1. This problem is about birefringence in anisotropic materials. The dielectric "constant" of anisotropic dielectric is a tensor $\epsilon_{i j}$ rather than a scalar, thus

$$
\begin{equation*}
D_{i}=\epsilon_{i j} \epsilon_{0} E_{j} . \tag{1}
\end{equation*}
$$

For simplicity, let's assume that at the optical frequencies $\epsilon_{i j}(\omega)$ is a real symmetric tensor, and that the material in question is non-conducting and non-magnetic, $\sigma=0$ and $\mu=1$.

Consider a plane EM wave

$$
\begin{equation*}
\mathbf{E}(\mathbf{x}, t)=\overrightarrow{\mathcal{E}} \exp (i \mathbf{k} \cdot \mathbf{x}-i \omega t) \tag{2}
\end{equation*}
$$

propagating through such anisotropic material.
(a) Show that the electromagnetic fields of this wave obey

$$
\begin{equation*}
-\mathbf{k} \times(\mathbf{k} \times \mathbf{E})=\omega^{2} \mu_{0} \mathbf{D}, \quad \mathbf{H}=\frac{\mathbf{k}}{\omega \mu_{0}} \times \mathbf{E} \tag{3}
\end{equation*}
$$

where the magnetic field \mathbf{H} and the electric displacement field \mathbf{D} are transverse to the wave direction, but the electric tension field \mathbf{E} is generally not transverse.
(b) A plane EM wave in an isotropic medium has its energy moving in the same direction as the wavefront, i.e. the direction $\hat{\mathbf{k}}=\mathbf{k} /|\mathbf{k}|$ of the wave vector. But this is generally not true in an anisotropic medium: Show that for a plane wave with $\mathbf{E} \not \perp \mathbf{k}$, the wave's energy and the wavefront move in somewhat different directions.

In an anisotropic medium, the refraction index $n=c|\mathbf{k}| / \omega$ depends on the direction $\hat{\mathbf{k}}=\mathbf{k} /|\mathbf{k}|$ of the wave vector. Moreover, for a given direction \mathbf{k} the two independent polarizations of the wave generally have different refraction indices $n_{1} \neq n_{2}$.
(c) Use eq. (3) to show that the refraction indices and the polarization vectors of the two independent polarizations obtain from the generalized eigenvalue problem

$$
\begin{equation*}
\left(\epsilon_{i j}-n^{2}\left(\delta_{i j}-\hat{k}_{i} \hat{k}_{j}\right)\right) \mathcal{E}_{j}=0 \tag{4}
\end{equation*}
$$

In particular, the (squares of the) refraction indices obtain as zeros of the determinant

$$
\begin{equation*}
\chi\left(n^{2}\right)=\operatorname{det}\left(\epsilon_{i j}-n^{2}\left(\delta_{i j}-\hat{k}_{i} \hat{k}_{j}\right)\right) \tag{5}
\end{equation*}
$$

From now on, let's work in a Cartesian coordinate system where the $\epsilon_{i j}$ tensor is diagonal, $\epsilon_{i j}=\epsilon_{i} \delta_{i j}$.
(d) Calculate the determinant (5) in this basis and show that

$$
\begin{equation*}
\chi\left(n^{2}\right)=\sum_{i=1}^{3} \hat{k}_{i}{ }^{2} \epsilon_{i} \times \prod_{j \neq i}\left(n^{2}-\epsilon_{j}\right) . \tag{6}
\end{equation*}
$$

If you get bogged down in algebra, use Mathematica.
(e) Suppose the three eigenvalues of the $\epsilon_{i j}$ tensor are different, say $\epsilon_{1}>\epsilon_{2}>\epsilon_{3}>0$. Show that in this case, the square of one of the refraction indices lies between ϵ_{1} and ϵ_{2} while the square of the other lies between ϵ_{2} and ϵ_{3},

$$
\begin{equation*}
\epsilon_{1} \geq n_{1}^{2} \geq \epsilon_{2} \geq n_{2}^{2} \geq \epsilon_{3} \tag{7}
\end{equation*}
$$

Moreover, all these inequalities become strict when all 3 of the $\hat{k}_{1}^{2}, \hat{k}_{2}^{2}, \hat{k}_{3}^{2}$ are positive, i.e. when the wave vector \mathbf{k} is not parallel to any principal axis of the $\epsilon_{i j}$ tensor. Also, in this case, the $\chi\left(n^{2}\right)=0$ equation is equivalent to the Fresnel equation

$$
\begin{equation*}
\sum_{i=1}^{3} \frac{\epsilon_{i} \hat{k}_{i}^{2}}{n^{2}-\epsilon_{i}}=0 \tag{8}
\end{equation*}
$$

Now suppose $\epsilon_{1}=\epsilon_{2} \neq \epsilon_{3}$; birefringence like this is called uniaxial, and the direction of the non-degenerate eigenvector is called the optical axis. For the waves traveling in the direction of that optical axis, there is no birefringence - both polarizations have the same $n=\sqrt{\epsilon_{1}=\epsilon_{2}}$.
(f) Check this statement.
(g) Show that for the waves in all other directions $\mathbf{k} \neq \pm \mathbf{m}_{3}$, there are two independent polarizations with different refraction indices. Specifically:
$(\perp) \overrightarrow{\mathcal{E}}$ is normal to both the optical axis and the wave direction $\hat{\mathbf{k}}$; for this wave, $n=\sqrt{\epsilon_{1}}$ regardless of the ϵ_{3} or the angle θ.
(||) $\overrightarrow{\mathcal{E}}$ lies in the same plane as $\hat{\mathbf{k}}$ and the optical axis; for this wave,

$$
\begin{equation*}
n=\left(\frac{\sin ^{2} \theta}{\epsilon_{3}}+\frac{\cos ^{2} \theta}{\epsilon_{1}}\right)^{-1 / 2} \tag{9}
\end{equation*}
$$

where θ is the angle between the wave direction \mathbf{k} and the optical axis.
(h) Finally, show that for the (\perp) polarization, the wave's energy moves in the same direction $\hat{\mathbf{k}}$ as the wavefront; but for the (\|) polarization, the energy moves in a different direction from $\hat{\mathbf{k}}$. Also, calculate the angle between the directions of the energy's and the wave-front's motion for the (||) polarization.
2. Now consider plasma in a uniform magnetic field B. For simplicity, ignore the ions in the plasma and focus on the effect of the free electrons.
(a) Show that for a radio wave of frequency ω propagating through this plasma, the effective permittivity tensor is

$$
\begin{equation*}
\epsilon_{i j}=\delta_{i j}-\frac{\omega_{p}^{2}}{\omega^{2}\left(\omega^{2}-\Omega^{2}\right)}\left(\omega^{2} \delta_{i j}-\Omega^{2} \hat{b}_{i} \hat{b}_{j}-i \omega \Omega \epsilon_{i j k} \hat{b}_{k}\right) \tag{10}
\end{equation*}
$$

where $\omega_{p}=\sqrt{e^{2} n_{e} / \epsilon_{0} m_{e}}$ is the plasma frequency, $\Omega=\left(e / m_{e}\right) B$ is the cyclotron frequency of an electron in the magnetic field B, and $\hat{\mathbf{b}}=\left(\hat{b}_{x}, \hat{b}_{y}, \hat{b}_{z}\right)$ is the unit vector in the magnetic field's direction.

The tensor (10) is complex rather than real, but its matrix is Hermitian, $\epsilon_{i j}^{*}=\epsilon_{j i}$, so it has real eigenvalues $\epsilon_{1}, \epsilon_{2}, \epsilon_{3}$, although the corresponding eigenvectors $\mathbf{m}_{1}, \mathbf{m}_{2}, \mathbf{m}_{3}$ are complex rather than real.
(b) Find these eigenvalues and eigenvectors. For simplicity, work in the coordinate system where the z axis points in the direction of the magnetic field, thus $\hat{\mathbf{b}}=(0,0,1)$.
(c) Go back to the previous problem and show that for a complex orthonormal basis $\left(\mathbf{m}_{1}, \mathbf{m}_{2}, \mathbf{m}_{3}\right)$ for vectors' components,

$$
\begin{align*}
& \qquad \mathbf{m}_{i}^{*} \cdot \mathbf{m}_{j}=\delta_{i j} \quad \forall i, j=1,2,3 \tag{11}\\
& \text { any vector } \mathbf{v}=\sum_{i} v_{i} \mathbf{m}_{i} \quad \text { for } v_{i}=m_{i}^{*} \cdot \mathbf{v} \tag{12}
\end{align*}
$$

eq. (4) becomes

$$
\begin{equation*}
\left(\epsilon_{i j}-n^{2}\left(\delta_{i j}-\hat{k}_{i} \hat{k}_{j}^{*}\right)\right) \mathcal{E}_{j}=0 \tag{13}
\end{equation*}
$$

Also show that for the $\left(\mathbf{m}_{1}, \mathbf{m}_{2}, \mathbf{m}_{3}\right)$ being complex eigenvectors of an Hermitian permittivity tensor, the Fresnel equation for the refraction indices ${ }^{2}$ becomes

$$
\begin{equation*}
\sum_{i=1}^{3} \frac{\epsilon_{i} \times\left(\left|\hat{k}_{i}\right|^{2}=\left|\mathbf{m}_{i}^{*} \cdot \hat{\mathbf{k}}\right|^{2}\right)}{n^{2}-\epsilon_{i}}=0 \tag{14}
\end{equation*}
$$

Now return to the plasma in a magnetic field, and consider a wave propagating in a direction at angle θ from the direction of \mathbf{B}.
(d) Solve the Fresnel equation (14) for the plasma in the the high-frequency limit $\omega \gg \omega_{p}$.

- For simplicity, you may assume that $\omega \gg \Omega$ as well as $\omega \gg \omega_{p}$; in this limit, you should get

$$
\begin{equation*}
n_{1,2}^{2}=1-\frac{\omega_{p}^{2}}{\omega^{2}} \pm \frac{\omega_{p}^{2} \Omega \cos \theta}{\omega^{3}}+O\left(1 / \omega^{4}\right) \tag{15}
\end{equation*}
$$

\star For extra credit, assume $\omega(\omega-\Omega) \gg \omega_{p}^{2}$ but do not assume that $\omega \gg \Omega$.

