PHY-387 K. Problem set #9. Due March 28, 2024.

. This problem is about birefringence in anisotropic materials. The dielectric “constant” of

anisotropic dielectric is a tensor €;; rather than a scalar, thus

D; = ejeok;. (1)

For simplicity, let’s assume that at the optical frequencies €;;(w) is a real symmetric tensor,

and that the material in question is non-conducting and non-magnetic, 0 =0 and pu = 1.

Consider a plane EM wave

E(x,t) = & exp(ik - x — iwt) (2)

propagating through such anisotropic material.

(a) Show that the electromagnetic fields of this wave obey

k
—kx (kxE) = 9D, H = — xE, (3)
w/o

where the magnetic field H and the electric displacement field D are transverse to the

wave direction, but the electric tension field E is generally not transverse.

(b) A plane EM wave in an isotropic medium has its energy moving in the same direction
as the wavefront, i.e. the direction k = k/|k| of the wave vector. But this is generally
not true in an anisotropic medium: Show that for a plane wave with E [ k, the wave’s

energy and the wavefront move in somewhat different directions.

In an anisotropic medium, the refraction index n = c|k|/w depends on the direction
k = k/|k| of the wave vector. Moreover, for a given direction k the two independent

polarizations of the wave generally have different refraction indices n; # no.



(c) Use eq. (3) to show that the refraction indices and the polarization vectors of the two

independent polarizations obtain from the generalized eigenvalue problem
(eij — n2(5ij - l%il%j))gj = 0. (4)
In particular, the (squares of the) refraction indices obtain as zeros of the determinant
x(n?) = det(eij — n? (65 — l%ﬂ%)) (5)

From now on, let’s work in a Cartesian coordinate system where the ¢;; tensor is diagonal,

€ij = Ei(sij.

(d) Calculate the determinant (5) in this basis and show that

3
wwt) = 3 le x [ - ). ©)
i=1 J#i

If you get bogged down in algebra, use Mathematica.

(e) Suppose the three eigenvalues of the €;; tensor are different, say e; > ez > ez > 0.
Show that in this case, the square of one of the refraction indices lies between €; and

€2 while the square of the other lies between €2 and eg3,
> n? > > ni >
€ > nj > € > ny > €3. (7)

Moreover, all these inequalities become strict when all 3 of the 1%2, /%2, l%% are positive,
i.e. when the wave vector k is not parallel to any principal axis of the ¢;; tensor. Also,

in this case, the y(n?) = 0 equation is equivalent to the Fresnel equation

3 2
P B} (8)

Now suppose €1 = €2 # e3; birefringence like this is called uniazial, and the direction of
the non-degenerate eigenvector is called the optical axis. For the waves traveling in the

direction of that optical axis, there is no birefringence — both polarizations have the same

n = ,/€; = €.



(f) Check this statement.

(g) Show that for the waves in all other directions k # +ms3, there are two independent

polarizations with different refraction indices. Specifically:

—

(L) &€ is normal to both the optical axis and the wave direction k; for this wave,

n = /€1 regardless of the e3 or the angle 6.

(|} € lies in the same plane as k and the optical axis; for this wave,

. 9 2 -1/2
0 (sm 0 N cos 9) ()

€3 €1

where 6 is the angle between the wave direction k and the optical axis.

(h) Finally, show that for the (L) polarization, the wave’s energy moves in the same
direction k as the wavefront; but for the (||) polarization, the energy moves in a
different direction from k. Also, calculate the angle between the directions of the

energy’s and the wave-front’s motion for the (|| ) polarization.

2. Now consider plasma in a uniform magnetic field B. For simplicity, ignore the ions in the

plasma and focus on the effect of the free electrons.

(a) Show that for a radio wave of frequency w propagating through this plasma, the

effective permittivity tensor is

2

€i = 0;i — e <w25i~ — Q%hb; — inei~k(;k> (10)

J J w2(w2 - QQ) J J J
where w, = \/e’n./egme is the plasma frequency, @ = (e/m¢)B is the cyclotron
frequency of an electron in the magnetic field B, and b = (b,, 13 ,b.) is the unit vector

in the magnetic field’s direction.

The tensor (10) is complex rather than real, but its matrix is Hermitian, €. = €j;, so it has

ij
real eigenvalues €1, €2, €3, although the corresponding eigenvectors mj, mo, ms are complex

rather than real.



(b) Find these eigenvalues and eigenvectors. For simplicity, work in the coordinate system

where the z axis points in the direction of the magnetic field, thus b = (0,0,1).

(¢c) Go back to the previous problem and show that for a complex orthonormal basis

(mj, my, m3) for vectors’ components,

m;k . mj = 52‘]’ Vi,j = 1,2,3, (11)
any vector v. = Zvimi for v; = m; v, (12)
i
eq. (4) becomes

Also show that for the (mj, mg, m3) being complex eigenvectors of an Hermitian per-

mittivity tensor, the Fresnel equation for the refraction indices® becomes

ei x (|ki[> = [m} - k[?)

n2—ei

= 0. (14)
=1

Now return to the plasma in a magnetic field, and consider a wave propagating in a direction

at angle # from the direction of B.
(d) Solve the Fresnel equation (14) for the plasma in the the high-frequency limit w > w,.

e For simplicity, you may assume that w >  as well as w > wp; in this limit, you
should get

2
Wp

2
wz€2 cos O
ni, =1 - L+

——+ O(1/wh). (15)

€

* For extra credit, assume w(w — Q) > w% but do not assume that w > Q.



