Free Fields, Harmonic Oscillators, and Identical Bosons

A free quantum field and its canonical conjugate are equivalent to a family of harmonic
oscillators (one oscillator for each plane wave), which is in turn equivalent to a quantum

theory of free identical bosons. In these notes, I will show how all of this works for the

relativistic scalar field ¢(z) and its conjugate 7(z). And then in a peparate set of noted

I shall turn around and show that a quantum theory of any kind of identical bosons is
equivalent to a family of oscillators. (Harmonic for the free particles, non-harmonic if the
particles interact with each other.) Moreover, for the non-relativistic particles, the oscillator

family is in turn equivalent to a non-relativistic quantum field theory.

In these notes we shall work in the Schrodinger picture of Quantum Mechanics because
it’s more convenient for dealing with the eigenstates and the eigenvalues. Consequently, all

operators — including the quantum fields such as ¢(x) — are time-independent.
FroM RELATIVISTIC FIELDS TO HARMONIC OSCILLATORS

Let us start with the relativistic scalar field ¢(x) and its conjugate 7(x); they obey the

canonical commutation relations

and are governed by the Hamiltonian

H = [dx (%7%2()() + %(Vg&(x))2 + %m2¢2(x)). (2)

We want to expand the fields into plane-wave modes ¢y and 7y, and to avoid technical
difficulties with the oscillators and their eigenstates, we want discrete modes. Therefore, we
replace the infinite x space with a finite but very large box of size L x L x L, and impose
periodic boundary conditions — @(z + L,y, z) = ¢(z,y+ L, z) = ¢(z,y, 2+ L) = o(z,y, 2),

etc., etc. For large L, the specific boundary conditions are unimportant, so I have chosen
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the periodic conditions since they give us particularly simple plane-wave modes
—3/2 ikx 27 .
Yp(x) = L7 where kg, ky, k, = - Xan integer. (3)
Expanding the quantum fields into such modes, we get

@(X) — ZLf?)/ZBikX % @k) @k _ /d3x L73/2€7ikx % @(X),
k

wx) = Y LM x g m = /d?’xL?’/?eikx X 7(x).
k

A note on hermiticity: The classical fields ¢(x) and 7(x) are real (i.e., their values are real
numbers), so the corresponding quantum fields are hermitian, ¢'(x) = $(x) and #f(x) =

7(x). However, the mode operators ¢, and 7, are not hermitian; instead, egs. (4) give us

ol =@ and 7] =7 .

The commutation relations between the mode operators follow from egs. (1), namely

[@k:‘ﬁk/} = 0, [frkjrk,] =0, [@kﬂ%k/] = i‘sk,—k’- (5)

The first two relations here are obvious, but the third needs a bit of algebra:
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Now let’s express the Hamiltonian (2) in terms of the modes. For the first term, we have
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Similarly, the last term becomes

while in the second term

Vox) = Y L732eM xikg = Y L7327 w0 —ik gl (10)
k k

hence
/d3 Zk2 PPy - (11)

Altogether, the Hamiltonian (2) becomes
H=> (% Al A, + 2032 +m?) ¢L¢k> . (12)

Clearly, this Hamiltonian describes a bunch of harmonic oscillators with frequencies wy =
vkZ+m?2 (in the h = ¢ = 1 units). But since the mode operators are not hermitian,

converting them into creation and annihilation operators takes a little more work then usual:



We define

. 1 . .A
a, = m (wkgpk + z7rk>,
and consequently
1
il = (s - i7L).,
V2w (13)
1 1
i, = (wrp +i7 ) = (wngl +ial).,
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Note that d;r( #a_y and a_, # dL; instead, we have independent creation and annihilation

operators dL and a, for every mode k.

The commutations relations between these operators are

i a] = 0, [al,al] =0, [ayaL] = Sk - (14)
Indeed,
A~ N 1 /1A A~ YN N . A ~ ~ N
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=0 because w’ = w when k + k' = 0.

Similarly, [af,al,] = 0. Finally,
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= kK because w’ = w when k’ = k.

To re-obtain the field mode operators ¢, and 7, from the creation and annihilation

operators, let us combine the first and the last equations (13) for the a, and dJr_k. Adding



and subtracting those equations, we find

 +al, = 2w x @,  —idy + ial, = XA
Consequently,
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Altogether, the Hamiltonian (12) becomes
- Iy, wi At a
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{(where the two sums are equal due to k <> —k symmetry )
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In light of the commutation relations (14), this Hamiltonian clearly describes an infinite

family of harmonic oscillators, one oscillator for each plane-wave mode k.

Now consider the eigenvalues and the eigenstates of the multi-oscillator Hamiltonian (20).

A single harmonic oscillator has eigenvalues E,, = w(n + %) where n =0,1,2,3,....

For the



multi-oscillator system at hand, each n, = dltdk commutes with all the other n,, so we may

diagonalize them all at the same time. This gives us eigenstates

[{ny for all k}) = ® [N ) of energy FEp,, = Zwk(nk +3). (21)
k k

where each ny is an integer > 0. Moreover, all combinations of the ny are allowed because

the d;r( and a, operators can change a particular ny — ny 4= 1 without affecting any other

ni. (This follows from |4, ,7,,] = 0 and [dL ny,| = 0 for k' # k.) Thus, the Hilbert space

of the multi-oscillator system — and hence of the free quantum field theory — is a direct

product of Hilbert spaces for each oscillator,

H(QFT) = ® H (harmonic oscillator for mode k). (22)
k

FrROM THE MULTI-OSCILLATOR SYSTEM TO IDENTICAL BOSONS

A constant term in the Hamiltonian of a quantum system does not affect its dynamics in
any way, it simply shifts energies of all states by the same constant amount. So to simplify
our analysis of the multi-oscillator system in particle terms, let’s subtract the infinite zero-

point energy Ey = >, swk from the Hamiltonian (20), thus

H — H - By = wala,. (23)
k
I’ll come back to the zero-point energy, but right now let’s focus on other issues.

In the multi-oscillator Hilbert space (22) each occupation number ny is independent from
all others. However, states of finite energy must have finite N = ), nk, so let us re-organize

the Hilbert space into eigenspaces of the N = >k Ty operator,

H(QFT) = Q) H(mode k) = D Hy, (24)
k

and consider what do those eigenspaces look like for different N. For N = 0, the H( spans

a single state, the vacuum |0) = |all ny = 0). For N = 1, the #; spans eigenstates with a



single nx = 1 while all other ny = 0. Renaming such eigenstates |nyx = 1, othern = 0) — |k)

and noting their energies
E(K) = we = VR +m?, (25)

we identify the H; as a Hilbert space of a free relativistic particle with Hamiltonian

ﬁparticle — ‘/]t‘)Q +m2_ (26)

For N > 1, we may have several modes with ny > 0, but for a finite N there can be only
a finite number of such modes. So we rename such a state |ky,...,ky) by listing only the

modes k with ny > 0 and repeating each k ny times. For example,
13k, 21/, 2, 1, Oeverythingeise) = |k, K, k, k', K/ kK" K" k") . (27)

In such notations, the Hy Hilbert space spans eigenstates |k, ko,...,ky) labeled by N
modes ki, ..., ky (such modes may coincide but do not have to). The energy of such an

eigenstate is

E(lki, kg, ... ky)) = wi, + wk, + -0+ wi, (28)

which allows us to identify the H as the Hilbert space of N free relativistic particles with

the Hamiltonian

N
JyN particles  _ Z \/]_f)Z(ith) 4+ m2. (29)
i=1
However, treating the ki,...,ky momenta of N particles as independent over-counts the

quantum states because the occupation numbers ny do not specify the order in which we
list the modes k;. For example, both |kj,ks) and |ke, k;) correspond to the same quantum

state ’1k17 Lk, Oothers>~ More generally,
{nk}) = |ki,...,ky) = |any permutation of the ky,...,ky). (30)

In other words, the NN relativistic particles in the H are identical bosons.



Altogether, we have

@ H(N identical bosons). (31)

H(QFT) = ®H(harmonic oscillator #k) =
k N=0

Hilbert spaces of this kind — any number N of identical bosons (or fermions) are known

as Fock spaces. So the Hilbert space of the quantum field is the same as the Fock space of

particles, and the Hamiltonians are also the same:

N

H(p(x),#(x)] = Y /P? + m?. (32)
=0

7

In other words, the quantum theory of the free field is identical to the quantum theory of (any
number of) free identical bosons. For the theory in question, the field is a relativistic scalar
¢(x) and the bosons are spinless relativistic particles. But in exactly the same manner, the
quantum theory of Maxwell fields F*¥(x) is identical to the quantum theory of (any number
of) photons — which are massless relativistic particles with two polarizations states (per

photon) and obey Bose statistics.

Quantization of field theories with non-quadratic Hamiltonians (and hence non-linear
classical equations of motion) also leads to theories equivalent to theories of quantum par-
ticles, but this time the particles are not free but interact with each other. In relativistic
theories, the interactions also allow for creation and destruction of particles; such processes
have to be described in terms of the Fock space rather than a fixed—N Hilbert space. In
non-relativistic theories, the net particle number /N is sometimes conserved, sometimes not,

but even when it is conserved, the Fock-space formalism is often convenient.

Finally, a few words about the zero-point energy Ey = > %wk. From the particles’
point of view, Ej is the vacuum energy. It does not affect any properties of the individual
particles or the way they interact with each other, so one usually simply ignores the Ey and
proceeds as if it was not there. However, in some situations the Ey becomes important: (1)
When one couples a quantum field theory to general relativity, the vacuum energy density

becomes the cosmological constant. (2) When a QFT has some variable parameters, the



vacuum energy acts as an effective potential for those parameters. This is important for
cosmology of the early Universe, and also for the Casimir effect. Note that while the Ejy
itself is infinite (except in supersymmetric theories where infinities cancel out between the
bosonic and fermionic fields), it can be written as a sum of an infinite constant and a finite
part which changes with parameters by a finite amount AFEy — it’s the finite part that’s

responsible for the effective potential and for the Casimir effect.

In this class, I shall discuss the effective potential in an extra lecture sometimes in the

second semester. Meanwhile, you can read [ny notes on the subjeci. As to the Casimir effect,

I have an ppfional exercisd where I explain how to calculate the Casimir energy in few easy

steps and you work them out on your own. When I have time, I'll write down the

Lo this exercisd
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