
PHY–387 K. Solutions for problem set #3.

Problem 1(a):

A point y on a rotating sphere moves at velocity v = ~ω × y, which for a uniformly charged

sphere sets up electric current of surface density

K(y) = σv = σ~ω × y. (S.1)

Or in terms of the 3D current density J,

J(y) = ρ(y)v(y) = σδ(|y| − R) ~ω × y. (S.2)

Problem 1(b):

Let

F (x)
def
=

∫∫

sphere

d2y
y

|y − x| . (S.3)

This integral is a function of a single vector x, so by the rotational symmetry it must point

in the direction of x (or perhaps the opposite direction) while its magnitude depends on the

magnitude of x and the radius R of the sphere we integrate over, thus

F (x) = f(rx, R)nx . (S.4)

To calculate the magnitude here, let’s use the spherical coordinates for the y where the

North pole θ = 0 points in the direction of the x. Then

component of y in the direction of x = y · nx = R cos θ (S.5)

while

d2y
def
= d2area(y) = R2 sin θ dθ dφ → 2πR2 d(− cos θ) (S.6)
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and

|x− y| =
√

R2 + r2x − 2Rrx cos θ . (S.7)

Consequently,

f(rx, R) = 2πR2

+1
∫

−1

d(− cos θ)
R cos θ

√

R2 + r2x − 2Rrx cos θ

〈〈 changing variables from − cos θ to t = r2x +R2 − 2Rrx cos θ 〉〉

= 2πR3

(rx+R)2
∫

(rx−R)2

dt

2Rrx

(r2x +R2 − t)/2Rrx√
t

=
πR

2r2x

(rx+R)2
∫

(rx−R)2

dt
r2x +R2 − t√

t
=

πR

2r2x

(

2
√
t(R2 + r2x) − 2

3t
3/2
)
∣

∣

∣

(rx+R)2

(rx−R)2

=
πR

r2x

(

(r +R)
(

(r2 +R2) − 1
3(r +R)2

)

− |rx − R|
(

(r2x +R2 − 1
3(rx − R)2)

)

)

〈〈 after a bit of algebra 〉〉

=
πR

r2x
× 4

3
min

(

r3x, R
3),

(S.8)

and therefore

F (x) =
4πR

3
min

(

r3x, R
3)

nx

r2x
. (S.9)

Quod erat demonstrandum.

Problem 1(c):

The vector potential (in the transverse gauge) of the current (S.2) obtains as a volume

integral

A(x) =
µ0
4π

∫∫∫

J(y) d3y

|x− y| , (S.10)

In light of the delta-function factor δ(|y| − R) in the current (S.2) on the surface of the
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rotating sphere, this volume integral reduces to a surface integral

A(x) =
µ0
4π

∫∫

sphere

(σ~ω × y) d2Area(y)

|x− y| . (S.11)

After pulling out the constant factors from this integral — including the vector-product

factor ~ω × — we arrive at

A(x) =
µ0σ

4π
~ω×

∫∫

sphere

y d2Area(y)

|x− y| (S.12)

where the remaining integral no longer depends on the angular velocity ~ω or even its direction;

instead, it depends only on the x and the radius R of the sphere. In fact, it’s precisely the

integral (1) we have evaluated in part (b), thus

A(x) =
µ0σ

4π
~ω ×

(

4πR

3
min

(

r3x, R
3)

nx

r2x

)

=
µ0σR

3
min

(

r3x, R
3)

~ω × nx

r2x
,

(S.13)

or in terms of separate formulae for the two sides of the charged sphere,

for |x| < R (inside the sphere), A(x) =
µ0σR

3
(~ω × x), (S.14)

for |x| > R (outside the sphere), A(x) =
µ0σR

4

3

~ω × nx

r2x
. (S.15)

Note that outside the sphere, the vector potential (S.15) looks like the potential of a

pure magnetic dipole with magnetic moment

m =
4π

3
R4σ ~ω. (S.16)

Consequently, the magnetic field B outside the sphere looks like a pure dipole field

Boutside(x) =
µ0σR

4

3

3(nx · ~ω)nx − ~ω

|x|3 . (S.17)

As to the inside the sphere, the vector potential (S.14) corresponds to a uniform magnetic
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field. Indeed,

∇× (~ω × x) = ~ω(∇ · x) − (~ω · ∇)x = 3~ω − ~ω = 2~ω = const, (S.18)

hence uniform

Binside =
2µ0σR

3
~ω. (S.19)

Finally, the dipole moment of the rotating sphere. There are two ways to calculate it —

and the students who use any of these methods should receive full grades. The first method

is to look at the magnetic field we have already calculated and extract the magnetic dipole

moment from the B(x) for rx → ∞. As it happens, the field (S.17) anywhere outside the

sphere looks like a pure dipole field for a magnetic moment (S.16), so the sphere’s dipole

moment m must be precisely as in eq. (S.17), namely

m =
4π

3
R4σ ~ω. (S.16)

The second method is to use the general formula we have derived in class for the volume

currents,

m =
1

2

∫∫∫

y × J(y)d3y. (S.20)

For the surface current (S.2) on the sphere, this formula becomes

m = 1
2

∫∫

sphere

y × (σ~ω × y) d2area(y)

=
σ

2

∫∫

sphere

(

~ω(y2)− (~ω · y)y
)

d2area(y),

(S.21)

or in components

mi =
σ2
2

ωi ×
∫∫

sphere

(δijy
2 − yiyj) d

2area(y). (S.22)
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In the integral here
∫∫

sphere

y2 d2area(y) = R2 × 4πR2 (S.23)

while
∫∫

sphere

uiyj d
2area(y) = δij

R2

3
× 4πR2, (S.24)

hence altogether
∫∫

sphere

(δijy
2 − yiyj) d

2area(y) =
8πR4

3
δij (S.25)

and therefore

mi =
4πR4σ

3
ωi . (S.26)

In other words,

m =
4π

3
σR4~ω, (S.27)

exactly as in eq. (S.16).

Problem 1(d):

Finally, consider two concentric spheres: the outer sphere of radius R1 and charge density σ1

rotating with angular velocity ω1, and the inner sphere of radius R2 < R1 and charge density

σ2 rotating at angular velocity ω2. The two spheres rotate around different axes (although

both go through the common center), and that’s what causes the magnetic torque between

the spheres.

By the angular version of the Newton’s Third Law, we may calculate either the torque

on the inner sphere due to magnetic field of the outer sphere, or the torque on the outer

sphere due to magnetic field of the inner sphere: the two torques must be equal in magnitude

and opposite in direction,

~τ1 on 2 = −~τ2 on 1 , (S.28)

as long as both torques are taken WRT the same pivot, — the common center of the two
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spheres. Torque on the inner sphere happens to be much easier to calculate, so let’s work it

out.

In part (c) we saw that the magnetic field B1(x) due to the outer sphere is uniform

inside that sphere. So the torque on the inner sphere is due to a uniform magnetic field B1,

which obtains from a simple formula

~τ1 on 2 = m2 ×B1 , (S.29)

without any further integration. Thus,

~τ1 on 2 = m2 ×B1 =

(

4π

3
σ2R

4
2~ω2

)

×
(

2

3
µ0σ1R1~ω1

)

=
8π

9
µ0σ1σ2R1R

4
2 (~ω2 × ~ω1).

(S.30)

As to the torque from the inner sphere on the outer sphere, the direct calculation involves

non-trivial integration and a messy vector algebra. So let me skip the direct calculation and

simply use the Third Law (S.28) for the torques, thus

~τ2 on 1 = −8π

9
µ0σ1σ2R1R

4
2 (~ω2 × ~ω1) = +

8π

9
µ0σ1σ2R1R

4
2 (~ω1 × ~ω2). (S.31)

Problem 2(a):

First of all, by the rotational symmetry of the solenoid — and hence of the magnetic field

— around the solenoid’s axis, the magnetic field’s components in the cylindrical coordinates

Bz(z, s, φ), Bs(z, s, φ), and Bφ(z, s, φ) do not depend on the angular coordinate φ so they

are functions of z and s only. Second, by the Ampere’s Law Bφ = 0; indeed, take a coaxial

circle of radius s < R centered at some axis point z, then

∮

circle

B · d~ℓ = 2πs× Bφ(s, z) = µ0 × I[through the circle] = 0. (S.32)

Thus, Bφ is zero everywhere while Bz and Bs are some functions of z and s only, and

since there are no wires inside the solenoid, they should be analytic functions of z and s.
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This means, we may expand them into convergent power series in s and z, although for

our purpose it’s more convenient to expand them into power series in s with z–dependent

coefficients,

Bz(z, s) =
∞
∑

k=0

ak(z)× sk, Bs(s, z) =
∞
∑

k=0

bk(z)× sk. (S.33)

To bring these series into the form (2–4), we need to show that the series for the Bz(z, s)

comprises only the even powers of s while the series for the Bs(z, s) comprises only the odd

powers. This follows from the requirement of the magnetic field being analytic not only in

the cylindrical (z, s, φ) coordinates but also to in the Cartesian coordinates (x, y, z). Using

s =
√

x2 + y2 , Bx =
x

s
Bs , By =

y

s
Bs [for Bφ = 0], (S.34)

we may convert the series (S.33) into

Bz(x, y, z) =

∞
∑

k=0

ak(z)× (x2 + y2)k/2, (S.35)

Bx(x, y, z) =

∞
∑

k=0

bk(z)× x(x2 + y2)(k−1)/2, (S.36)

By(x, y, z) =
∞
∑

k=0

bk(z)× y(x2 + y2)(k−1)/2. (S.37)

To make these series analytic in the Cartesian x and y coordinates, each term in each series

must be a polynomial in x and y; the half-integral or negative powers of (x2 + y2) are not

allowed. Thus, we must have

ak = 0 unless k is even,

bk = 0 unless k is odd.
(S.38)

Going back to the cylindrical coordinates and to the series (S.33), we see that the first series

has only even powers of s while the second series has only odd powers. In other words,

Bz(z, s) =
∞
∑

n=0

αn(z)× s2n, Bs(s, z) =
∞
∑

n=0

βn(z)× s2n+1 (S.39)

where I have renamed a2n → αn and b2n+1 → βn for consistency with eqs. (2–3).
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Problem 2(b):

In the cylindrical coordinates, the divergence and the curl of an axially symmetric magnetic

field with Bφ = 0 obtain as

∇ ·B =
∂Bz

∂z
+

∂Bs

∂s
+

Bs

s
, ∇×B =

(

∂Bz

∂s
− ∂Bs

∂z

)

nφ . (S.40)

To make these divergence and curl vanish, we should have

∂Bs

∂z
=

∂Bz

∂s
, (S.41)

∂Bz

∂z
= −

(

∂

∂s
+

1

s

)

Bs. (S.42)

In terms of the power series (2) and (3), we have

∂Bs

∂z
=

∂

∂z

∞
∑

n=0

βn(z)× s2n+1 =
∞
∑

n=0

β′
n(z)× s2n+1, (S.43)

∂Bz

∂s
=

∂

∂s

∞
∑

n=0

αn(z)× s2n =

∞
∑

n=1

αn(z)× 2ns2n−1 =

∞
∑

n=0

αn+1 × (2n+ 2)s2n+1, (S.44)

thus eq. (S.41) translates to

∞
∑

n=0

β′
n(z)× s2n+1 =

∞
∑

n=0

αn+1 × (2n+ 2)s2n+1 (S.45)

and therefore

for each n : β′
n(z) = (2n + 2)αn+1(z). (S.46)

Likewise, in terms of the series (2) and (3),

∂Bz

∂z
=

∂

∂z

∞
∑

n=0

αn(z)× s2n =
∞
∑

n=0

α′
n(z)× s2n, (S.47)
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−
(

∂

∂s
+

1

s

)

Bs = −
(

∂

∂s
+

1

s

) ∞
∑

n=0

βn(z)× s2n+1

= −
∞
∑

n=0

βn(z)×
(

(2n+ 1)s2n + s2n = (2n+ 2)s2n
)

, (S.48)

hence eq. (S.42) translates to

∞
∑

n=0

α′
n(z)× s2n = −

∞
∑

n=0

βn(z)× (2n+ 2)s2n (S.49)

and therefore

for each n : α′
n(z) = −(2n+ 2)βn(z). (S.50)

Together, eqs. (S.46) and (S.50) provide recursive relations between the coefficients of

the powers of s in the series (1) and (2) and the z-derivatives of the coefficients of lower

powers. Solving these recursion relations, we have

αn(z) =
1

2n
β′
n−1(z) =

1

2n

d

dz

(

−α′
n−1(z)

2n

)

= − 1

(2n)2
α′′
n−1(z) (S.51)

and hence

αn(z) =
−1

(2n)2
d2

dz2

(

αn−1(z) =
−1

(2n− 2)2
α′′
n−2

)

=
+1

(2n)2(2n− 2)2
α′′′′
n−2(z)

=
−1

(2n)2(2n− 2)2(2n− 4)2
d6

dz6
αn−3(z) = · · ·

=
(−1)n

(2n)2(2n− 2)2 · · · (2)2
d2n

dz2n
α0(z) .

(S.52)

Or in a more compact form

αn(z) =
(−1)n

[2nn!]2
d2n

dz2n
α0(z), (5.a)

and consequently,

βn(z) =
−1

2n+ 2
α′
n(z) =

(−1)n+1

22n+1n!(n + 1)!

d2n+1

dz2n+1
α0(z). (5.b)

Finally, eqs. (6) and (7) follow by plugging these αn(z) and βn(z) into the series (2) and (3).
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Problem 2(c):

A tightly-would solenoid can be approximated by a continuous sequence of current loops of

linear density N/L, each carrying the solenoid’s current I. In class, we had calculated the

magnetic field of on such ring on the axis through the ring’s center and ⊥ to the ring’s plane

— i.e., on the solenoid’s symmetry axis — as

Bring
z (δz) =

µ0I

2
× R2

[R2 +∆z2]3/2
(S.53)

where ∆z is the distance between the on-axis point in question and the ring’s center. For

the solenoid whose turns run from z = −(L/2) to z = +(L/2), this gives us

Bz(z, 0) =
N

L

+L/2
∫

−L/2

dz′Bring
z (z′ − z) (S.54)

and hence

Bz(z, 0) =
N

L
× µ0IR

2

2
×

+(L/2)−z
∫

−(L/2)−z

d(∆z)

[R2 +∆z2]3/2
. (S.55)

To evaluate the integral here, let’s change variables according to

∆z = R × tanλ, (S.56)

thus

R2 + ∆z2 = 1 + tan2 λ =
1

cos2 λ
, d(∆z) =

Rdλ

cos2 λ
,

hence

d(∆z)

[R2 +∆z2]3/2
=

Rdλ

cos2 λ
× cos3 λ

R3
=

cosλ dλ

R2
=

d(sinλ)

R2
(S.57)

where

sin λ =
tanλ

√

1 + tan2 λ
=

∆z/R
√

1 + (∆z/R)2
=

∆z√
R2 +∆z2

. (S.58)
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Consequently,

+(L/2)−z
∫

−(L/2)z

d(∆z)

[R2 +∆z2]3/2
=

1

R2

(

(L/2)− z
√

R2 + ((L/2)− z)2
− −(L/2)− z
√

R2 + ((L/2) + z)2

)

(S.59)

and therefore

Bz(0) =
µ0IN

L
× 1

2

(

(L/2)− z
√

R2 + ((L/2)− z)2
+

(L/2) + z
√

R2 + ((L/2) + z)2

)

, (S.60)

exactly as in eq. (8).

Problem 2(d):

In the middle part of a long thin solenoid, both x+ = (L/2) ± z and x− = (L/2) − z are

much larger than the solenoid’s radius R, so we may approximate eq. (8) for the the on-axis

magnetic field using

x√
x2 +R2

≈ 1 − R2

2x2
+ O(R4/x2) for x ≫ R, (S.61)

hence

(L/2)− z
√

R2 + ((L/2)− z)2
+

(L/2) + z
√

R2 + ((L/2) + z)2
≈

≈ 2 − R2

2

(

1

((L/2)− z)2
+

1

((L/2) + z)2

)

+ O(R4/L4)

= 2 − R2 × (L/2)2 + z2

[(L/2)2 − z2]2
+ O(R4/L4)

(S.62)

and therefore

Bz(z, 0) = α0(z) ≈ µ0IN

L
×
(

1 − 2R2 × L2 + 4z2

[L2 − 4z2]2
+ O(R4/L4)

)

. (S.63)

Given this formula, we may estimate the derivatives of the α0 at |z| ≪ L (the central
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region of the solenoid) as

(d/dz)2nα0(z) ≈ (number)× µ0IN

L
× R2

L2n+2
(S.64)

for the even-order derivatives, and

(d/dz)2n+1α0(z) ≈ (number)× µ0IN

L
× R2z

L2n+4
(S.65)

for the odd-numbered derivatives.

In light of eqs. (4), this means

αn(z) ≈ (number)× µ0IN

L
× R2

L2n+2
,

βn(r) ≈ (number)× µ0IN

L
× R2z

L2n+4
.

(S.66)

Consequently, the nth term in the series (5) for the Bz(z, s) can be estimated as

αn(z)× s2n ≈ (number)× µ0IN

L
× R2 s2n

L2n+2
, (S.67)

and since s ≤ R inside the solenoid,

αn × s2n <∼ (number)× µ0IN

L
× R2+2n

L2n+2
= (number)× α0 ×

(

R

L

)2n+2

. (S.68)

Thus, the subsequent terms in the series (5) are suppressed by larger and larger powers of the

small ratio R/L, so for a long thin solenoid we need only the first few terms. In particular,

to the accuracy of (R/L)4, we need just the α0 and the α1 terms thus

Bz(z, s) ≈ α0(z) + α1(z)× s2. (S.69)

Likewise, nth term in the series (5) for the Bs(z, s) can be estimated as

βn(z)× s2n+1 ≈ (number)× µ0IN

L
× R2 z s2n+1

L2n+4
, (S.70)

and since s ≤ R inside the solenoid,

βn(z)× s2n+1 <∼ (number)× µ0IN

L
× z R2n+3

L2n+4
= (number)× α0 ×

z

L

(

R

L

)2n+3

. (S.71)

Again, these terms rapidly diminish with n, so the leading term here dominates the series.
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In particular, to get the Bs(z, s) to the accuracy of Bz × (R/L)4, we need only the leading

term, thus

Bs(z, s) ≈ β1(z)× s. (S.72)

Problem 2(e):

Let’s focus on the very central region |z| = O(R) ≪ L of the solenoid. In this region, eq. (8)

for the α0(z) may be approximated as

α0(z) =
µ0IN

L

(

1 − 2R2

L2
− 24R2z2

L4
+

6R4

L4
,+O(R6/L6)

)

, (S.73)

hence

α′
0(z) =

µ0IN

L

(

0 − 48R2z

L4
+ O(R5/L6)

)

, (S.74)

α′′
0(z) =

µ0IN

L

(

0 − 48R2

L4
+ O(R4/L6)

)

, (S.75)

α′′′
0 (z) =

µ0IN

L

(

0 + O(R3/L6)
)

, (S.76)

etc., etc.

Plugging these formulae into eqs. (6) and (7) for the off-axis magnetic field, we immediately

see that in the central region of the solenoid

Bz(z, s) =
µ0IN

L

(

1 − 2R2

L2
+

6R2(R2 − 4z2 + 2s2)

L4
+ O(R6/L6)

)

, (9.a)

Bs(z, s) =
µ0IN

L

(

0 +
24R2zs

L4
+ O(R6/L6)

)

. (9.b)

Quod erat demonstrandum.
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Problem 3(a):

Let’s start with a simpler problem: two concentric metal spheres, and the space between

the spheres is either completely empty or completely filled with a uniform dielectric. By

spherical symmetry of this setup, the electric field between the spheres must point in the

radial direction while its magnitude depends only on the radius; by Gauss Law,

E(x) =
A

r2
n (S.77)

for some constant A. The value of this constant follows from the voltage between the plates:

V = Φ(a) − Φ(b) = A

(

1

a
− 1

b

)

=⇒ A =
V ab

b− a
. (S.78)

For the problem at hand, the space between the spheres is half-filled with a dielectric

while the other half is vacuum. Fortunately, each material occupies a hemisphere, so the

boundary between them lies in the equatorial plane. Consequently, for this geometry the

electric field is exactly as in eq. (S.77), while the displacement field D is

Din vacuum = ǫ0E =
ǫ0A

r2
n,

Din dielectric = ǫǫ0E =
ǫǫ0A

r2
n.

(S.79)

Graphically,

E D (S.80)

Indeed, the field (S.77) and (S.79) obey the boundary conditions at the dielectric-boundary

interface

E
‖
vac = E

‖
diel , D⊥

vac = Ddiel (S.81)

since (1) the E field is completely continuous across the boundary, while (2) the D field at

both sides of the boundary points in the radial direction which happens to be parallel to the
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boundary, thus

D⊥
vac = 0 = D⊥

diel . (S.82)

Besides these boundary conditions, the fields (S.77) and (S.79) obviously obey the electro-

static field equations

∇× E = 0 and ∇ ·D = ρ = 0 (S.83)

in both halves of the space between the spheres, as well as the boundary conditions on the

metal spheres,

for x ∈ inner sphere, Φ(x) = const,

for x ∈ outer sphere, Φ(x) = const,

Φ(inner sphere) − Φ(outer sphere) = V. (S.84)

Thus, the electric tension and displacement fields for this problem are indeed as in

eqs. (S.77) and (S.79).

Problem 3(b):

Inside the metal of each sphere E = 0 and henceD = 0. This makes theD field discontinuous

at the outer surface of the inner sphere and at the inner surface of the outer sphere, and the

physical reason for such a discontinuity is the surface density σ of macroscopic charges. By

the Gauss Law,

σ = D⊥(just outside the metal) = D · n⊥ (S.85)

where n⊥ is the unit vector normal to the metal’s surface and point out from the metal. For

the outer surface of the inner sphere this makes n⊥ = +nr but for the inner surface of the

outer sphere n⊥ = −nr. Consequently,

σ(inner sphere, vacuum side) = +
ǫ0A

a2
, (S.86)

σ(inner sphere, dielectric side) = +
ǫǫ0A

a2
, (S.87)
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σ(outer sphere, vacuum side) = −ǫ0A

b2
, (S.88)

σ(outer sphere, dielectric side) = −ǫǫ0A

b2
, (S.89)

where A is as in eq. (S.78).

Given these surface charge densities, the net charge on the inner sphere is

Qinner = +
ǫ0A

a2
× 2πa2 +

ǫǫ0A

a2
× 2πa2 = 2π(ǫ+ 1)ǫ0A, (S.90)

while the net charge on the outer sphere is

Qouter = −ǫ0A

b2
× 2πb2 − ǫǫ0A

b2
× 2πb2 = −2π(ǫ+ 1)ǫ0A = −Qinner . (S.91)

Treating these two metal spheres as plates of a capacitor with charges ±Q, the capacitance

of this capacitor is

C =
Q

V
= 2π(ǫ+ 1)ǫ0 ×

A

V
= 2π(ǫ+ 1)ǫ0 ×

ab

b− a
. (S.92)
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