
PHY–396 K/L. Solutions for homework set #23.

Problem 1(a):

In the matrix notation for the non-abelian gauge fields,

Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ], (S.1)

hence

g2

16π2
ǫαβγδ tr

(

FαβFγδ

)

=
g2

4π2
ǫαβγδ tr

(

∂αAβ ∂γAδ

)

[two gluons]

+
ig3

4π2
ǫαβγδ tr

(

[Aα, Aβ]∂γAδ

)

[three gluons]

− g4

16π2
ǫαβγδ tr

(

[Aα, Aβ] [Aγ , Aδ]
)

[four gluons].

(S.2)

Thanks to the cyclic symmetry of the trace, for any matrices X , Y , and Z,

tr([X, Y ]Z) = tr(X [Y, Z]). (S.3)

Applying this rule to the 4–gluon term in the decomposition (S.2), we have

[4–gluon anomaly] ∝ ǫαβγδ tr
(

[Aα, Aβ] [Aγ , Aδ]
)

= ǫαβγδ tr
(

Aα[Aβ , [Aγ , Aδ]]
)

. (S.4)

In this double-commutator formula, we may use the Jacobi identity

[Aβ , [Aγ , Aδ]] + [Aγ , [Aδ, Aβ ]] + [Aδ, [Aβ, Aγ ]] = 0. (S.5)

Since the ǫαβγδ is symmetric with respect to cyclic permutations of the last three indices β →
γ → δ → β, it follows that

3ǫαβγδ[Aβ , [Aγ , Aδ]] = ǫαβγδ[Aβ, [Aγ , Aδ]] + ǫαγδβ[Aγ , [Aδ, Aβ]] + ǫαδβγ [Aδ, [Aβ, Aγ ]]

= ǫαβγδ ×
(

[Aβ , [Aγ , Aδ]] + [Aγ , [Aδ, Aβ ]] + [Aδ, [Aβ , Aγ ]]
)

= 0

(S.6)

and hence

[4–gluon anomaly] = 0. (S.7)

Quod erat demonstrandum.
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Problem 1(c):

As explained in class, for a massless fermion

iqα ×

µ ν

γαγ5
=

µ ν

(−igγµ)γ5

−

µ ν

(−igγν)γ5

(S.8)

but for a massive fermion such as the Pauli–Villars compensator χPV,

µ ν

iqα × Jα
A

=

µ ν

(−igγµ)γ5

−

µ ν

(−igγν)γ5

+

µ ν

2iMγ5

(S.9)

Now, let’s apply these rules to the quadrangle anomaly diagram (3) regulated à la Pauli–Villars,

(1)

(2)

(3)

Jα
A

regulated =

(1)

(2)

(3)

Jα
A

massless
quark −

(1)

(2)

(3)

Jα
A

heavy PV
regulator

(S.10)

Multiplying the axial current J5α(q) by the iqα, we get
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(1)

(2)

(3)

iqα × Jα
A

regulated =

(1)

(2)

(3)

regulated −

(1)

(2)

(3)

regulated −

(1)

(2)

(3)

2iMγ5

PV
regulator

only

(S.11)

Without the regulation, the two triangular diagrams on the right hand side would diverge as

(UV cutoff scale)+1, but subtracting similar loops of the heavy Pauli–Villars fermions makes

them converge. Consequently, we may shift the momentum integration variables pµ → pµ+const

separately for each diagram, and this would lead to cancellation of the triangle diagrams once

we sum over gluon permutations.

Actually, it is enough to sum over just the cyclic permutations (1) → (2) → (3) → (1) of the

three gluons which have the same group factor tr(T(3)T(2)T(1)) thanks to the cyclic symmetry

of the trace. Summing the triangular diagrams on the right hand side of eq. (S.11), we have

diagram-by-diagram cancellation:

−

(1)

(2)

(3)

regulated −

(2)

(3)

(1)

regulated −

(3)

(1)

(2)

regulated

+

(1)

(2)

(3)

regulated +

(2)

(3)

(1)

regulated +

(3)

(1)

(2)

regulated



































































































































= 0 (S.12)
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Strictly speaking, this cancellation involves separate shifting of the integration momentum for

each diagram, but that’s OK since the regulated diagrams are finite.

But the quadrangle diagrams involving only the massive PV regulator loops — cf. the last

term in eq. (S.11) — do not cancel after we sum over gluon permutations, and that’s what leads

to the quadrangle anomaly:

(1)

(2)

(3)

iqα × Jα
A

regulated = −2iM ×

(1)

(2)

(3)

γ5

PV
regulator

only
+ gluon permutations.

(S.13)

Problem 1(d):

For any particular order of the 3 gluons — for example, for the order explicitly shown on the

RHS of eq. (S.13), we have

A(1, 2, 3) = −2iM ×

(1)aλ

(2)bµ

(3)cν

γ5

p4p1

p2 p3
= trcolor(T

cT bT a)×−2iM ×
∫

d4p1
(2π)4

trDirac(· · ·)

(S.14)
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where

trDirac(· · ·) = tr









γ5 × i

6p4 −M + i0
× (−igγν)× i

6p3 −M + i0
×

× (−igγµ)× i

6p2 −M + i0
× (−igγλ)× i

6p3 −M + i0









= ig3 × N
D

(S.15)

for

D =
4
∏

i=1

(p2i −M2 + i0), (S.16)

N = tr
(

γ5(6p4 +M)γν(6p3 +M)γµ(6p2 +M)γλ(6p1 +M)
)

. (S.17)

As usual, we may express the denominator in terms of the Feynman parameters x, y, z, w, thus

1

D = 24

∫

d4(x, y, z, w) δ(x+ y + z + w − 1)× 1

[ℓ2 − O(k2)−M2 + i0]4
(S.18)

where the details of the O(k2) expression are not important because the Pauli–Villars mass M

is much bigger than all the external momenta. On the other hand, the relations between the

shifted loop momentum ℓµ and the propagator momenta pµ1 , p
µ
2 , p

µ
3 , p

µ
4 are rather important for

the numerator (S.17), so here they are:

p1 = ℓ + q1 for q1 = − (y + z + w)k1 − (z + w)k2 − wk3 ,

p2 = ℓ + q2 for q2 = + xk1 − (z + w)k2 − wk3 ,

p3 = ℓ + q3 for q3 = + xk1 + (x+ y)k2 − wk3 ,

p4 = ℓ + q4 for q4 = + xk1 + (x+ y)k2 + (x+ y + z)k3 ,

(S.19)

thus

N = tr
(

γ5(6ℓ +M+ 6q4)γν(6ℓ +M+ 6q3)γµ(6ℓ +M+ 6q2)γλ(6ℓ +M+ 6q1)
)

. (S.20)

Before we evaluate this trace, let’s put it in the context of the momentum integral

I = M

∫

d4ℓ

(2π)4
N

[ℓ2 −M2 − O(q2) + i0]4
(S.21)

in the M → ∞ limit. This integral is UV-convergent, so it’s dominated by the loop momenta

ℓ ∼ M , hence by dimensional analysis we expect N = O(M4) and I = O(M). The q1, . . . , q4
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momenta in the numerator (S.20) and in the O(q2) term in the denominator make for small

corrections, so let’s expand the integral (S.21) in powers of qi/M :

I(qi) = M × C(0) +
∑

i

qαi C
(1)
i,α + O

(

q2

M

)

. (S.22)

Note that all the terms involving second or higher powers of qi carry negative powers of the

Pauli–Villars mass M , so in the eventual M → ∞ limit they may be neglected. Thus, all we

need to calculate are the q-independent term and the linear-in-qi terms.

Consequently, we may expand both the numerator N and the denominator D = [ℓ2 −m2 =

O(q2)+ i0]4 in powers of qµi and stop the expansion after the linear terms. For the denominator,

this means simply

1

D ≈ 1

[ℓ2 −M2 + i0]4
, (S.23)

while for the numerator (S.20) we have

N ≈ N0 +
4
∑

i=1

qi,αN α
i (S.24)

where

N0 = tr
(

γ5(6ℓ +M)γν(6ℓ +M)γµ(6ℓ +M)γλ(6ℓ +M)
)

,

N1 = tr
(

γ5(6ℓ +M)γν(6ℓ +M)γµ(6ℓ +M)γλγα
)

,

N2 = tr
(

γ5(6ℓ +M)γν(6ℓ +M)γµγαγλ(6ℓ +M)
)

,

N3 = tr
(

γ5(6ℓ +M)γνγαγµ(6ℓ +M)γλ(6ℓ +M)
)

,

N4 = tr
(

γ5γαγν(6ℓ +M)γµ(6ℓ +M)γλ(6ℓ +M)
)

.

(S.25)
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Now let’s evaluate these traces, starting with

N1 = M3 × tr
(

γ5γνγµγλγα
)

+ M × tr
(

γ5
(

6ℓ γν 6ℓ γµ+ 6ℓ γνγµ 6ℓ + γν 6ℓ γµ 6ℓ
)

γλγα
)

〈〈 using 6ℓ γν 6ℓ γµ+ 6ℓ γνγµ 6ℓ + γν 6ℓ γµ 6ℓ = 4ℓνℓµ − ℓ2γνγµ 〉〉
= M(M2 − ℓ2)× tr

(

γ5γνγµγλγα
)

+ 4Mℓνℓµ × tr
(

γ5γλγα
)

= M(M2 − ℓ2)× 4iǫνµλα + 4Mℓνℓµ × 0

= 4iM(M2 − ℓ2)ǫνµλα.

(S.26)

Similarly,

N4 = 4iM(M2 − ℓ2)ǫανµλ. (S.27)

In the remaining three traces we move the last (6ℓ +M) factor forward and use

(6ℓ +M)γ5(6ℓ +M) = (6ℓ +M)(M−6ℓ )γ5 = (M2 − ℓ2)× γ5. (S.28)

Consequently,

N2 = (M2 − ℓ2)× tr
(

γ5γν(6ℓ +M)γµγαγλ
)

= 4iM(M2 − ℓ2)ǫνµαλ,

N3 = (M2 − ℓ2)× tr
(

γ5γνγαγµ(6ℓ +M)γλ
)

= 4iM(M2 − ℓ2)ǫναµλ,

N0 = (M2 − ℓ2)× tr
(

γ5γν(6ℓ +M)γµ(6ℓ +M)γλ
)

= (M2 − ℓ2)×M × tr
(

γ5γν{6ℓ , γµ}γλ
)

= M(M2 − ℓ2)× 2ℓµ × tr
(

γ5γνγλ
)

= 0.

Thus, the q-independent term in the numerator vanishes while the linear-in-q terms all have the

same form apart from the order of indices in the ǫ tensor. Reordering the indices and changing
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the sign of ai as necessary, we arrive at

N = 4iM(M2 − ℓ2)ǫνµλα(q1 − q2 + q3 − q4)α + O(M2q2). (S.29)

Moreover, according to eqs. (S.19)

q1 − q2 + q3 − q4 = −k1 − k3 , (S.30)

hence

N = −4iMǫνµλα(k1 + k3)α × (M2 − ℓ2) (S.31)

which does not depend on any Feynman parameters, and only the last factor depends on the

loop momentum ℓ. Consequently, plugging this formula for N into eqs. (S.14) and (S.15) gives

us

A(1, 2, 3) = tr(T aT bT c)× 8ig3M2 ǫνµλα(k1 + k3)α × 24

∫

d4(x, y, z, w) δ(x+ y + z + w − 1)

×
∫

d4ℓ

(2π4)

(M2 − ℓ2)

(ℓ2 −M2 + i0)4
,

(S.32)

where the momentum integral is independent on any of the Feynman parameters (as long as

M ≫ all qi). Consequently, the Feynman parameter integral evaluates to

24

1
∫

0

d4(x, y, z, w) δ(x+ y + z + w − 1) = 1, (S.33)

while the momentum integral yields

∫

d4ℓ

(2π4)

(M2 − ℓ2)

(ℓ2 −M2 + i0)4
=

∫

d4ℓ

(2π4)

−1

(ℓ2 −M2 + i0)3

=

∫

id4ℓe
(2π4)

+1

(ℓ2e +M2)3

=
i

16π2

∞
∫

0

ℓ2e d(ℓ
2
e)

(ℓ2e +M2)3

=
i

16π2
× 1

2M2
.

(S.34)
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Plugging these integrals back into eq. (S.32) finally yields

A(1, 2, 3) = tr(T aT bT c)× −g3

4π2
ǫνµλα(k1 + k3)α . (S.35)

Problem 1(e):

The amplitude (S.35) stems from one particular quadrangle diagram (S.14) for a particular order-

ing of the 3 gluons. The net 3-gluon amplitude should be summed over all 3! gluon permutations,

thus

anomaly =
(

A(1, 2, 3) + A(2, 3, 1) + A(3, 1, 2)
)

+
(

A(2, 1, 3) + A(3, 2, 1) + A(1, 3, 2)
)

. (S.36)

For convenience, we have grouped the 6 terms here according to the cyclic orders of the three

gluons, because for each cyclic order we have the same color trace

tr(T aT bT c) = tr(T bT cT a) = tr(T cT aT b) 6= tr(T bT aT c) = tr(T cT bT a) = tr(T aT cT b)

(S.37)

and the same sign of the Levi–Civita tensor,

(

ǫνµλα = ǫµλνα = ǫλνµα
)

= −
(

ǫµνλα − ǫλµνα = ǫνλµα
)

. (S.38)

Consequently,

A(1, 2, 3) + A(2, 3, 1) + A(3, 1, 2) = − g3

4π2
tr(T aT bT c)× ǫνµλα ×

×
(

(k1 + k3)α + (k2 + k1)α + (k3 + k2)α

)

= − g3

4π2
tr(T aT bT c)× ǫνµλα × 2(k1 + k2 + k3)α

= − g2

2π2
tr(T aT bT c)× ǫνµλαqα ,

(S.39)

and likewise

A(2, 1, 3) + A(3, 2, 1) + A(1, 3, 2) = − g2

2π2
tr(T aT cT b)×−ǫνµλαqα . (S.40)
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Altogether, we have

[quadrangle anomaly] = − g3

2π2
ǫνµλαqα × tr(T aT bT c − T aT cT b)

= +
g3

2π2
qαǫ

αλµν tr(T a[T b, T c]).

(S.41)

Or in terms of the local gluons fields Aa
λ, A

b
µ and Ac

ν ,

∂αJ
α
A|3g =

1

3!
× g3

2π2
i∂α

(

ǫαλµν tr
(

Aλ[Aµ, Aν ]
)

)

〈〈 using tr(Aλ[Aµ, Aν ]) = tr(Aµ[Aν , Aλ]) = tr(Aν [Aλ, Aµ]) 〉〉

=
ig3

12π2
ǫαλµν

(

tr
(

(∂αAλ)[Aµ, Aν ]
)

+ tr
(

(∂αAµ)[Aν , Aλ]
)

+ tr
(

(∂αAν)[Aλ, Aµ]
)

)

〈〈 renaming λ → µ → ν → λ, which also preserves the ǫ tensor 〉〉

=
ig3

12π2
× 3ǫαλµν tr

(

(∂αAλ)[Aµ, Aν ]
)

.

(S.42)

Comparing this formula to the second line of eq. (S.2) (part (a)), we see that the quadrangle

diagrams (3) generate precisely the three–gluon part of the non-abelian anomaly (1).

Problem 3(a):

For the sake of definiteness, let’s focus on the decay of the positive pion, π+ → µ+νµ. In the

Fermi’s current-current theory (6) of this weak decay, the J− current annihilates the positive

pion while the J+ current creates the positive muon and the neutrino. In light of eqs. (7) for the

currents,

〈

µ+νµ
∣

∣ Ĵ+α
L |0〉 =

〈

µ+νµ
∣

∣

1
2Ψνµ(1− γ5)γαΨµ |0〉 = 1

2 ū(νµ)(1− γ5)γαv(µ+), (S.43)

while

〈0| Ĵ−
α,L

∣

∣π+
〉

=
cos θc
2

×
(

〈0|ΨdγαΨu

∣

∣π+
〉

− 〈0|Ψdγ
5γαΨu

∣

∣π+
〉

)

. (S.44)

Inside the () on the RHS, the vector isospin currents have a zero matrix element between the

pion and the vacuum states (since the vector isospin symmetry is unbroken), but since the pion
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is the (pseudo) Goldstone bosons of the spontaneously broken axial symmetry, the axial currents

do annihilate the pions with matrix elements

〈vac| Ĵaα
A

∣

∣

∣
πb
〉

= −ifπp
α(π)δab. (S.45)

However, because of the different normalization of the charged pion states vs. charged currents

in terms of the real members of an isotriplet,

∣

∣π+
〉

=
√

1
2

(∣

∣π1
〉

+ i
∣

∣π2
〉)

while J−
α = J1

α − iJ2
α, (S.46)

the δab factor in eq. (S.45) becomes

1 + 1√
2

=
√
2, (S.47)

thus

〈vac| Ĵα−
A (isospin)

∣

∣π+
〉

= 〈vac|Ψ(d)γαγ5Ψ(u)
∣

∣π+
〉

= −i
√
2fπp

α(π+). (S.48)

In terms of the charged weak current, this means

〈vac| Ĵα−
L [weak

∣

∣π+
〉

= +i

√
2

2
cos θc × fπp

α(π+), (S.49)

exactly as in eq. (8). Finally, combining this matrix element for the pion with the leptonic matrix

element (S.43) and plugging them into the Fermi’s effective Lagrangian (6), we end up with the

pion decay amplitude

M =
〈

µ+νµ
∣

∣LFermi

∣

∣π+
〉

= iGF fπ cos θc × pα(π)× ū(νµ)(1− γ5)γαv(µ+), (S.50)

exactly as in eq. (9).
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Problem 3(b):

Let’s sum the amplitude (9) — or rather its mod-square — over the spin states of the outgoing

muon and neutrino. As usual, we get a Dirac trace

∑

spins

|M|2 = G2
Ff

2
π cos

2 θc ×
∑

spins

∣

∣ūν(1− γ5) 6pπvµ
∣

∣

2

= G2
Ff

2
π cos

2 θc × tr
(

(6pν +mν)× (1− γ5) 6pπ × (6pµ −Mµ)× (1− γ5) 6pπ
)

(S.51)

where

(1− γ5) 6pπ = 6pπ × (1− γ5) = 6pπ × (1 + γ5) = (1− γ5) 6pπ . (S.52)

Since the neutrino’s mass mν is so much smaller than any other mass and momentum in the

process, we may safely neglect it, hence

tr(· · ·) = tr
(

6pν(1− γ5) 6pπ(6pµ −Mµ)(1− γ5) 6pπ
)

= tr
(

(1− γ5) 6pπ 6pν(1− γ5) 6pπ(6pµ −Mµ)
)

= tr
(

(1− γ5)2 6pπ 6pν 6pπ(6pµ −Mµ)
)

〈〈 because 6pπ 6pν(1− γ5) = (1− γ5) 6pπ 6pν 〉〉

= 2 tr
(

(1− γ5) 6pπ 6pν 6pπ(6pµ −Mµ)
)

〈〈 because (1− γ5)2 = 2(1− γ5) 〉〉

= 2 tr
(

(1− γ5) 6pπ 6pν 6pπ 6pµ
)

〈〈 because tr(6a 6b 6c) = tr(γ56a 6b 6c) = 0 〉〉

= 16(pπpν)(pπpµ) − 8(p2π)(pνpµ) − 8iǫαβγδp
α
πp

β
νp

γ
πp

δ
µ .

(S.53)

Moreover, the last term on the bottom line vanishes by the antisymmetry of the ǫ tensor =⇒
ǫαβγδp

α
πp

γ
π = 0, so we are left with

∑

spins

|M|2 = G2
F f

2
π cos

2 θc ×
(

16(pπpν)(pπpµ) − 8(p2π)(pνpµ)
)

. (S.54)

Now consider the kinematics of the pion decay. Since pπ = pµ + pν and all 3 momenta are

on-shell, we have

2(pπpµ) = (pπ)
2 + (πµ)

2 − (pν = pπ − pµ)
2 = M2

π + M2
µ − 0,

2(pπpν) = (pπ)
2 + (πν)

2 − (pµ = pπ − pν)
2 = M2

π + 0 − M2
µ,

2(pµpν) = (ππ = πµ + πν)
2 − (πµ)

2 − (πν)
2 = M2

π − M2
µ − 0.

(S.55)
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Consequently,

16(pπpν)(pπpµ) − 8(p2π)(pνpµ) = 4(M2
π −M2

µ)(M
2
π +M2

µ) − 4M2
π(M

2
π −M2

µ)

= 4(M2
π −M2

µ)×M2
µ,

(S.56)

and therefore

∑

spins

|M(π+ → µ+νµ|2 = 4G2
F f

2
π cos

2 θc × (M2
π −M2

µ)×M2
µ. (S.57)

Finally, the phase-space factor for the two-body decay of a spinless particle is

d(phase space) =
|p′

c.m.|
32π2M2

π

× d2Ωc.m. =⇒ net phase space =
|p′

c.m.|
8πM2

π

(S.58)

where

|p′
c.m.| = Eν(pion frame) =

2(pπpν)

2Mπ
=

M2
π −M2

µ

2Mπ
. (S.59)

Altogether, tree-level pion decay rate comes out to be

Γ(π+ → µ+νµ) =
∑

spins

|M(π+ → µ+νµ|2 × net phase space

= 4G2
F f

2
π cos

2 θc × (M2
π −M2

µ)M
2
µ ×

M2
π −M2

µ

16πM3
π

=
G2

F f
2
π cos

2 θcMπ

4π
×M2

µ

(

1−
M2

µ

M2
π

)2

.

(S.60)

Problem 3(c):

Numerically, for Mπ ≈ 140 MeV, Mµ ≈ 106 MeV, fπ ≈ 93 MeV, GF = 1.17 · 10−5GeV−1, and

θc ≈ 13◦, eq. (S.60) yields

Γ(π+ → µ+νµ) ≈ 25.0 · 10−9 eV =⇒ 1

Γ
≈ 2.63 · 10−8 seconds. (S.61)

This is quite close to the experimental mean lifetime of a charged pion τ = 2.603 · 10−8 s.

13



Problem 3(d):

The charged weak current J+α
L can create a positron and an electron-type neutrino just as well

as it can create a positive muon and a muon-type neutrino. The amplitude for both π+ → e+νe

and π+ → µ+νµ processes is given by exactly the same equation (13), hence proceeding exactly

as in part (b) we find

Γ(π+ → e+νe) =
G2

Ff
2
π cos

2 θcMπ

4π
×M2

e

(

1− M2
e

M2
π

)2

. (S.62)

But comparing this formula to eq. (S.60), we find that Me ≪ Mµ leads to a much smaller decay

rate into electrons rather than muons,

Γ(π+ → e+νe)

Γ(π+ → µ+νµ)
=

G2
Ff

2
π cos

2 θcMπ

8π
×M2

e

(

1− M2
e

M2
π

)2 /
G2

F f
2
π cos

2 θcMπ

8π
×M2

µ

(

1−
M2

µ

M2
π

)2

=
M2

e

M2
µ

× (1− (Me/Mπ)
2)2

(1− (Mµ/Mπ)2)2
≈ 1.24 · 10−4.

(10)

To explain this very small ratio of decay rates, consider the chirality structure of the ampli-

tude (9). The 1 − γ5 factor projects the Dirac factors v(µ+) and u(νµ) onto their left-handed

components. Indeed, in the frame of the initial pion

M ∝ u†(νµ)γ
0(1− γ5)γ0v(µ+)

= u†(νµ)

(

12×2 02×2

02×2 02×2

)

v(µ+)

= u†L(νµ)vL(µ
+),

(S.63)

so both fermions must have left-handed chirality.

At the same time, the angular momentum conservation requires the two fermions to have

similar helicities. Indeed, since the pion has no spin, in its rest frame Jnet = 0 and hence

Jν = −Jµ. But the muon and the neutrino travel in opposite directions, pν = −pµ, so opposite

14



angular momenta mean similar helicities:

λ =
p · J
|p| =⇒ λν = +λµ . (S.64)

Finally, for massless particles, the helicity follows from the chirality and vice verse, but the

relation is different for the particles and the antiparticles:

⊕ For a particle — such as e−, or µ−, or ν — helicity and chirality have the same sign —

they are both left or both right.

⊖ But for an antiparticle — such as e+ or µ+ — helicity and chirality have opposite signs.

So if both the neutrino and the charged muon were massless, similar helicities according to

eq. (S.64) would require them to have opposite chiralities, one left and the other right. At

the same time, the weak interactions (S.63) require left chiralities of both fermions. Since the

two requirements contradict each other, the weak decay of a pion into two massless leptons is

impossible.

To make the decay happen, one of the two leptons must have mismatched helicity and

chirality, and this requires mass. Since the neutrino is much lighter than the charged lepton, the

mismatch happens for the µ+: it has left chirality but also left helicity (because the neutrino

has λ = −1
2), which is a mismatch for an anti-lepton. The cost of this mismatch is a suppression

factor
√
1− β ∝ M/E in the decay amplitude, which comes from the muon Dirac wave

v(µ+L) =

(

+
√
E − p ηL

−√
E + p ηL

)

=⇒ vL(µ
+
L) =

√

1− β ×
√
2E ηL . (S.65)

This factor is not too small for the mildly-relativistic muon, but it would be much smaller for

an ultra-relativistic positron in the π+ → e+νe decay. And that’s why spinless mesons do not

like to decay into light leptons: the smaller the lepton mass, the smaller the Dirac wave v or u

becomes for the mismatched chirality and helicity.
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Problem 4(a):

At the tree level of the effective theory, the π0 → γγ decay amplitude obtains directly from the

interaction term in eq. (14):

M = 2× e2

32π2fπ
× ǫαβµνf∗αβ(1

st photon)f∗µν(2
nd photon), (S.66)

where the overall factor of 2 comes from 2 identical photons involved in the interactions. Also,

fαβ and fµν are the polarization tensors of the two photons expressed in terms of the tension

field instead of the vector potential. In terms of the polarization vectors,

fαβ = −ikαeβ + ikβeα (S.67)

and likewise for the second photon, hence

ǫαβµνf∗αβ(1)f
∗
µν(2) = ǫαβµν (−ikαeβ + ikβeα)

∗
1 (−ikµeν + ikνeµ)

∗
2 = −4ǫαβµν(kαeβ)

∗
1(kµeν)

∗,

(S.68)

and therefore

M = − e2

4π2fπ
ǫαβµν(kαeβ)

∗
1(kµeν)

∗ (15)

Problem 4(b):

Let’s re-express the amplitude (15) as

M = Mβν × e∗1βe
∗
2ν for Mβν = − α

πfπ
ǫαβµν k1αk2µ . (S.69)

As we have learned back in November — cf. my notes on Ward identities and polarization sums

— summing mod-square of this amplitude over the two photon’s polarizations amounts to

|M|2 =
∑

λ1,λ2

|M|2 = MµνM∗
µν . (S.70)

For the problem at hand, this means

|M|2 = MβνM∗
βν =

(

α

πfπ

)2

×
(

ǫαβµν k1αk2µ
)(

ǫγβλν k1γk2λ
)

, (S.71)
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where

ǫαβµνǫγβλν = −2δαγ δ
µ
λ + δαλ δ

µ
γ (S.72)

and therefore

(

ǫαβµν k1αk2µ
)(

ǫγβλν k1γk2λ
)

= −2(k21)(k
2
2) + 2(k1k2)

2. (S.73)

Moreover, on shell k21 = k22 = 0 while

2(k1k2) = (k1 + k2 = pπ)
2 − k21 − k22 = M2

π , (S.74)

which leads to

(

ǫαβµν k1αk2µ
)(

ǫγβλν k1γk2λ
)

= 2(k1k2)
2 =

M4
π

2
(S.75)

and therefore

|M|2 =
α2M4

π

2π2f2π
. (S.76)

Finally, the phase-space factor for a two-body decay (in the rest frame of the original pion)

is

dΓ

dΩ
=

|kγ |
32π2M2

π

× |M|2 (S.77)

where |kγ | = 1
2Mπ, and the photon direction’s span solid angle 4π/2 rather than 4π because of

two identical back-to-back photons in the final state. Consequently, the net decay rate is

Γ(π0 → γγ) = 2π × Mπ/2

32π2M2
π

× |M|2 =
α2M3

π

64π3f2π
. (S.78)
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Problem 4(c):

Plugging the experimental data Mπ = 135 MeV, fπ = 93 MeV, and α = 1/137 into eq. (S.78),

we obtain

Γ(π0 → γγ) ≈ 7.64 eV. (S.79)

The experimental lifetime of the neutral pion is τ = 8.52 × 10−17 s, which corresponds to the

total decay rate

Γtotal(π
0 → anything) = 7.72 eV. (S.80)

The experimental and the calculated decay width are fairly close to each other. The small

discrepancy between them is due to (1) approximate values of the Mπ and fπ we have used,

and (2) QED corrections to the two-photon final state. Such corrections allow the neutral pion

to decay into one real photon plus one virtual photon which then becomes an electron-positron

pair. Experimentally, π0 decays to two real photons 98.8% of the time and to γe+e− 1.2% of the

time; other decay modes exist but have very small branching ratios.
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