
PHY–387 K. Solutions for problem set #2.

Problem 1(a):

The Green’s function GD(x,y) for the space outside the sphere with Dirichlet boundary

condition Φ = 0 on the sphere’s surface is the answer to the following physical problem: Let

the sphere of radius R be a grounded conductor — hence the Dirichlet boundary condition

Φ = 0, — and put a point charge q at some location y outside the sphere, then the potential

outside the sphere is

Φ(x) =
q

ǫ0
GD(x,y). (S.1)

The image charge method has another way to solve exactly the same problem: the potential

Φ(x) (for x outside the sphere) is the combined Coulomb potential of two point charges, the

real charge q at y outside the sphere, and the image charge Qim = −(R/|y|)Q inside the

sphere at yim = (R2/|y|)ny = (R2/|y|2)y. Altogether,

Φ(x) =
Q

4πǫ0|x− y|
+

Qim

4πǫ0|x− yim|

=
Q

4πǫ0

(

1

|x− y|
−

(R/|y|)

|x − R2

|y|2y|

)

=
Q

4πǫ0

(

1
√

x2 + y2 − 2xyc
−

R
√

x2y2 +R4 − 2R2xyc

)

(S.2)

where x = |x|, y = |y|, and c = nx · ny. In terms of eq. (S.1), this means that the Dirichlet

Green’s function for the sphere is

GD(x,y) =
1

4π
√

x2 + y2 − 2xyc
−

R

4π
√

x2y2 +R4 − 2R2xyc
, (S.3)

exactly as in eq. (2). Quod erat demonstrandum.

For completeness sake — although I do not expect the students to do this, — let me

formally verify that (2) is indeed the Green’s function of the Laplace equations for the

1



Dirichlet boundary conditions. First, let’s take the Laplacian WRT x of eq. (2):

GD(x,y) =
1

4π
√

x2 + y2 − 2xyc
−

R

4π
√

x2y2 +R4 − 2R2xyc

=
1

4π|x− y|
−

R/|y|

4π|x− yim|
,

−∇2
xG(x,y) = −∇2

x

(

1

4π|x− y|
−

R/|y|

4π|x− yim|

)

= δ(3)(x− y) − (R/|y|) δ(3)(x− yim).

(S.4)

In the second term here, yim = (R2/|y|2)y, so if the real charge is at y outside the sphere

then its image is at yim inside the sphere. Consequently, when we restrict both arguments

x and y of the Green’s function to the outside the conducting sphere, then x 6= yim so the

second delta-function in eq. (S.4) vanishes for all valid x and y. Thus,

for both x and y outside the sphere, −∇2
xG(x,y) = δ(3)(x− y), (S.5)

which confirms that G(x,y) in eq. (2) is a valid Green’s function.

Finally, let’s confirm that this GD obeys the Dirichlet boundary condition at the sphere’s

surface, that is, GD(x,y) = 0 for x ∈ surface. In terms of x = |x|, y = |y|, and c = nx · ny,

this means G(x, y, c) = 0 for x = R, and indeed,

G(x,y) =
1

4π
√

x2 + y2 − 2cxy
−

R

4π
√

x2y2 +R4 − 2cR2xy

−−→
x=R

1

4π
√

R2 + y2 − 2cRy
−

R

4π
√

R2y2 +R4 − 2cR3y

= 0.

(S.6)

Problem 1(b):

Note: In the Gauss theorem and related formulae, the normal direction n to the boundary

should point from the inside of the volume in question to the outside. Since the volume in
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question is the outside of the sphere, the normal direction n points from the outside of the

sphere to its inside, which makes it opposite to the radial direction. Thus,

n(x) · ∇xG(x,y) = −
∂

∂|x|
G(x,y), (S.7)

or in the context of G(x, y, c) as in eq. (2),

n(x) · ∇xG(x,y) = −
∂G(x, y, c)

∂x
. (S.8)

Specifically,

−
∂G(x, y, c)

∂x
=

x− cy

4π[x2 + y2 − 2cxy]3/2
−

R(xy2 − cyR2)

4π[x2y2 +R4 − 2cxyR2]3/2

−−→
x=R

R− cy

4π[R2 + y2 − 2cRy]3/2
−

R2(y2 − cyR)

4π[R2y2 +R4 − 2cR3y]3/2

=
R− cy

4π[R2 + y2 − 2cRy]3/2
−

R2(y2 − cyR)

4πR3 [y2 +R2 − 2cRy]3/2

=
1

4π[R2 + y2 − 2cRy]3/2

(

(R− cy) −
y2 − cyR

R
=

R2 − y2

R

)

=
1

4π|x− y|3
×

R2 − y2

R
.

(S.9)

Problem 1(c):

Eq. (1) follows from eq. (S.9) and the Green theorem explained in class: Given the Green’s

function GD(x,y) for some volume with Dirichlet boundary condition Φ = 0 on its surface,

the potential Φ(y) throughout the volume in questions for any given charge density ρ(x)

inside the volume and any given potential Φb(x) in its surface obtains as

Φ(y) =
1

ǫ0

∫∫∫

V

d4x ρ(x)×GD(x,y) −

∫∫

boundary

d2Area(x) Φ(x)
(

n(x) ·∇xGD(x,y)
)

. (S.10)

For the problem at hand, there are no charges inside the volume in question (outside the

sphere), and the normal derivative of the Green’s function (with Dirichlet BC) is given in
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eq. (S.9). Thus,

Φ(y) = +
y2 − R2

4πR

∫∫

sphere

d2xΦ(x)

[R2 + y2 − 2cRy]3/2
= +

|y|2 − R2

4πR

∫∫

sphere

d2xΦ(x)

|x− y|3
. (S.11)

in perfect agreement with eq. (1). Quod erat demonstrandum.

Problem 2, preface to (a–c):

The potentials (3), (4), and (8) in parts (a–c) all have form

Φ(x) =
A(x)B(x)

4πǫ
(S.12)

where A(x) is a polynomial in (x, y, z) and B(x) is negative power of r. Ignoring possible

subtleties at the origin, we may evaluate the the Laplacian at all other points using the

product rule

4πǫ0∇
2Φ = ∇2(AB) = A(∇2B) + 2(∇A) · (∇B) + (∇2A)B. (S.13)

We shall see in a moment that for all the potentials (3), (4), and (8), this Laplacian vanishes

if and only if the corresponding multipole moment tensor has zero trace.

Problem 2(a):

For the potential (3), we take A(x) = Qijxixj and B(x) = 1/r5. Consequently

∇kB = −
5nk
r6

= −
5xk
r7

, (S.14)

∇2B =

(

∂2

∂r2
+

2

r

∂

∂r

)

1

r5
= +

5× 6

r7
−

2× 5

r7
= +

20

r7
, (S.15)

while

∇k(A = Qijxixj) = Qij(δikxj + δjkxi) = Qkjxj + Qikxi = 2Qkjxj (S.16)
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where the last equality stems from the symmetry Qij = Qji, and hence

∇2(A = Qijxixk) = ∇k

(

2Qkjxj
)

= 2Qkjδkj = 2 tr(Q). (S.17)

Plugging all these formulae into the Laplacian-of-the-product rule (S.13), we arrive at

4πǫ0∇
2Φ = (Qijxixj)×

20

r7
+ 2

(

2Qkjxj
)

×
−5xk
r7

+ tr(Q)×
1

r5
, (S.18)

where the first two terms on the RHS cancel each other. Therefore, for the would-be

quadrupole potential (3) we have

∇2Φ(x) =
tr(Q)

r5
, (S.19)

which vanishes if and only if the would-be quadrupole moment tensorQij is traceless, tr(Q) =

Qkk = 0. Quad erat demonstrandum.

Problem 2(b):

For the would-be octupole potential (4), we take A(x) = Oijkxixjxk while B(x) = 1/r7.

Consequently,

∇ℓB = −
7nℓ
r8

= −
7xℓ
r9

, (S.20)

∇2B =

(

∂2

∂r2
+

2

r

∂

∂r

)

1

r7
= +

7× 8

r9
−

2× 7

r9
= +

42

r7
, (S.21)

while

∇ℓA = Oijk∇ℓ(xixjxk)

= Oijk

(

δℓixjxk + δℓ,jxixk + δℓ,kxixj
)

= Oℓjkxjxk + Oiℓkxixk + Oijℓxixj

〈〈 thanks to the symmetry (5) of the Oijk tensor 〉〉

= 3Oℓjkxjxk

(S.22)
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and hence

∇2A = ∇ℓ∇ℓA = ∇ℓ

(

3Oℓjkxjxk
)

= 3Oℓjk

(

δℓjxk + δℓkxi
)

= 3Oℓℓkxk + 3Oℓjℓxj

= 6Oℓℓk xk 〈〈 by symmetry 〉〉

= 6 tr(O)k xk .

(S.23)

Altogether, using eq. (S.13) for the Laplacian of the product, we get

4πǫ0∇
2Φ(x) =

(

Oijkxixjxk
)

×
42

r9
+ 2

(

3Oℓjkxjxk
)

×
−7xℓ
r9

+
(

6 tr(O)k xk
)

×
1

r7

〈〈where the first two terms cancel each other 〉〉

=
6 tr(O)k xk

r7
.

(S.24)

Obviously, this Laplacian vanishes for all x 6= 0 if and only if

tr(O)k ≡ Oiik ≡ δijOijk = 0 ∀k = x, y, z. (S.25)

Quod erat demonstrandum.

Problem 2(c):

For ℓ > 3, the would-be multipole potential (8) can be handled exactly as the would-be

quadrupole (3) or would-be octupole (4). For general ℓ ≥ 2 we take

A(x) = M
(ℓ)
i1,...,iℓ

xi1 · · ·xiℓ , B(x) =
1

r2ℓ+1
, (S.26)

hence

∇jB = −(2ℓ+ 1)
nj

r2ℓ+2
= −(2ℓ+ 1)

xj
r2ℓ+3

, (S.27)
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∇2B =

(

∂2

∂r2
+

2

r

∂

∂r

)

1

r2ℓ+1

=
(2ℓ+ 1)(2ℓ+ 2)

r2ℓ+3
−

2(2ℓ+ 1)

r2ℓ+3

=
(2ℓ)(2ℓ+ 1)

r2ℓ+3
, (S.28)

while

∇jA = M
(ℓ)
i1,...,iℓ

(

δj,i1xi2 · · ·xiℓ + · · · + δj,iℓxi1 · · ·xiℓ−1

)

=

ℓ
∑

n=1

M
(ℓ)
i1,...,in−1,j,in+1,...iℓ

× xi1 · · ·xin−1
xin+1

· · ·xiℓ

〈〈 by the symmetry (9) of the tensor M
(ℓ)
i1,...,iℓ

〉〉

= ℓM
(ℓ)
i1,...iℓ−1,j

× xi1 · · ·xiℓ−1
, (S.29)

∇2A = ∇j(∇jA)

= ℓM
(ℓ)
i1,...iℓ−1,j

×
(

δj,i1xi2 · · ·xiℓ−1
+ · · · + δj,iℓ−1

xi1 · · ·xiℓ−2

)

=
ℓ−1
∑

n=1

ℓM
(ℓ)
i1,...,in−1,j,in+1,...iℓ−1,j

× xi1 · · ·xin−1
xin+1

· · ·xiℓ−1

〈〈 by symmetry 〉〉

= (ℓ− 1)ℓM
(ℓ)
i1,...,iℓ−2,j,j

× xi1 · · ·xiℓ−2

= (ℓ− 1)ℓ tr
(

M(ℓ)
)

i1,...,iℓ−2
× xi1 · · ·xiℓ−2

. (S.30)

Note: on the last line here, tr
(

M(ℓ)
)

is a (ℓ− 2) index totally symmetric tensor, which we

then contract with (ℓ− 2) copies of the xi vector to get a scalar.

Plugging the above formulae into the product rule (S.13), we see that the first two terms

on the RHS cancel each other:

A×∇2B + 2∇kA×∇kB =
(

M
(ℓ)
i1,...,iℓ

xii · · ·xiℓ
)

×
(2ℓ+ 1)(2ℓ)

r2ℓ+3

+ 2
(

ℓM
(ℓ)
k,i2,...,iℓ

xi2 · · ·xiℓ
)

×
−(2ℓ+ 1)xk

r2ℓ+3

= 0.

(S.31)
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Thus, the overall Laplacian stems from the third term only, namely

4πǫ0∇
2Φ = (∇2A)×B

=
ℓ(ℓ− 1) tr

(

M(ℓ)
)

i1,...,iℓ−2
× xi1 · · ·xiℓ−2

r2ℓ+1

=
ℓ(ℓ− 1) tr

(

M(ℓ)
)

i1,...,iℓ−2
× ni1 · · ·niℓ−2

rℓ+3
.

(S.32)

or in other words

∇2Φ(x) =
(ℓ(ℓ− 1)

4πǫ0
×

tr
(

M(ℓ)
)

i3,...,iℓ
ni3 · · ·niℓ

rℓ+3
. (S.33)

To make this Laplacian vanish for all x 6= 0, the numerator must vanish for all the unit

direction vectors n, which happens if and only if tr
(

M(ℓ)
)

vanishes as a (ℓ − 2)–index

symmetric tensor. In other words, the trace

tr
(

M(ℓ)
)

i3,...,iℓ
=
∑

k

M
(ℓ)
k,k,i3,...,iℓ

(S.34)

must vanish for all values of the indices i3, . . . , iℓ. And that’s precisely what we mean

by saying that the would-be multipole moment tensor M(ℓ) must be traceless. Quod erat

demonstrandum.

Problem 2(d):

The 2ℓ–pole moment is a totally symmetric tensor with ℓ indices and zero trace tensor. Let’s

count the number of independent components of such a tensor.

But first, let’s count the number of independent components of a totally symmetric tensor

without the zero-trace condition. By symmetry, an independent component is characterized

by the net numbers of its indices which happen to be take values x, y, or z, but we do

not care about the ordering of such indices. Indeed, for any non-negative integers a, b, c

with a + b + c = ℓ, any component with a indices = x, b indices = y, and c indices = z is

related by symmetry to any other such component. Consequently, the number of independent

8



components is equal to the number of partitions of ℓ into 3 non-negative integers a, b, c,

specifically

#independent components = Nℓ = 1
2(ℓ+ 1)(ℓ+ 2). (S.35)

Next, consider the zero trace condition for ℓ ≥ 2. The trace of an ℓ–index totally symmetric

tensor is an (ℓ−2)–index totally symmetric tensor, so demanding this trace to vanish imposes

Nℓ−2 independent linear constraints. Consequently, the number of independent components

of a traceless symmetric tensor is

Nℓ − Nℓ−2 = 1
2(ℓ+1)(ℓ+2) − 1

2(ℓ−2)(ℓ) = 1
2(ℓ

2+3ℓ+2) − 1
2(ℓ

2−ℓ) = 1
2(4ℓ+2) = 2ℓ+1.

(S.36)

Quod erat demonstrandum.

Problem 3(a):

The potential energy of a charged body with charge density ρ(x) in an external potential

Φ(x) is simply

U =

∫∫∫

body

d3x ρ(x)Φ(x). (S.37)

When the body in question has small size a while the potential Φ(x) slowly varies with x on

a much larger distance scale, we may expand the potential into a Taylor series around some

point x0 inside the body, thus

Φ(x) = Φ(x0) + (x− x0)i∇iΦ(x0) + 1
2(x− x0)i(x− x0)j ∇i∇jΦ(x0) + · · · . (S.38)

Plugging this series into eq. (S.37) for the potential energy, we get

U = Φ(x0)×

∫∫∫

d3x ρ(x) + ∇iΦ(x0)×

∫∫∫

d3x ρ(x) (x− x0)i + · · ·

= Φ(x0)×Qnet + ∇iΦ(x0)× pi + · · ·

(S.39)

where pi is the i
th component of the body’s electric dipole moment (evaluated relative to the

x0), while · · · denote the terms related to the higher multipole moments, cf. part (c).
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In particular, for a body of zero net charge, finite dipole moment, and negligible higher

multipole moments, we have

U = 0 + pi∇iΦ(x0) + negligible

= p · ∇Φ(x0) = −p · E(x0),
(S.40)

exactly as in eq. (12).

Problem 3(b):

Under infinitesimal shifts of the body (but without rotations of deformations), we have

x0 → x0 + δx0 , p → p + 0, (S.41)

hence

δEi(x0) = ∇jEi(x0) (δx0)j , (S.42)

and

δU = −pi δEi(x0) = −pi∇jEi(x0) (δx0)j . (S.43)

According to eq. (13), this infinitesimal change of the potential energy is related to the net

force F on the dipole as

δU = −Fj (δx0)j , (S.44)

which means

Fj = +pi∇jEi(x0), (S.45)

which in vector notations becomes the first equality in eq. (14.a),

F = ∇(p · E)@x0 . (S.46)

To get the second equality in eq. (14.a), we use

∇jEi = −∇j∇iΦ = −∇i∇jΦ = +∇iEj (S.47)
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(for the static electric field without a curl). Plugging this formula into eq. (S.45), we get

Fj = +pi∇iEj(x0), (S.48)

or in vector notations

F = (p · ∇)E(x0). (S.49)

Now consider an infinitesimal rotation of the body around the point x0 through angle

δ~α. (Note: in 3D, and infinitesimal angle is a vector but a finite angle is not.) Consequently,

the dipole moment of the body rotates by δ~α, thus

p → p + δα× p, (S.50)

while the location x0 — and hence the electric field E(x0) — remains unchanged. Conse-

quently, the potential energy changes by

δU = −(δp) · E(x0) = −(δ~α× p) · E(x0) = −δ~α · (p×E(x0)). (S.51)

According to eq. (13), this infinitesimal charge of the potential energy is related to the net

torque ~τ on the body (relative to the pivot point x0) as

δU = −δ~α · ~τ , (S.52)

hence

~τ = p× E(x0), (S.53)

exactly as in eq. (14.b). Quod erat demonstrandum.

11



Problem 3(c):

Let’s go back to the Taylor series (S.38), plug it into eq. (S.37) for the potential energy just

as we did it in part (a), but instead of stopping after the first two terms in the series as in

eq. (S.39), let’s spell out the third term as well:

U = Φ(x0)×

∫∫∫

d3x ρ(x) + ∇iΦ(x0)×

∫∫∫

d3x ρ(x)(x− x0)i

+ 1
2∇i∇jΦ(x0)×

∫∫∫

d3x ρ(x)(x− x0)i(x− x0)j + · · ·

= Φ(x0)×Qnet + ∇iΦ(x0)× pi + 1
2∇i∇jΦ(x0)× Tij + · · ·

(S.54)

where

Tij =

∫∫∫

body

d3x ρ(x)(x− x0)i(x− x0)j . (S.55)

This Tij is a symmetric tensor related to the body’s quadrupole moment tensor

Qij =

∫∫∫

body

d3x ρ(x)
[

3
2(x− x0)i(x− x0)j − 1

2δij(x− x0)
2
]

(S.56)

(relative to the point x0 inside the body), but unlike the quadrupole moment tensor, the Tij

tensor is not traceless, tr(T ) 6= 0. However, the traceless part of the Tij tensor is proportional

to the quadrupole moment, so we may write

Tij = 2
3Qij + δijS (S.57)

for some scalar S = 1
3 tr(T ).

Now let’s plug eq. (S.57) into the third terms in the series (S.54) for the potential energy:

U3rd term = 1
2Tij∇i∇jΦ(x0)

= 1
3Qij∇i∇jΦ(x0) + 1

2Sδij∇i∇jΦ(x0)

= 1
3Qij∇i∇jΦ(x0) + 1

2S∇2Φ(x0).

(S.58)

Note that the Φ(x) here is the external potential which obeys the Laplace equation, ∇2Φ = 0,

so the second terms on the last line here vanishes, regardless of the value of the scalar moment

12



S. Instead, the third term in U is completely determined by the quadrupole moment of the

body, thus

U = Φ(x0)×Qnet + ∇iΦ(x0)× pi + 1
3Qij∇i∇jΦ(x0) + · · · . (S.59)

In particular, for the body which has zero net charge, zero net dipole moment, finite

quadrupole moment, and negligible higher multipole moments, we have

U = 1
3Qij∇i∇jΦ(x0) = −1

3Qij∇iEj(x0), (S.60)

exactly as in eq. (15).

Problem 3(d):

Let’s proceed similar to part (b). The net force on the quadrupole follow from the variation

of the potential energy (15) under infinitesimal shifts of the body (but without rotation or

deformation). Under such shifts, the quadrupole moment tensor Qij remains unchanged,

while x0 → x0 + δx0. Consequently,

δΦ(x0) = (δx0)k ∇kΦ(x0),

δ∇iΦ(x0) = (δx0)k ∇k∇iΦ(x0),

δ∇i∇jΦ(x0) = (δx0)k ∇k∇i∇jΦ(x0),

(S.61)

and therefore

δU = 1
3Qij∇k∇i∇jΦ(x0) (δx0)k . (S.62)

Interpreting this change as −Fk(δx0)k, we find

Fk = −1
3Qij∇k∇i∇jΦ(x0)

= −1
3Qij∇i∇j∇kΦ(x0)

= +1
3Qij∇i∇jEk(x0),

(S.63)

or in sort-of-vector notations

F = 1
3(Qij∇i∇j)E(x0). (S.64)

Next consider the torque on the body (relative to the pivot point x0). To find this torque,

we rotate the body around the point x0 through infinitesimal angle δ~α; this leaves the x0 —
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and hence the electric field and its gradient at x0 — unchanged, but the quadrupole moment

tensor changes by

δQij = ǫikmδαkQmj + ǫjkmδαkQim (S.65)

where ǫijk is the Levi–Civita totally antisymmetric unit tensor. (See the Wikipedia article

for details.) Note: under infinitesimal rotations, a scalar remains invariant, a vector such as

p changes by δp = δ~α× p — or in index notations

δpi = ǫikmδαkpm, (S.66)

while a tensor suffers similar changes for each of its indices, for example eq. (S.65) for a

2-index tensor Qij .

Anyhow, plugging the infinitesimal change (S.65) into eq. (15) for the potential energy,

we have

δU = 1
3ǫikm(δα)kQmj∇i∇jΦ(x0) + 1

3ǫjkm(δα)kQim∇i∇jΦ(x0)

〈〈 swapping i ↔ j in the second term and using ∇i∇j = ∇j∇i 〉〉

= 1
3ǫikm(δα)k

(

Qmj +Qjm

)

∇j∇iΦ(x0)

〈〈 by the symmetry Qmj = Qjm 〉〉

= 2
3ǫikm(δα)kQmj∇j∇iΦ(x0)

= −2
3ǫikm(δα)kQmj∇jEi(x0).

(S.67)

On the other hand, δU = −(δα)kτk where ~τ is the torque on the body, thus

τk = +2
3ǫikmQmj∇jEi(x0) = +2

3ǫkmi(Qmj∇j)Ei(x0), (S.68)

or in vector/tensor notations

~τ = +2
3(Q ◦ ∇)×E(x0) (S.69)

where (Q ◦ ∇) is a vector with components (Q ◦ ∇)m = Qmj∇j .
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Problem 4:

The hollow conductor in question can be thought as a linear superposition of two solid

cylindrical conductors — one filling up the outer cylinder and the other filling up the hole

— carrying uniform currents ±J in opposite directions.

So let’s consider the magnetic field inside a single solid cylinder of radius R carrying a

uniform current J. By the rotational and the translational symmetries of the conductor and

the current, the magnetic field’s magnitude depends only on the distance from the axis while

its direction is circular around the axis; in cylindrical coordinates (z, s, φ)

B(z, s, φ) = B(s)nφ . (S.70)

The nφ direction of the field follows from the reflection symmetry across the plane through

the axis and the point x where you measure the field; note that the magnetic field is an axial

vector rather than a polar vector. Alternatively, consider the vector potential A(x): for a

current J flowing in a uniform direction, the vector potential must also point in the same

direction, thus A(x) = A(s)nz, where the magnitude depends only on s by the symmetries

of the system. Consequently, B = ∇×A points in the direction perpendicular to both ns

and nz — i.e., the circular direction nφ.

Given the direction and the symmetry of the magnetic field (S.70), its magnitude B(s)

follows from the Ampere’s Law: Take a circle of radius s coaxial with the cylinder and use

it for Ampere’s loop:

∮

circle

B(x) · dx = 2πsB(s) = µ0 × I[through the circle]. (S.71)

For a circle wider than the conductor the current I here is the net current through the

cylinder, I = πR2 × J , hence

Boutside(s) =
µ0 × πR2 × J

2πs
=

µ0JR
2

2s
, (S.72)

while for the circle embedded inside the cylinder only a part of the net current flows through
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the circle, thus J = πs2 × J and hence

Binside(s) =
µ0 × πs2 × J

2πs
=

µ0Js

2
, (S.73)

In vector notations, the field inside the cylinder can be written as

Binside(x) =
µ0
2

J× x. (S.74)

Indeed,

J×x = (Jnj)× (znz +sns) = Jz (nz×nz = 0) + Js (nz×ns = nφ)) = Jsnφ . (S.75)

Or in a more general coordinate frame,

Binside(x) =
µ0
2

J× (x− y0) (S.76)

where y0 is some point on the axis of the cylindrical conductor.

Now let’s go back to the hollow cylindrical conductor whose current uniform current J

can be viewed as a superposition of (1) J1 = +J flowing through the solid outer cylinder

(both the conductor and the hole in it), and (2) J2 = −J flowing through the cylindrical

hole. The space inside the hole is inside both cylindrical currents, so the magnetic field inside

the hole is

Bhole(x) = B1(x) + B2(x) (S.77)

where both B1 and B2 are given by the appropriate eq. (S.76). Specifically,

Bhole(x) =
µ0
2

J1 × (x− y1) +
µ0
2

J2 × (x− y2)

=
µ0
2

J×
(

(x− y1) − (x− y2)
)

=
µ0
2

J× (y2 − y1).

(S.78)

Note that the x cancels out from the last formula, so the magnetic field inside the hole is

uniform!
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Finally, the y2−y1 difference in eq. (S.78) is the displacement d of the hole’s axis relative

to the outer cylinder’s axis; its direction is ⊥ to both axes and hence to the current. Thus,

the uniform field inside the hole is

Bhole =
µ0
2

J× d, (S.79)

its magnitude is

Binside = 1
2µ0Jd, (S.80)

while its direction is shown on the diagram below:

J B

The current here flows out from the screen

towards your face.
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