
PHY–387 K. Problem set #9. Due March 28, 2024.

1. This problem is about birefringence in anisotropic materials. The dielectric “constant” of

anisotropic dielectric is a tensor ǫij rather than a scalar, thus

Di = ǫijǫ0Ej . (1)

For simplicity, let’s assume that at the optical frequencies ǫij(ω) is a real symmetric tensor,

and that the material in question is non-conducting and non-magnetic, σ = 0 and µ = 1.

Consider a plane EM wave

E(x, t) = ~E exp(ik · x− iωt) (2)

propagating through such anisotropic material.

(a) Show that the electromagnetic fields of this wave obey

−k× (k×E) = ω2µ0D, H =
k

ωµ0
× E, (3)

where the magnetic field H and the electric displacement field D are transverse to the

wave direction, but the electric tension field E is generally not transverse.

(b) A plane EM wave in an isotropic medium has its energy moving in the same direction

as the wavefront, i.e. the direction k̂ = k/|k| of the wave vector. But this is generally

not true in an anisotropic medium: Show that for a plane wave with E 6⊥ k, the wave’s

energy and the wavefront move in somewhat different directions.

In an anisotropic medium, the refraction index n = c|k|/ω depends on the direction

k̂ = k/|k| of the wave vector. Moreover, for a given direction k the two independent

polarizations of the wave generally have different refraction indices n1 6= n2.
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(c) Use eq. (3) to show that the refraction indices and the polarization vectors of the two

independent polarizations obtain from the generalized eigenvalue problem

(

ǫij − n2
(

δij − k̂ik̂j
)

)

Ej = 0. (4)

In particular, the (squares of the) refraction indices obtain as zeros of the determinant

χ(n2) = det
(

ǫij − n2
(

δij − k̂ik̂j
)

)

. (5)

From now on, let’s work in a Cartesian coordinate system where the ǫij tensor is diagonal,

ǫij = ǫiδij .

(d) Calculate the determinant (5) in this basis and show that

χ(n2) =
3

∑

i=1

k̂i
2ǫi ×

∏

j 6=i

(n2 − ǫj). (6)

If you get bogged down in algebra, use Mathematica.

(e) Suppose the three eigenvalues of the ǫij tensor are different, say ǫ1 > ǫ2 > ǫ3 > 0.

Show that in this case, the square of one of the refraction indices lies between ǫ1 and

ǫ2 while the square of the other lies between ǫ2 and ǫ3,

ǫ1 ≥ n21 ≥ ǫ2 ≥ n22 ≥ ǫ3 . (7)

Moreover, all these inequalities become strict when all 3 of the k̂2
1
, k̂2

2
, k̂2

3
are positive,

i.e. when the wave vector k is not parallel to any principal axis of the ǫij tensor. Also,

in this case, the χ(n2) = 0 equation is equivalent to the Fresnel equation

3
∑

i=1

ǫik̂
2

i

n2 − ǫi
= 0. (8)

Now suppose ǫ1 = ǫ2 6= ǫ3; birefringence like this is called uniaxial, and the direction of

the non-degenerate eigenvector is called the optical axis. For the waves traveling in the

direction of that optical axis, there is no birefringence — both polarizations have the same

n =
√
ǫ1 = ǫ2.
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(f) Check this statement.

(g) Show that for the waves in all other directions k 6= ±m3, there are two independent

polarizations with different refraction indices. Specifically:

(⊥) ~E is normal to both the optical axis and the wave direction k̂; for this wave,

n =
√
ǫ1 regardless of the ǫ3 or the angle θ.

( ‖ ) ~E lies in the same plane as k̂ and the optical axis; for this wave,

n =

(

sin2 θ

ǫ3
+

cos2 θ

ǫ1

)−1/2

(9)

where θ is the angle between the wave direction k and the optical axis.

(h) Finally, show that for the (⊥) polarization, the wave’s energy moves in the same

direction k̂ as the wavefront; but for the ( ‖ ) polarization, the energy moves in a

different direction from k̂. Also, calculate the angle between the directions of the

energy’s and the wave-front’s motion for the ( ‖ ) polarization.

2. Now consider plasma in a uniform magnetic field B. For simplicity, ignore the ions in the

plasma and focus on the effect of the free electrons.

(a) Show that for a radio wave of frequency ω propagating through this plasma, the

effective permittivity tensor is

ǫij = δij −
ω2
p

ω2(ω2 − Ω2)

(

ω2δij − Ω2b̂ib̂j − iωΩǫijk b̂k

)

(10)

where ωp =
√

e2ne/ǫ0me is the plasma frequency, Ω = (e/me)B is the cyclotron

frequency of an electron in the magnetic field B, and b̂ = (b̂x, b̂y, b̂z) is the unit vector

in the magnetic field’s direction.

The tensor (10) is complex rather than real, but its matrix is Hermitian, ǫ∗ij = ǫji, so it has

real eigenvalues ǫ1, ǫ2, ǫ3, although the corresponding eigenvectors m1,m2,m3 are complex

rather than real.
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(b) Find these eigenvalues and eigenvectors. For simplicity, work in the coordinate system

where the z axis points in the direction of the magnetic field, thus b̂ = (0, 0, 1).

(c) Go back to the previous problem and show that for a complex orthonormal basis

(m1,m2,m3) for vectors’ components,

m
∗
i ·mj = δij ∀i, j = 1, 2, 3, (11)

any vector v =
∑

i

vimi for vi = m∗
i · v, (12)

eq. (4) becomes
(

ǫij − n2
(

δij − k̂ik̂
∗
j

)

)

Ej = 0. (13)

Also show that for the (m1,m2,m3) being complex eigenvectors of an Hermitian per-

mittivity tensor, the Fresnel equation for the refraction indices2 becomes

3
∑

i=1

ǫi ×
(

|k̂i|2 = |m∗
i · k̂|2

)

n2 − ǫi
= 0. (14)

Now return to the plasma in a magnetic field, and consider a wave propagating in a direction

at angle θ from the direction of B.

(d) Solve the Fresnel equation (14) for the plasma in the the high-frequency limit ω ≫ ωp.

• For simplicity, you may assume that ω ≫ Ω as well as ω ≫ ωp; in this limit, you

should get

n21,2 = 1 −
ω2
p

ω2
±

ω2
pΩcos θ

ω3
+ O(1/ω4). (15)

⋆ For extra credit, assume ω(ω − Ω) ≫ ω2
p but do not assume that ω ≫ Ω.
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