
PHY–396 L. Solutions for homework set #21.

Problem 1(a):

For the (0 + 1) dimensional (zero space, one time) free complex Grassmann field ψ(t), we have

quadratic Euclidean action

SE =

β
∫

0

dtE ψ̄(∂ + ω)ψ (S.1)

and hence partition function

Z = Det[∂ + ω] . (S.2)

All physical observables of this system must be periodic in Euclidean time, so the odd Grass-

mann variables such as the fermionic fields themselves should be either periodic or antiperiodic.

Consequently, the ‘momentum’ modes should be quantized as either integers or half integers,

k =
2π

β
× n or k =

2π

β
× (n+ 1

2), (S.3)

which produces two distinct expressions for the partition function.

In the periodic case, the partition function evaluates to

Z+ =

+∞
∏

n=−∞

(

2πi

β
× n + ω

)

= ω ×
∞
∏

n=1

(

ω2 +

(

2πn

β

)2
)

= const× βω ×
∞
∏

n=1

(

1 +

(

βω

2πn

)2
)

= const× 2 sinh(βω/2)

(S.4)

where the last equality follows from the analytic properties of the infinite product as a function of

βω/2: no poles, zeros at imaginary integers i×n, and no exponential growth for Im βω → ±∞.
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For the antiperiodic boundary conditions we have a quite different partition function:

Z− =

+∞
∏

n=−∞

(

2πi

β
× (n− 1

2) + ω

)

=

∞
∏

n=1

(

ω2 +

(

2π

β

)2

× (n− 1
2)

2

)

= const×
∞
∏

n=1



1 +

(

βω

2π(n− 1
2)

)2




= const×
∞
∏

m=1

(

1 +

(

βω

2π(m/2)

)2
)

/ ∞
∏

m=1

(

1 +

(

βω

2πm

)2
)

= const× sinh(βω)
/

sinh(βω/2) = const× 2 cosh(βω/2).

(S.5)

Expanding both partition functions into exponentials e−βE , we obtain

Z±(β, ω) = const×
(

e+βω/2 ∓ e−βω/2
)

. (S.6)

The pre-exponential coefficients in a partition function correspond to the multiplicities of states,

so they must be positive. Consequently, the periodic Z+ — which contains a negative term

−E−βω/2 — is not a valid partition function of any physical quantum system. On the other

hand, the antiperiodic Z− is a perfectly good partition function for a two-level quantum system

with energies E = ∓1
2ω. The two levels have equal multiplicities — the overall constant factor

in eq. (S.5), whatever it happens to evaluate to in a more accurate calculation than we did. For

const = 1, the Z− agrees with the partition function of a two-state quantum system generated

by the single-mode fermionic creation and annihilation operators â† and â.

The bottom line is, to get the correct partition function at a finite temperature, the fermionic

fields should be anti-periodic in the Euclidean time,

ψ(te + β) = −ψ(te). (S.7)

Likewise, in the Euclidean spacetime of D > 1 dimensions,

Ψ(x, te + β) = −Ψ(x, te). (3)

2



Problem 1(b):

In light of eq. (3), the partition function of a free Dirac field in D = 3 + 1 dimensions obtains

from the Euclidean functional integral

Z =

∫∫∫

D[antiperiodic Ψ(x) and Ψ(x)] exp(−SE [Ψ,Ψ]). (S.8)

where

SE =

∫

d4xΨ( 6∂e +m)Ψ (S.9)

(for γ4E = γ0M and ~γE = −i~γM ). The fermionic functional integral (S.8) has a Gaussian form,

so it formally evaluates to

Z = Det[ 6∂e +m] (S.10)

where Det is a functional determinant in the Hilbert space of 4-component wave functions

ψα(x1, x2, x3, x4) that are anti-periodic in x4, ψα(x, x4 + β) = −ψα(x, x4). Consequently, the

free energy of the Dirac field at a finite temperature T = 1/β is

F (T )
def
= −T logZ(T ) = −T logDet[ 6∂e +m] = −T Tr[log(6∂e +m)] (S.11)

where Tr is the functional trace in the same Hilbert space as Det. This verifies eq. (4) for the

free energy of the Dirac spinor field.

To evaluate the functional trace in eq. (S.11), we go to the Euclidean momentum basis of

states |p, p4, α〉, where α is the Dirac index, p is the 3D momentum, and p4 is the momentum in

the Euclidean time direction. In light of the antiperiodic ‘boundary’ condition in the Euclidean

time direction, the p4 has a discrete spectrum comprising

p4 =
2π

β
× half-integers = 2πT ×

(

±1
2 ,±3

2 ,±5
2 , . . .

)

. (7)

As to the 3-momentum p, its spectrum is continuous in infinite space, but when we put the

fields in a large but finite box of volume L3, the spectrum of p becomes discrete but almost-
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continuous, with density

d#p =
L3

(2π)3
d3p. (S.12)

In the Euclidean momentum basis

〈

p′, p′4, β
∣

∣ log(6∂e +m) |p, p4, α〉 = δp′,p × δp′
4
,p4 ×

(

log(i 6pe +m)
)

α,β
, (S.13)

so the functional trace in eq. (S.11) becomes

Tr[log(6∂E +m)] =
∑

p

∑

p4

∑

α

〈p, p4, α| log(6∂e +m) |p, p4, α〉

=
∑

p

∑

p4

∑

α

(

log(i 6pe +m)
)

α,α

= L3

∫

d3p

(2π)3

∑

p4

trDirac

(

log(i 6pe +m)
)

.

(S.14)

In terms of this trace, the free energy density of the Dirac spinor field is

F(T )
def
=

F (T )

L3
= − T

L3
Tr[log(6∂e +m)] 〈〈 cf. eq. (S.11) 〉〉

= −T
∫

d3p

(2π)3

∑

p4

trDirac

(

log(i 6pe +m)
)

,
(S.15)

exactly as in eq. (5)

Finally, we evaluate the trace over the Dirac indices in eq. (5) using

tr
(

log(i 6pe +m)
)

= log
(

det(i 6pe +m)
)

(S.16)

where the determinant obtains from the Dirac matrix identity

γ5(i 6pe +m)γ5(i 6pe +m) = (−i 6pe +m)(i 6pe +m) = (p2e +m2)× 14×4 . (S.17)

Thanks to this identity,

det
(

γ5(i 6pe +m)γ5(i 6pe +m)
)

= (p2e +m2)4, (S.18)
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but on the other hand

det
(

γ5(i 6pe +m)γ5(i 6pe +m)
)

= det2(i 6pe +m)× det2(γ5)

〈〈 since det(γ5) = 1 〉〉 = det2(i 6pe +m),
(S.19)

which together give us

det2(i 6pe +m) = (p2e +m2)4 (S.20)

and consequently,

tr
(

log(i 6pe +m)
)

= log
(

det(i 6pe +m)
)

=
4

2
× log(p2e +m2). (S.21)

Plugging this formula into eq. (5) for the energy of the Dirac spinor field, we arrive at

F(T ) = −T
∫

d3p

(2π)3

∑

p4

4

2
log(p2e +m2), (S.22)

exactly as in eq. (6).

Problem 1(c):

In light of the spectrum (7) of the discrete p4 momentum in eq. (6), we may rewrite the latter

as

F(T ) = −
∫

d4pe
(2π)4

2 log(p2e +m2)×
half-integer
∑

n

δ

(

p4
2πβ

− n

)

, (S.23)

and then apply the Poisson resummation to the sum over δ-functions here. In the preamble of

the previous homework#20, we saw that

integer
∑

n

δ(x− n) =
+∞
∑

ℓ=−∞

e2πiℓx. (S.24)

For the sum over half-integer n, we have a similar formula

half-integer
∑

n

δ(x− n) =

+∞
∑

ℓ=−∞

(−1)ℓ × e2πiℓx, (S.25)
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which follows from plugging (a half-integer n) = 1
2 + (an integer m) into eq. (S.24):

half-integer
∑

n

δ(x− n) =

integer
∑

m

δ(x−m− 1
2)

=
+∞
∑

ℓ=−∞

e2πiℓ(x−
1

2
)

=

+∞
∑

ℓ=−∞

(−1)ℓ × e2πiℓx.

(S.26)

Applying the half-integer Poisson resummation formula (S.25) to the Dirac fermion’s free en-

ergy (S.23), we arrive at

F(T ) = −
∫

d4pe
(2π)4

2 log(p2e +m2)×
+∞
∑

ℓ=−∞

(−1)ℓ × eiℓβp4

= −2

+∞
∑

ℓ=−∞

(−1)ℓ
∫

d4pe
(2π)4

log(p2e +m2)× eiℓβp4 .

(S.27)

Similar to the bosonic case we have dealt with in the previous homework#20, in the zero-

temperature limit β → +∞, the sum on the bottom line of eq. (S.27) is dominated by the ℓ = 0

term. Indeed, for any other ℓ 6= 0, the integral is suppressed by the rapidly oscillating factor

exp(iβℓp4), hence

F(0) = −2

∫

d4pe
(2π)4

log(p2e +m2). (S.28)

Note that the integral here is exactly as in the ℓ = 0 term in eq. (S.27) for any temperature, so

subtraction of the zero-temperature free energy density (S.28) from the finite-temperature free

energy density (S.27) amounts to simply skipping the ℓ = 0 term in the sum, thus

F(T ) − F(0) = −2
∑

ℓ 6=0

(−1)ℓ
∫

d4pe
(2π)4

log(p2e +m2)× eiℓβp4 . (S.29)

Moreover, in the remaining sum the terms for +ℓ and −ℓ have exactly the same integrals —

they are related by the variable change p4 → −p4, — so we may sum over just the positive ℓ
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and double-count their contributions. Thus,

F(T ) − F(0) = −2× 2
∞
∑

ℓ=1

(−1)ℓ
∫

d4pe
(2π)4

log(p2e +m2)× eiℓβp4

= 4

∞
∑

ℓ=1

(−1)ℓ−1 ×
∫

d4pe
(2π)4

log(p2e +m2)× eiℓβp4 ,

(S.30)

exactly as in eq. (8).

To partially evaluate the sum and the integral in eq. (8), let’s reorganize it as

F(T ) − F(0) = 4

∫

d3p

(2π)3

∞
∑

ℓ=1

(−1)ℓ−1 ×
∫

dp4
2π

log(m2 + p2 + p24)× eiℓβp4 . (S.31)

The p4 integral here was evaluated in the previous homework#20:

∫

dp4
2π

log(E2 + p24)× eiℓβp4 = −exp(−ℓβE)
ℓβ

(HW20.17)

for E =
√

m2 + p2. Consequently, the sum over ℓ becomes a Taylor series expansion of the

logarithm,

log(1 + x) =
∞
∑

ℓ=1

(−1)ℓ−1 × xℓ

ℓ
. (S.32)

Indeed, plugging in the integral (HW20.17) into the sum in eq. (S.31) gives us

∞
∑

ℓ=1

(−1)ℓ−1 × − exp(−ℓβE)
ℓβ

= −T
∞
∑

ℓ=1

(−1)ℓ−1 × [exp(−βE)]ℓ
ℓ

= −T log
(

1 + exp(−βE)
)

,

(S.33)

and hence

F(T ) − F(0) = −4T
∫

d3p

(2π)3
log
(

1 + exp(−βEp)
)

, . (9)

Now let’s compare eq. (9) to the conventional Fermi–Dirac statistics of the quantum fermionic

field. From the grand canonical ensemble point of view, the Dirac field comprises an infinite
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family of independent fermionic modes — 4 modes for each p, from 2 spin states for the particle

plus 2 more for the antiparticle. For each mode of frequency E = Ep, we have a 2-state system

with free energy

Fmode(T ) = −T log
(

Z = e+βE/2 + e−βE/2
)

= −1
2E − T log

(

1 + e−βE
)

, (S.34)

where −1
2E can be identifies as the zero-point energy of the fermionic mode, same as the free

energy at zero temperature. Thus, for each mode of energy E

Fmode(T ) − Fmode(0) = −T log
(

1 + e−βE
)

, (S.35)

and hence for the whole Dirac field

F (T ) − F (0) = 4

∫

L3 d3p

(2π)3
(−T ) log

(

1 + e−βE
)

, (S.36)

or in terms of the free energy density

F(T ) − F(0) =
F (T )− F (0)

L3
= −4T

∫

L3 d3p

(2π)3
log
(

1 + e−βE
)

, (S.37)

exactly as in eq. (9).

Problem 1(d–e):

Similarly to other bosonic fields, at finite temperature T = 1/β, the EM field Aµ(xe) becomes

periodic in the Euclidean time direction,

Aµ(x, x4 = 0) = Aµ(x, x4 = β), µ = 1, 2, 3, 4. (S.38)

Its local properties however remain exactly the same; in particular, we still have local gauge

transformations

A′µ(xe) = Aµ(xe) − ∂µΛ(xe) (S.39)

albeit subject to the periodicity condition

∂µΛ(x, x4 = 0) = ∂µΛ(x, x4 = β). (S.40)

Consequently, the proper construction of the Euclidean Functional integral over the EM field

configurations requires the same Fadde’ev–Popov gauge-fixing procedure as for T = 0 with

8



suitable modifications to reflect the fields’ periodicities. Thus, the EM Partition Function is

ZEM = C

∫∫∫

periodic

D[Aµ(xE)]∆FPe
−SE[A

µ(xE)] (S.41)

where the Euclidean action

SE [A
µ(xE)] =

∫

d3x

β
∫

0

dx4

{

1
4F

2
µν + 1

2ξ (∂A)
2
}

(S.42)

includes the gauge-fixing term. The ∆FP in eq. (S.41) is the Fadde’ev–Popov functional deter-

minant

∆FP = Det[−∂2e ]periodic; (S.43)

the determinant is over periodic functions of x4 because the gauge transforms (S.40) are periodic

at finite temperature. Finally, the normalization factor

C =

[
∫∫∫

D[ω(xe)] e
− 1

2ξ

∫

ω2d4xe

]−1

(S.44)

compensating for the averaging over the gauge conditions ∂µA
µ = ω should also involve properly

periodic ω(xE).

For the free EM field, the Euclidean action functional (S.42) is quadratic and the functional

integral (S.41) is purely Gaussian, but keeping in mind the Fadde’ev–Popov determinant factor

∆FP, we have

ZEM = C Det(−∂2)×
[

Det
(

−∂2δµν + (1− ξ−1)∂µ∂ν
)]−1/2

(S.45)

where all the determinants are over periodic fields. Hence, in the momentum basis

logZEM =

∫

L3 d3k

(2π)3

∑

k4

{

1
2 log(ξ

−1) + log(k2E) − 1
2 log det

(

k2Eδ
µν − (1− ξ−1)kµEk

ν
E

)}

(S.46)

where the last determinant acts on the Euclidean indices µ, ν only.
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The 4 × 4 matrix (k2Eδ
µν − (1 − ξ−1)kµEk

ν
E) has three eigenvalues equal to k2E (transverse

eigenvectors) and one eigenvalue equal to k2E/ξ (eigenvector parallel to the kE). Consequently

det
(

k2Eδ
µν − (1− ξ−1)kµEk

ν
E

)

=
(k2E)

4

ξ
, (S.47)

and therefore

1
2 log(ξ

−1) + log(k2E) − 1
2 log det

(

k2Eδ
µν − (1− ξ−1)kµEk

ν
E

)

= − log(k2E). (S.48)

Plugging this formula into eq. (S.46) finally gives us the electromagnetic partition function,

logZEM =

∫

L3 d3k

(2π)3

∑

k4

{

−1× log(k2e)
}

. (S.49)

By comparison, a (real) scalar field has

logZφ =

∫

d3k

(2π)3

∑

k4

{

−1
2 × log(k2e +m2)

}

, (S.50)

which means the EM field has the partition function of two species of a massless scalar — or

equivalently, two physical polarizations states of one massless boson — the photon. Quod erat

demonstrandum.

Problem 2(a):

Let us evaluate the trace of the Casimir operator C2 over an irreducible multiplet (r). On one

hand,

tr(r)

(

C2
def
=
∑

a

T aT a

)

=
∑

a

tr(r) (T
aT a) =

∑

a

tr
(

T a
(r)T

b
(r)

)

〈〈by eq. (12)〉〉 =
∑

a

R(r)× (δaa = 1) = R(r)× dim(G)

(S.51)

where dim(G)
def
= dim(Adj(G)) is the number of the generators of the symmetry group G —

which is also the dimension of the adjoint representation of G, hence the notation. On the
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other hand,

tr(r)(C2) = tr(r)

(

C2|(r)
)

= tr
(

C(r)× 1(r)
)

= C(r)× dim(r). (S.52)

Together, eqs. (S.51) and (S.52) immediately imply eq. (14). Quod erat demonstrandum.

For the special case of G = SU(2), an irreducible multiplets of isospin I has C = I2 =

I(I + 1) and dimension 2I + 1, hence

R(I) = C(I)× dim(I)

dim(G)
= I(I + 1)× 2I + 1

3
, (S.53)

exactly as in eq. (15).

Problem 2(b):

Unlike the Casimir value C(r), the index R(r) is well defined for any complete multiplet (r),

irreducible or otherwise. For a reducible multiplet

(r) =
n
⊕

i=1

(ri) ≡ (r1)⊕ (r2)⊕ · · · ⊕ (rn)

one has

tr(r)

(

T aT b
)

= tr

(

T aT b
∣

∣

∣⊕n

i=1
(ri)

)

=

n
∑

i=1

tr

(

T aT b
∣

∣

∣

(ri)

)

=

n
∑

i=1

(

R(ri)× δab
)

= δab ×
n
∑

i=1

R(ri)

(S.54)

and thus

R(r) =
n
∑

i=1

R(ri). (S.55)

In particular, a reducible multiplet

(r) =
n
⊕

i=1

(Ii)
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of the isospin group SU(2) has index

R(r) =
n
∑

i=1

1
3I(I + 1)(2I + 1). (S.56)

Now consider a bigger symmetry group G which contains the ‘isospin’ SU(2) as a subgroup.

Then any complete multiplet (r) of G is automatically a complete multiplet of the SU(2) ⊂ G.

However, irreducible multiplets of G usually become reducible from the SU(2) point of view,

(r) = (I1) ⊕ (I2) ⊕ · · · ⊕ (In); for example, the adjoint multiplet of SU(3) decomposes into

(0) ⊕ (12) ⊕ (12) ⊕ (1) of the SU(2) ⊂ SU(3). Let T 1, T 2, and T 3 be generators of the SU(2)

subgroup of G. Then according to eq. (S.56),

for a, b = 1, 2, 3, tr(r)

(

T aT b
)

= δab ×
n
∑

i=1

1
3I(I + 1)(2I + 1). (S.57)

Now, let us suppose that the Lie group G is simple, that is, all its generators are related to

each other by the symmetry G itself. In this case, for any complete multiplet (r) of G

tr(r)

(

T aT b
)

= R(r)× δab, same R(r) ∀a, b = 1, . . . , dim(G). (S.58)

Combining this formula with eq. (S.57) we immediately obtain

R(r) =

n
∑

i=1

1
3I(I + 1)(2I + 1), (17)

Quod erat demonstrandum..

Caveat: We have silently assumed that T 1,2,3 have the same normalization as generators of G as

they have as generators of the SU(2) ⊂ G. This assumption is correct for the SU(2) ⊂ SU(N)

discussed in parts (c) and (d) of this problem, but it would fail for a different (i.e., in-equivalent)

SU(2) subgroup. In general, properly normalized SU(2) ⊂ G generators I1,2,3 are related to

the properly normalized generators of G as

Ia = T (a) ×
√
k (S.59)

where T (1), T (2), and T (3) are three generators of G which happen to satisfy [T (a), T (b)] =

iǫabcT (c)/
√
k. The k here is always a positive integer; it’s called the level of embedding of
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the SU(2) into G. For example, consider the SU(2) subgroup of SU(3) which acts on the

fundamental triplet as real SO(3) rotations. This subgroup is generated by the

I1 =
√
4× T 7 =

(

0 0 0

0 0 +i

0 −i 0

)

, I2 =
√
4× T 5 =

(

0 0 −i
0 0 0

+i 0 0

)

, I3 =
√
4× T 2 =

(

0 +i 0

−i 0 0

0 0 0

)

(S.60)

(note T a = 1
2λ

a), so its embedding level is k = 4.

When you decompose a multiplet (r) of G into irreducible multiplets of an SU(2) subgroup,

you should take into account the level at which this SU(2) is embedded into G. As written,

eq. (17) works only for the k = 1 subgroups; for other embedding levels,

R(r) =
1

k

n
∑

i=1

1
3I(I + 1)(2I + 1). (S.61)

Note that the decomposition of the G multiplet (r) into SU(2) multiplets depends on the SU(2)

embedding into G. For example, under the k = 1 subgroup SU(2) ⊂ SU(3)

triplet = (12)⊕ (0), octet = (1)⊕ (12)⊕ (12)⊕ (0), (S.62)

while under the k = 4 subgroup (S.60)

triplet = (1), octet = (1)⊕ (2). (S.63)

In both cases, eq. (S.61) produces the same index R for each SU(3) multiplet, for example

R(triplet) = 1
2 and R(octet) = 3, but only if you remember the 1/k factor in front of the sum.

Problem 2(c):

From the SU(2) ⊂ SU(N) point of view, the fundamental representation N of the SU(N)
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decomposes into one doublet plus (N − 2) singlets,

N = 2 + (N − 2)× 1 ≡ (I = 1
2) + (N − 2)× (I = 0), (S.64)

hence according to eq. (17),

R(N) = R(I = 1
2) + (N − 2)× R(I = 0) = 1

2 + (N − 2)× 0 = 1
2 (18.a)

and consequently

C(N) = R(N)× dim(G)

dim(N)
=

1

2
× N2 − 1

N
=

N2 − 1

2N
(18.b)

Now consider the adjoint representation of the SU(N). Let us form a tensor product of the

fundamental representation N and the conjugate (anti-fundamental) representation N. Given

the transformation laws

Ψ → UΨ, i.e. Ψ′
j = U k

j Ψk ,

Ψ → ΨU†, i.e. Ψ
′ℓ

= Ψ
m
U∗ℓ

m ,

it follows that the tensor product is a hermitian N ×N matrix Φ k
j which transforms as

Φ′ = UΦU† i.e. Φ′ ℓ
j = U k

j Φ
m
k U

∗ℓ
m . (S.65)

This matrix is a reducible multiplet Adj + 1 of the SU(N): The trace tr(Φ) is an invariant

singlet, while the traceless part Φ j
i −δji ×tr(Φ)/N forms the adjoint multiplet, cf. homework#6

from the Fall semester. In other words,

N⊗N = Adj⊕ 1 (S.66).

In SU(2) 2̄ = 2, so from the SU(2) ⊂ SU(N) point of view, both the fundamental and

the anti-fundamental multiplets of the SU(N) decompose into similar sets of one doublet and
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N − 2 singlets. Therefore,

[Adj + 1]SU(N) =
[

N⊗N
]

SU(N)

= [2 + (N − 2)× 1]SU(2) ⊗ [2 + (N − 2)× 1]SU(2)

=
[

(2⊗ 2) + 2(N − 2)× (2⊗ 1) + (N − 2)2 × (1⊗ 1)
]

SU(2)

=
[

3 + 1 + 2(N − 2)× 2 + (N − 2)2 × 1
]

SU(2)
,

i. e., [Adj]SU(N) =
[

3 + 2(N − 2)× 2 + (N − 2)2 × 1
]

SU(2)
,

(S.67)

and consequently

R(Adj) = RSU(2)(3) + 2(N − 2)× RSU(2)(2) + (N − 2)2 × RSU(2)(1)

= 2 + 2(N − 2)× 1
2 + (N − 2)2 × 0 = N.

(19.a)

Finally,

C(G)
def
= C(Adj(G)) = R(Adj)× dim(G)

dim(G)
= R(Adj) = N. (19.b)

Problem 2(d):

Consider the two-index symmetric tensor S(ij) representation of the SU(N) symmetry group.

Denote the index i = α if i = 1, 2 or i = µ if i = 3, 4, . . . , N and likewise j = β if j = 1, 2 and

j = ν if j = 3, 4, . . . , N . Thus, the complete set of independent S(ij) decomposes into S(αβ),

Sα,µ ≡ Sµ,α and S(µν). The SU(2) ⊂ SU(N) acts on indices α, β = 1, 2 and ignores indices

µ, ν = 3, 4, . . . , N , so from the SU(2) point of view, S(αβ) is a triplet, Sα,µ are N − 2 separate

doublets, and S(µν) are (N − 2)(N − 1)/2 singlets. Consequently,

R(S) = RSU(2)(3) + (N − 2)× RSU(2)(2) + 1
2(N − 1)(N − 2)× RSU(2)(1)

= 2 + (N − 2)× 1
2 + 1

2(N − 1)(N − 2)× 0 = 1
2(N + 2),

(S.68)

and hence

C(S) = R(S)× dim(G)

dim(S)
=

N + 2

2
× N2 − 1

1
2N(N + 1)

=
N2 +N − 2

N
. (S.69)

Similarly, the two-index anti-symmetric tensor A[ij] decomposes into A[αβ], Aα,µ, and A[µν].

In SU(2), the A[αβ] is equivalent to the trivial singlet A × ǫ[αβ], the Aα,µ are N − 2 doublets,
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and A[µν] are (N − 2)(N − 3)/2 singlets. Altogether

(A) = (N − 2)× 2 + singlets,

therefore

R(A) = (N − 2)× 1
2 + 0 = 1

2(N − 2) (S.70)

and

C(A) = R(A)× dim(G)

dim(A)
=

N − 2

2
× N2 − 1

1
2N(N − 1)

=
N2 −N − 2

N
. (S.71)

Problem 3:

At the tree level of QCD,

iM(uū→ dd̄) =

ū

u

d

d̄

=
ig2

s
× v̄(ū)γµu(u) (T a)ij × ū(d)γµv(d) (T

a)kℓ

(S.72)

where s = E2
c.m., the quarks and the antiquarks have color indices i, j, k, ℓ, the virtual gluon

has adjoint color index a, and the summation over a is implicit. Except for the color indices,

the uū→ dd̄ process in QCD is completely analogous to the e−e+ → µ−µ+ pair production in

QED, cf. my notes from the Fall semester. In particular, summing / averaging |M|2 over the

fermion’s spins yields

1
4

∑

all spins

|v̄(ū)γµu(u) ū(d)γµv(d)|2 ≈ 1
4 tr(6p ūγµ 6puγν)× tr(6p d̄γµ 6p dγν)

= 2(t2 + u2) = s2(1 + cos2 θc.m.)

(S.73)

where the approximation is neglecting the quark masses mu and md.
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The new part of this exercise is summing / averaging over the color indices. By hermiticity

of the Lie Algebra matrices T a, we have

(

(T a)ij (T
a)kℓ

)∗

= (T a)ji (T
a)ℓk = (T b)ji (T

b)ℓk (S.74)

— note the implicit summation over a or b — and hence

∑

i,j,k,ℓ

∣

∣

∣
(T a)ij (T

a)kℓ

∣

∣

∣

2
=
∑

i,j,k,ℓ

(T a)ij (T
a)kℓ × (T b)ji (T

b)ℓk

=
∑

ij

(T a)ij (T
b)ji ×

∑

k,ℓ

(T a)kℓ (T
b)ℓk

= tr(T aT b)× tr(T aT b)

(S.75)

For the moment, let us consider ‘quarks’ belonging to some generic multiplet (r) of some generic

gauge group G. In such a generic case, tr(T aT b) = R(r) × δab where R(r) is the index of the

quark multiplet (cf. problem 2) and therefore

∑

a,b

tr(T aT b)× tr(T aT b) = R2(r)×
∑

a,b

δabδab = R2(r)× dim(G). (S.76)

Thus,

∑

i,j,k,ℓ

∣

∣

∣

∣

∣

∑

a

(T a)ij (T
a)kℓ

∣

∣

∣

∣

∣

2

= R2(r)× dim(G),

or, for the average over the initial ‘colors’ i and j,

1

dim2(r)

∑

i,j

∑

k,ℓ

∣

∣

∣

∣

∣

∑

a

(T a)ij (T
a)kℓ

∣

∣

∣

∣

∣

2

=
R2(r) dim(G)

dim2(r)
=

C2(r)

dim(G)
. (S.77)

Specializing to the ‘quarks’ in the fundamental representation of an SU(N) gauge group, we

have R(r) = 1
2 , dim(r) = N and dim(G) = N2−1, hence eq. (S.77) evaluates to (N2−1)/(4N2);

for the actual QCD N = 3 and the color sum / average (S.77) gives 2/9.
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Altogether, |M|2 summed / averaged over both spins and colors of all the fermions is

2

9
× g4(1 + cos2 θc.m.) (S.78)

and hence the cross section

dσ(uū→ dd̄)

dΩcm
=

2

9
α2
QCD × 1 + cos2 θcm

4s
. (S.79)
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