2 (2m)* [(2 — A +40]3
0 reg
(S.30)
where the momentum integral evaluates to
d*e —il? 1 /1 ©?
= — + log — : 31
/(27r)4 (2= A+i0P 1672 (e TleN T ConSt) (5:31)

reg



For an off-shell p? = —E? (with £? > m?), we may approximate

A~ z(1—2z)x E? (S.32)
hence
1 1
logm = logﬁ + finite_f(x) (S.33)

and therefore

d*e —il? 1 1 12
/(27-‘-)4 [Z—A+d073 1672 <— logE + finite_f(x )) (S.34)

reg

Thus, the divergent part of the »L1o%P amounts to

1

2

xtloop ) (% + log %) X/d:c(l—x) [(3+£)m + 5((92-3) = Bz +1)¢) p], (5.35)
0

where the remaining integral over the Feynman parameter x yields

1
/dx(1—a;) [(3+§)m + 5((92—3) — 3z +1)¢) gz;] = 3B+Hm — 34, (S.36)
0

hence
1loop 1 :u2
S = o (= +log 2 ) x (B+om - ¢p). (3.37)
Finally, to cancel this divergence we need the counterterms
ggrdera _ta + log'u—2 + const (S.38)
2 4m E2 ‘
dera _ B+ &am (1 p
O = .z + logﬁ + const |, (S.39)

in perfect agreement with eqs. (7) and (8) for

Cy(€) = =2 and Cp(é) = ——=. (S.40)



Problem 2(c):
By inspection of eq. (S.40), Cp,(§) — Ca(€) = —3 for any £.

Problem 2(d):
Taking the derivatives of egs. (7) and (8) WRT log E, we find

dém(E) Cam 5
T = —2x B 4 0, (S.42)

Consequently, to the one-loop order O(«), the electron’s anomalous dimension is

ldlogZQ 1 d52 02(1 2
- ~ - S . 4
2dlogE ~ 2dlogE on T O (5.43)

Te =

As to the electron mass S-function, eq. (9) gives us

B dom _QC’gam n 2C,am
dlogE 2m 2m

+ O(a®m),
(S.44)
in perfect agreement with eq. (10). Specifically, we found in part (a) that 2(C,, — C2) = —3

B = 2¥exm + (29 X 6 = O(a’m))

for any &, hence

Bm = o + O(a’m). (S.45)
Problem 2(e):

To solve the differential equation (S.45), we start by letting the running electron mass be

some unknown function of the running coupling,

m(E) = F(a(E)), (5.46)
hence
dm  dF(a) da(E)  dF _ar 202 3
TlosE ~ da “dlogE — da <Pl ® o (37 + Ola )>‘ (5.47)

where the last equality follows from the known one-loop beta-function (11). Plugging this



formula into eq. (S.45) gives us

dF 202 3aF
o X3 (14+0(a)) = 5 X (1+0(w))
and hence
dF 9

To solve this equation, we rewrite it as

dF 9 da
- 13~ (14 O(a)),

hence

dlog(F) = d <—Z x log(a) + 0(04)) :

which integrates to

log F(a) = const — glog(a) + O(a)

and therefore

F(a) = const x a”* x (14 0(a)).

Disregarding the two-loop and higher-order corrections on the RHS, we have

F(a) = const x =4

and therefore

m(E) = const x (a(E))_9/4,

o

in perfect agreement with eq. (12) for r = —

(S.48)

(S.49)

(S.50)

(S.51)

(S.52)

(S.53)

(S.54)

(S.55)



Finally, the constant pre-factor in eq. (S.55) obtains from the boundary condition at the
particle’s mass mg. Indeed, for £ ~ m, eq. (S.55) should yield m(E) ~ mq (up to small
O(am) threshold corrections we neglect here), thus

mo = const x (ag)” 4 (S.56)

for the same constant as in eq. (S.55). Consequently,

m Q@ —9/4
m(E) = (040)%/4 X (a(E))9/4 = mg X ( éf)) : (S.57)

in perfect agreement with eq. (12). Quod erat demonstrandum.

PS: While the renormalization group equation (10) for the electron’s mass applies at all
energies, the solution (S.57) is valid only for E < masses of other charged particles besides
the electron; in practice, this means £ < Mmuon ~ 100 MeV. The reason for this limitation
is that above 100 MeV, the muon — and eventually the other charge particles — start
contributing to the electric charge renormalization, which changes the coefficient of the one-
loop beta-function (11) for the a(£). This changes the numeric factor in eq. (S.49) and hence
the power of a(E) in eq. (S.55). Thus, above 100 MeV m(F) start scaling as a different
power 1’ # —% of the «(F), and at higher energies this power 1’ keeps changing as more and

more charged particles come into play.



