
Free Fields, Harmonic Oscillators, and Identical Bosons

A free quantum field and its canonical conjugate are equivalent to a family of harmonic

oscillators (one oscillator for each plane wave), which is in turn equivalent to a quantum

theory of free identical bosons. In these notes, I will show how all of this works for the

relativistic scalar field ϕ̂(x) and its conjugate π̂(x). And then in a separate set of notes

I shall turn around and show that a quantum theory of any kind of identical bosons is

equivalent to a family of oscillators. (Harmonic for the free particles, non-harmonic if the

particles interact with each other.) Moreover, for the non-relativistic particles, the oscillator

family is in turn equivalent to a non-relativistic quantum field theory.

In these notes we shall work in the Schrödinger picture of Quantum Mechanics because

it’s more convenient for dealing with the eigenstates and the eigenvalues. Consequently, all

operators — including the quantum fields such as ϕ̂(x) — are time-independent.

From Relativistic Fields to Harmonic Oscillators

Let us start with the relativistic scalar field ϕ̂(x) and its conjugate π̂(x); they obey the

canonical commutation relations

[ϕ̂(x), ϕ̂(x′)] = 0, [π̂(x), π̂(x′)] = 0, [ϕ̂(x), π̂(x′)] = iδ(3)(x− x′) (1)

and are governed by the Hamiltonian

Ĥ =

∫
d3x

(
1
2 π̂

2(x) + 1
2(∇ϕ̂(x))2 + 1

2m
2ϕ̂2(x)

)
. (2)

We want to expand the fields into plane-wave modes ϕ̂k and π̂k, and to avoid technical

difficulties with the oscillators and their eigenstates, we want discrete modes. Therefore, we

replace the infinite x space with a finite but very large box of size L × L × L, and impose

periodic boundary conditions — ϕ̂(x+L, y, z) = ϕ̂(x, y +L, z) = ϕ̂(x, y, z +L) = ϕ̂(x, y, z),

etc., etc. For large L, the specific boundary conditions are unimportant, so I have chosen
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the periodic conditions since they give us particularly simple plane-wave modes

ψk(x) = L−3/2eikx where kx, ky, kz =
2π

L
× an integer. (3)

Expanding the quantum fields into such modes, we get

ϕ̂(x) =
∑
k

L−3/2eikx × ϕ̂k, ϕ̂k =

∫
d3xL−3/2e−ikx × ϕ̂(x),

π̂(x) =
∑
k

L−3/2eikx × π̂k, π̂k =

∫
d3xL−3/2e−ikx × π̂(x).

(4)

A note on hermiticity: The classical fields ϕ(x) and π(x) are real (i.e., their values are real

numbers), so the corresponding quantum fields are hermitian, ϕ̂†(x) = ϕ̂(x) and π̂†(x) =

π̂(x). However, the mode operators ϕ̂k and π̂k are not hermitian; instead, eqs. (4) give us

ϕ̂†k = ϕ̂−k and π̂†k = π̂−k .

The commutation relations between the mode operators follow from eqs. (1), namely

[ϕ̂k, ϕ̂k′ ] = 0, [π̂k, π̂k′ ] = 0, [ϕ̂k, π̂k′ ] = i δk,−k′ . (5)

The first two relations here are obvious, but the third needs a bit of algebra:

[ϕ̂k, π̂k′ ] =

∫
d3x

∫
d3x′ L−3e−ikxe−ik

′x′
× [ϕ̂(x), π̂(x′)]

=

∫
d3x

∫
d3x′ L−3e−ikxe−ik

′x′
× iδ(3)(x− x′)

= i L−3
∫
box

d3x e−ix(k+k′)

= i δk,−k′ .

(6)

Equivalently,

[ϕ̂k, π̂
†
k′ ] = [ϕ̂†k, π̂k′ ] = i δk,k′ , [ϕ̂k, π̂k′ ] = [ϕ̂†k, π̂

†
k′ ] = i δk+k′,0 . (7)
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Now let’s express the Hamiltonian (2) in terms of the modes. For the first term, we have

∫
d3x π̂2(x) =

∫
d3x π̂†(x)π̂(x) =

∫
d3x

∑
k

∑
k′

L−3e−ikxe+ik
′x × π̂†kπ̂k′

=
∑
k,k′

π̂†kπ̂k′ ×

L−3 ∫
box

d3x eix(k
′−k) = δk,k′


=
∑
k

π̂†kπ̂k .

(8)

Similarly, the last term becomes

∫
d3x ϕ̂2(x) =

∑
k

ϕ̂†kϕ̂k , (9)

while in the second term

∇ϕ̂(x) =
∑
k

L−3/2eikx × ik ϕ̂k =
∑
k

L−3/2e−ikx ×−ik ϕ̂†k , (10)

hence ∫
d3x (∇ϕ̂(x))2 =

∑
k

k2 ϕ̂†kϕ̂k . (11)

Altogether, the Hamiltonian (2) becomes

Ĥ =
∑
k

(
1
2 π̂
†
kπ̂k + 1

2(k2 +m2) ϕ̂†kϕ̂k

)
. (12)

Clearly, this Hamiltonian describes a bunch of harmonic oscillators with frequencies ωk =
√
k2 +m2 (in the h̄ = c = 1 units). But since the mode operators are not hermitian,

converting them into creation and annihilation operators takes a little more work then usual:
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We define

âk =
1√
2ωk

(
ωkϕ̂k + i π̂k

)
,

and consequently

â†k =
1√
2ωk

(
ωkϕ̂

†
k − i π̂†k

)
,

â−k =
1√

2ω−k

(
ω−kϕ̂−k + i π̂−k

)
=

1√
2ωk

(
ωkϕ̂

†
k + i π̂†k

)
,

â†−k =
1√

2ω−k

(
ω−kϕ̂

†
−k − i π̂†−k

)
=

1√
2ωk

(
ωkϕ̂k − i π̂k

)
.

(13)

Note that â†k 6= â−k and â−k 6= â†k; instead, we have independent creation and annihilation

operators â†k and âk for every mode k.

The commutations relations between these operators are

[âk, âk′ ] = 0, [â†k, â
†
k′ ] = 0, [âk, â

†
k′ ] = δk,k′ . (14)

Indeed,

[âk, âk′ ] =
1√

4ωω′

(
ωω′ [ϕ̂k, ϕ̂k′ ] + iω′ [π̂k, ϕ̂k′ ] + iω [ϕ̂k, π̂k′ ] − [π̂k, π̂k′ ]

)
=

1√
4ωω′

(
0 + iω′ ×−iδk+k′,0 + iω ×+iδk+k′,0 + 0

)
= δk+k′,0 ×

ω′ − ω√
4ωω′

= 0 because ω′ = ω when k + k′ = 0.

(15)

Similarly, [â†k, â
†
k′ ] = 0. Finally,

[âk, â
†
k′ ] =

1√
4ωω′

(
ωω′ [ϕ̂k, ϕ̂

†
k′ ] + iω′ [π̂k, ϕ̂

†
k′ ] − iω [ϕ̂k, π̂

†
k′ ] + [π̂k, π̂

†
k′ ]
)

=
1√

4ωω′

(
0 + iω′ ×−iδk,k′ − iω ×+iδk,k′ + 0

)
= δk,k′ × ω + ω′√

4ωω′

= δk,k′ because ω′ = ω when k′ = k.

(16)

To re-obtain the field mode operators ϕ̂k and π̂k from the creation and annihilation

operators, let us combine the first and the last equations (13) for the âk and â†−k . Adding
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and subtracting those equations, we find

âk + â†−k =
√

2ωk × ϕ̂k , −iâk + iâ†−k =

√
2

ωk
× π̂k . (17)

Consequently,

ω2
kϕ̂
†
kϕ̂k =

ωk
2
× (â†k + â−k)(âk + â†−k)

=
ωk
2
×
(
â†kâk + â†kâ

†
−k + â−kâk + â−kâ

†
−k

)
,

π̂†kπ̂k =
ωk
2
× (iâ†k − iâ−k)(−iâk + iâ†−k)

=
ωk
2
×
(
â†kâk − â†kâ

†
−k − â−kâk + â−kâ

†
−k

)
,

(18)

hence

ω2
kϕ̂
†
kϕ̂k + π̂†kπ̂k = ωk ×

(
â†kâk + â−kâ

†
−k

)
= ωk ×

(
â†kâk + â†−kâ−k + 1

)
.

(19)

Altogether, the Hamiltonian (12) becomes

Ĥ =
∑
k

(
1

2
π̂†kπ̂k +

ω2
k

2
ϕ̂†kϕ̂k

)
=
∑
k

ωk
2
×
(
â†kâk + â†−kâ−k + 1

)
=
∑
k

ωk
2

(
â†kâk + 1

2

)
+
∑
k

ωk
2

(
â†−kâ−k + 1

2

)
〈〈where the two sums are equal due to k↔ −k symmetry 〉〉

=
∑
k

ωk

(
â†kâk + 1

2

)
.

(20)

In light of the commutation relations (14), this Hamiltonian clearly describes an infinite

family of harmonic oscillators, one oscillator for each plane-wave mode k.

Now consider the eigenvalues and the eigenstates of the multi-oscillator Hamiltonian (20).

A single harmonic oscillator has eigenvalues En = ω(n+ 1
2) where n = 0, 1, 2, 3, . . .. For the
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multi-oscillator system at hand, each n̂k = â†kâk commutes with all the other n̂k′ , so we may

diagonalize them all at the same time. This gives us eigenstates

|{nk for all k}〉 =
⊗
k

|nk〉 of energy E{nk} =
∑
k

ωk(nk + 1
2). (21)

where each nk is an integer ≥ 0. Moreover, all combinations of the nk are allowed because

the â†k and âk operators can change a particular nk → nk ± 1 without affecting any other

nk′ . (This follows from [âk, n̂k′ ] = 0 and [â†k, n̂k′ ] = 0 for k′ 6= k.) Thus, the Hilbert space

of the multi-oscillator system — and hence of the free quantum field theory — is a direct

product of Hilbert spaces for each oscillator,

H(QFT) =
⊗
k

H(harmonic oscillator for mode k). (22)

From the Multi-Oscillator System to Identical Bosons

A constant term in the Hamiltonian of a quantum system does not affect its dynamics in

any way, it simply shifts energies of all states by the same constant amount. So to simplify

our analysis of the multi-oscillator system in particle terms, let’s subtract the infinite zero-

point energy E0 =
∑

k
1
2ωk from the Hamiltonian (20), thus

Ĥ → Ĥ − E0 =
∑
k

ωkâ
†
kâk . (23)

I’ll come back to the zero-point energy, but right now let’s focus on other issues.

In the multi-oscillator Hilbert space (22) each occupation number nk is independent from

all others. However, states of finite energy must have finite N =
∑

k nk, so let us re-organize

the Hilbert space into eigenspaces of the N̂ =
∑

k n̂k operator,

H(QFT) =
⊗
k

H(mode k) =
∞⊕
N=0

HN , (24)

and consider what do those eigenspaces look like for different N . For N = 0, the H0 spans

a single state, the vacuum |0〉 = |all nk = 0〉. For N = 1, the H1 spans eigenstates with a
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single nk = 1 while all other nk′ = 0. Renaming such eigenstates |nk = 1, othern = 0〉 → |k〉
and noting their energies

E(|k〉) = ωk =
√

k2 +m2 , (25)

we identify the H1 as a Hilbert space of a free relativistic particle with Hamiltonian

Ĥparticle =

√
P̂2 +m2 . (26)

For N > 1, we may have several modes with nk > 0, but for a finite N there can be only

a finite number of such modes. So we rename such a state |k1, . . . ,kN 〉 by listing only the

modes k with nk > 0 and repeating each k nk times. For example,

∣∣3k, 2k′ , 2k′′ , 1k′′′ , 0everything else
〉

=
∣∣k,k,k,k′,k′,k′′,k′′,k′′′〉 . (27)

In such notations, the HN Hilbert space spans eigenstates |k1,k2, . . . ,kN 〉 labeled by N

modes k1, . . . ,kN (such modes may coincide but do not have to). The energy of such an

eigenstate is

E(|k1,k2, . . . ,kN 〉) = ωk1
+ ωk2

+ · · · + ωkN
, (28)

which allows us to identify the HN as the Hilbert space of N free relativistic particles with

the Hamiltonian

ĤN particles =
N∑
i=1

√
P̂2(ith) + m2 . (29)

However, treating the k1, . . . ,kN momenta of N particles as independent over-counts the

quantum states because the occupation numbers nk do not specify the order in which we

list the modes ki. For example, both |k1,k2〉 and |k2,k1〉 correspond to the same quantum

state
∣∣1k1

, 1k2
, 0others

〉
. More generally,

|{nk}〉 = |k1, . . . ,kN 〉 = |any permutation of the k1, . . . ,kN 〉 . (30)

In other words, the N relativistic particles in the HN are identical bosons.
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Altogether, we have

H(QFT) =
⊗
k

H(harmonic oscillator #k) =
∞⊕
N=0

H(N identical bosons). (31)

Hilbert spaces of this kind — any number N of identical bosons (or fermions) are known

as Fock spaces. So the Hilbert space of the quantum field is the same as the Fock space of

particles, and the Hamiltonians are also the same:

Ĥ[ϕ̂(x), π̂(x)] =
N̂∑
i=0

√
P̂2
i + m2 . (32)

In other words, the quantum theory of the free field is identical to the quantum theory of (any

number of) free identical bosons. For the theory in question, the field is a relativistic scalar

ϕ(x) and the bosons are spinless relativistic particles. But in exactly the same manner, the

quantum theory of Maxwell fields Fµν(x) is identical to the quantum theory of (any number

of) photons — which are massless relativistic particles with two polarizations states (per

photon) and obey Bose statistics.

Quantization of field theories with non-quadratic Hamiltonians (and hence non-linear

classical equations of motion) also leads to theories equivalent to theories of quantum par-

ticles, but this time the particles are not free but interact with each other. In relativistic

theories, the interactions also allow for creation and destruction of particles; such processes

have to be described in terms of the Fock space rather than a fixed–N Hilbert space. In

non-relativistic theories, the net particle number N is sometimes conserved, sometimes not,

but even when it is conserved, the Fock-space formalism is often convenient.

Finally, a few words about the zero-point energy E0 =
∑

k
1
2ωk . From the particles’

point of view, E0 is the vacuum energy. It does not affect any properties of the individual

particles or the way they interact with each other, so one usually simply ignores the E0 and

proceeds as if it was not there. However, in some situations the E0 becomes important: (1)

When one couples a quantum field theory to general relativity, the vacuum energy density

becomes the cosmological constant. (2) When a QFT has some variable parameters, the
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vacuum energy acts as an effective potential for those parameters. This is important for

cosmology of the early Universe, and also for the Casimir effect. Note that while the E0

itself is infinite (except in supersymmetric theories where infinities cancel out between the

bosonic and fermionic fields), it can be written as a sum of an infinite constant and a finite

part which changes with parameters by a finite amount ∆E0 — it’s the finite part that’s

responsible for the effective potential and for the Casimir effect.

In this class, I shall discuss the effective potential in an extra lecture sometimes in the

second semester. Meanwhile, you can read my notes on the subject. As to the Casimir effect,

I have an optional exercise where I explain how to calculate the Casimir energy in few easy

steps and you work them out on your own. When I have time, I’ll write down the solutions

to this exercise.
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