PHY-387 K. Solutions for problem set \#4.

Problem 2(a):
Let's span the current-carrying wire loop \mathcal{L} with some surface \mathcal{S}. To find the solid angle occupied by the image of \mathcal{S} as viewed from point x, we project \mathcal{S} onto a unit sphere centered on \mathbf{x}, and then measure the area of the image. For an infinitesimal piece of \mathcal{S} of vector area $d \mathbf{a}$, we first project this piece onto a line of sight from \mathbf{x} and then further project it onto the unit sphere:

On this picture

$$
\begin{equation*}
\Delta A_{2 n}=\Delta A_{2} \times \cos \theta, \quad \Delta \Omega=\frac{\Delta A_{1}}{r_{1}^{2}}=\frac{\Delta A_{2}}{r_{2}^{2}} \tag{S.1}
\end{equation*}
$$

which in our notations corresponds to

$$
\begin{equation*}
d \Omega=\frac{\mathbf{n} \cdot d^{2} \text { area }}{R^{2}} \tag{S.2}
\end{equation*}
$$

where R is the distance from the observation point \mathbf{x} and \mathbf{n} is the unit vector along the line of sight. For the infinitesimal piece of \mathcal{S} located at \mathbf{y},

$$
\begin{equation*}
R=|\mathbf{y}-\mathbf{x}|, \quad \mathbf{n}=\frac{\mathbf{y}-\mathbf{x}}{|\mathbf{y}-\mathbf{x}|}, \tag{S.3}
\end{equation*}
$$

hence

$$
\begin{equation*}
d \Omega=\frac{(\mathbf{y}-\mathbf{x}) \cdot d^{2} \operatorname{area}(\mathbf{y})}{|\mathbf{y}-\mathbf{x}|^{3}} \tag{S.4}
\end{equation*}
$$

Integrating this formula over the whole surface \mathcal{S} spanning the loop \mathcal{L}, we arrive at

$$
\begin{equation*}
\Omega(\mathbf{x})=\iint_{\mathcal{S}} \frac{(\mathbf{y}-\mathbf{x}) \cdot d^{2} \operatorname{area}(\mathbf{y})}{|\mathbf{y}-\mathbf{x}|^{3}} \tag{2}
\end{equation*}
$$

Quod erat demonstrandum.

Problem 2(b):

The sign convention for the $\Omega(\mathbf{x})$ follow from eq. (2) and the standard convention for the direction of the area vector. For simplicity, consider a flat loop \mathcal{L} spanned by a flat surface \mathcal{S}. The area vector a of this surface is perpendicular to the surface itself, but which perpendicular? To make the Stokes' theorem work without an extra sign, the direction of a should follow from the sense of the loop \mathcal{L} by the right hand rule: if you see the loop (or rather the current in the loop) running clockwise, then the area vector a points away from you, i.e., makes angle $<90^{\circ}$ with the line of sight; but if you see the loop \mathcal{L} running counterclickwise, then a points towards you, i.e., makes angle $>90^{\circ}$ with the line of site. The same rule applies to the area vector of any infinitesimal piece of \mathcal{S}, so the integrand in eq. (2) is positive for a clockwise loop \mathcal{L} and negative for a counterclockwise \mathcal{L}.

For a non-flat surface, the rule for for the direction of the da vector is topological. The surface \mathcal{S} spanning the loop \mathcal{L} must be orientable, i.e., have two well defined sides; Möbius strips and similar non-orientable surfaces are not allowed. Depending on the sense of the loop \mathcal{L}, we call one side 'inner' and the other side 'outer' according at the right hand rule, and then the direction of $d \mathbf{a}$ is the \perp to the surface (at the point in question) and pointing from the 'inside' to the 'outside'. Consequently, if the loop \mathcal{L} and the surface \mathcal{S} are not too twisted and lie largely to one side of \mathbf{x}, then the sign of $\Omega(\mathbf{x})$ obtaining from eq. (2) follows from the sense of the loop as viewed from \mathbf{x} similarly to the flat-surface case.

The problem with eq. (2) is that different surfaces spanning the same loop \mathcal{L} may yield different values of $\Omega(\mathbf{x})$, although all the different values for the same point \mathbf{x} differ by 4π,
or at worst by $4 \pi \times$ an integer. To see how this works, let two surfaces \mathcal{S}_{1} and \mathcal{S}_{2} span \mathcal{L} and consider the space \mathcal{V} trapped between these surfaces. Together, \mathcal{S}_{1} and \mathcal{S}_{2} form the complete surface of the volume \mathcal{V}, but one of the the two surfaces - say, \mathcal{S}_{2} - has a wrong orientation - its infinitesimal area vectors point inside \mathcal{V} rather than outside. So properly speaking, the complete surface of \mathcal{V} is $\mathcal{S}_{1}-\mathcal{S}_{2}$. By Gauss theorem, this means that for any vector field $\mathbf{f}(\mathbf{y})$

$$
\begin{equation*}
\iint_{\mathcal{V}} \nabla \cdot \mathbf{f} d^{3} \mathbf{y}=\iint_{\mathcal{S}_{1}} \mathbf{f} \cdot d^{2} \mathbf{a}-\iint_{\mathcal{S}_{2}} \mathbf{f} \cdot d^{2} \mathbf{a} \tag{S.5}
\end{equation*}
$$

Now let

$$
\begin{equation*}
\mathbf{f}(\mathbf{y})=\frac{(\mathbf{y}-\mathbf{x})}{|\mathbf{y}-\mathbf{x}|^{3}} \tag{S.6}
\end{equation*}
$$

for any fixed point \mathbf{x}. Then calculating $\Omega(\mathbf{x})$ using the surfaces \mathcal{S}_{1} and \mathcal{S}_{2} and taking the difference, we obtain
$\Omega_{1}(\mathbf{x})-\Omega_{2}(\mathbf{x})=\iint_{\mathcal{S}_{1}} \frac{(\mathbf{y}-\mathbf{x}) \cdot d^{2} \mathbf{a}(\mathbf{y})}{|\mathbf{y}-\mathbf{x}|^{3}}-\iint_{\mathcal{S}_{2}} \frac{(\mathbf{y}-\mathbf{x}) \cdot d^{2} \mathbf{a}(\mathbf{y})}{|\mathbf{y}-\mathbf{x}|^{3}}=\iiint_{\mathcal{V}} \nabla_{y} \cdot\left(\frac{(\mathbf{y}-\mathbf{x})}{|\mathbf{y}-\mathbf{x}|^{3}}\right) d^{3} \mathbf{y}$.

But

$$
\begin{equation*}
\nabla_{y} \cdot\left(\frac{(\mathbf{y}-\mathbf{x})}{|\mathbf{y}-\mathbf{x}|^{3}}\right)=4 \pi \delta^{(3)}(\mathbf{x}-\mathbf{y}) \tag{S.8}
\end{equation*}
$$

hence

$$
\Omega_{1}(\mathbf{x})-\Omega_{2}(\mathbf{x})= \begin{cases}4 \pi & \text { if } \mathbf{x} \text { lies inside } \mathcal{V}, \text { i.e. between } \mathcal{S}_{1} \text { and } \mathcal{S}_{2} \tag{S.9}\\ 0 & \text { otherwise } .\end{cases}
$$

In other words, if we take two surfaces spanning the same loop \mathcal{L} but on different sides from point \mathbf{x}, then the corresponding angles $\Omega_{1}(\mathbf{x})$ and $\Omega_{2}(\mathbf{x})$ differ by 4π.

A qualitative way to see this multivaluedness is to project both surfaces \mathcal{S}_{1} and \mathcal{S}_{2} and the loop \mathcal{L} onto the the unit sphere centered at \mathbf{x}. The image of the loop \mathcal{L} divides the sphere into two parts, and if the surfaces \mathcal{S}_{1} and \mathcal{S}_{2} lie on different sides of \mathbf{x}, then their images are precisely the two parts of the sphere divided by the image of \mathcal{L}. Together, these two images complete the sphere, so their solid angles must add up to 4π. But one of the two
images has a wrong orientation, so the solid angle it occupies should be taken with a minus sign, hence

$$
\begin{equation*}
\text { either } \Omega_{1}(\mathbf{x})-\Omega_{2}(\mathbf{x})=4 \pi \text { or } \Omega_{2}(\mathbf{x})-\Omega_{1}(\mathbf{x})=4 \pi \tag{S.10}
\end{equation*}
$$

Finally, when the wire loop \mathcal{L} is a coil of many turns, a surface spanning it must span every turn, which calls for some kind of a helicoid. Projecting such a helicoid onto a sphere creates many overlapping patches, and their solid angles must be added up to produce the correct $\Omega(\mathbf{x})$. Consequently, for an \mathbf{x} close to a coil of many turns we may get $\Omega(\mathbf{x}) \gg 4 \pi$. Also, when \mathbf{x} is in the middle of the coil, then different helicoid-like surfaces spanning the same coil may have several turns on different side of \mathbf{x}. Consequently, the values of $\Omega(\mathbf{x})$ for these two surfaces may differ not just by 4π but by $4 \pi \times$ an integer, i.e.,

$$
\begin{equation*}
\Omega_{1}(\mathbf{x})-\Omega_{2}(\mathbf{x})=0 \text { or } \pm 4 \pi \text { or } \pm 8 \pi \text { or } \pm 12 \pi \text { or } \cdots . \tag{S.11}
\end{equation*}
$$

However, since the differences between the values of $\Omega(\mathbf{x})$ for the same point \mathbf{x} are always integer multiples of 4π, they cannot gradually change from \mathbf{x} to $\mathbf{x}+\delta \mathbf{x}$. Therefore, despite the multivaluedness of the $\Omega(\mathbf{x})$, the gradient $\nabla \Omega(\mathbf{x})$ is single-valued.

Problem 2(c):

First, let's derive eq. (3). Take any vector field $\mathbf{f}(\mathbf{y})$ and any constant vector \mathbf{c}. By the double vector product formula,

$$
\begin{equation*}
\nabla \times(\mathbf{f} \times \mathbf{c})=(\mathbf{c} \cdot \nabla) \mathbf{f}-(\nabla \cdot \mathbf{f}) \mathbf{c} \tag{S.12}
\end{equation*}
$$

In particular, let

$$
\begin{equation*}
\mathbf{f}(\mathbf{y})=\frac{(\mathbf{y}-\mathbf{x})}{|\mathbf{y}-\mathbf{x}|^{3}}=\nabla_{y}\left(\frac{-1}{|\mathbf{y}-\mathbf{x}|}\right) \tag{S.13}
\end{equation*}
$$

for a fixed \mathbf{x}. For this 'field', $\nabla_{y} \cdot \mathbf{f}=0$ for $\mathbf{y} \neq \mathbf{x}$, so eq. (S.12) simplifies to

$$
\begin{equation*}
\nabla_{y} \times(\mathbf{f} \times \mathbf{c})=\left(\mathbf{c} \cdot \nabla_{y}\right) \mathbf{f} \tag{S.14}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\nabla_{y} \times\left(\frac{(\mathbf{y}-\mathbf{x})}{|\mathbf{y}-\mathbf{x}|^{3}} \times \mathbf{c}\right)=\left(\mathbf{c} \cdot \nabla_{y}\right) \frac{(\mathbf{y}-\mathbf{x})}{|\mathbf{y}-\mathbf{x}|^{3}} \tag{3}
\end{equation*}
$$

Now let's use this formula to calculate the gradient of $\Omega(\mathbf{x})$ as calculated in eq. (2). Let c be come constant vector, then

$$
\begin{align*}
\mathbf{c} \cdot \nabla \Omega(\mathbf{x})= & \left(\mathbf{c} \cdot \nabla_{x}\right) \iint_{\mathcal{S}} \frac{(\mathbf{y}-\mathbf{x})}{|\mathbf{y}-\mathbf{x}|^{3}} \cdot d^{2} \mathbf{a}(\mathbf{y})=\iint_{\mathcal{S}}\left(\mathbf{c} \cdot \nabla_{x}\right)\left(\frac{(\mathbf{y}-\mathbf{x})}{|\mathbf{y}-\mathbf{x}|^{3}}\right) \cdot d^{2} \mathbf{a}(\mathbf{y}) \\
& \left\langle\left\langle\text { using } \nabla_{x} f(\mathbf{y}-\mathbf{x})=-\nabla_{y} f(\mathbf{y}-\mathbf{x})\right\rangle\right\rangle \\
= & -\iint_{\mathcal{S}}\left(\mathbf{c} \cdot \nabla_{y}\right)\left(\frac{(\mathbf{y}-\mathbf{x})}{|\mathbf{y}-\mathbf{x}|^{3}}\right) \cdot d^{2} \mathbf{a}(\mathbf{y}) \\
= & -\iint_{\mathcal{S}}\left(\nabla_{y} \times\left(\frac{(\mathbf{y}-\mathbf{x})}{|\mathbf{y}-\mathbf{x}|^{3}} \times \mathbf{c}\right)\right) \cdot d^{2} \mathbf{a}(\mathbf{y}) \quad\langle\langle\text { using eq. }(3)\rangle\rangle \tag{S.15}\\
= & -\oint_{\mathcal{L}}\left(\frac{(\mathbf{y}-\mathbf{x})}{|\mathbf{y}-\mathbf{x}|^{3}} \times \mathbf{c}\right) \cdot d^{2} \mathbf{y} \quad\langle\langle\text { by the Stokes' theorem }\rangle\rangle \\
= & +\oint_{\mathcal{L}}\left(\mathbf{c} \cdot\left(\frac{(\mathbf{y}-\mathbf{x})}{|\mathbf{y}-\mathbf{x}|^{3}} \times d \mathbf{y}\right)\right) \quad\langle\langle\text { vector identity }\rangle\rangle \\
= & \mathbf{c} \cdot \oint_{\mathcal{L}} \frac{(\mathbf{y}-\mathbf{x})}{|\mathbf{y}-\mathbf{x}|^{3}} \times d \mathbf{y} .
\end{align*}
$$

Since \mathbf{c} on both sides of this equation is an arbitrary constant vector, this means

$$
\begin{equation*}
\nabla \Omega(\mathbf{x})=\oint_{\mathcal{L}} \frac{(\mathbf{y}-\mathbf{x})}{|\mathbf{y}-\mathbf{x}|^{3}} \times d \mathbf{y}=-\oint_{\mathcal{L}} d \mathbf{y} \times \frac{(\mathbf{y}-\mathbf{x})}{|\mathbf{y}-\mathbf{x}|^{3}} \tag{S.16}
\end{equation*}
$$

Finally, let's see what all this math has to do with eq. (1) for the scalar magnetic potential $\Psi(\mathbf{x})$. The magnetic intensity field \mathbf{H} follows from $\Psi(\mathbf{x})$ as $-\nabla \Psi$, hence according to eqs. (1) and (S.16),

$$
\begin{equation*}
\mathbf{H}(\mathbf{x})=-\nabla \Psi(\mathbf{x})=-\frac{I}{4 \pi} \nabla \Omega(\mathbf{x})=+\frac{1}{4 \pi} \oint_{\mathcal{L}} I d \mathbf{y} \times \frac{(\mathbf{y}-\mathbf{x})}{|\mathbf{y}-\mathbf{x}|^{3}} \tag{S.17}
\end{equation*}
$$

But this is precisely the Biot-Savart-Laplace formula for the magnetic field of the current I flowing through the wire loop \mathcal{L} !

Quod erat demonstrandum.

Problem 3:

Before addressing the problem at hand, let's consider the work and the energy for a variablecapacitance capacitor connected to a battery. As the capacitance changes, the charge stored in the capacitor changes, so a current flows through the battery, which performs electric work

$$
W_{\mathrm{el}}=V \delta Q
$$

Also, changing the capacitance of a charged capacitor takes a mechanical work $W_{\text {mech }}$, which can be calculated from the energy balance equation

$$
\begin{equation*}
\delta U=\delta W_{\mathrm{el}}+\delta W_{\mathrm{mech}} \tag{S.18}
\end{equation*}
$$

where

$$
\begin{equation*}
U=\frac{Q^{2}}{2 C}=\frac{C V^{2}}{2}=\frac{V Q}{2} \tag{S.19}
\end{equation*}
$$

is the energy stored in the capacitor. Consequently

$$
\begin{equation*}
\delta U=\frac{Q \delta Q}{C}-\frac{Q^{2}}{2 C^{2}} \delta C=V \delta Q-\frac{V^{2}}{2} \delta C \tag{S.20}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\delta W_{\mathrm{mech}}=\delta U-V \delta Q=-\frac{V^{2}}{2} \delta C \tag{S.21}
\end{equation*}
$$

BTW, the above calculation does not depend on the battery's voltage V being fixed. So the mechanical work involved in an infinitesimal change of capacitance is always given by eq. (S.21), regardless of whether the capacitor is hooked up to a fixed-voltage battery, or to more complicated power supply, or even charged and disconnected.

Now consider moving a piece of dielectric in or out from between the plates of a charged capacitor. Such movement changes the capacitance C, and according to eq. (S.21) this takes a mechanical work and hence mechanical forces. Specifically, there is a force pulling the dielectric inside the capacitor.

To see how this works, take a parallel plate capacitor, with rectangular plates of length L, width w, and distance d between the plates, $d \ll L, w$. The movable dielectric completely fills the gap between the plates and covers their whole width but not the length:

This capacitor can be thought as a parallel circuit of two capacitors, one vacuum-filled of length $L-z$ and the other dielectric-filled of length x, so altogether

$$
\begin{equation*}
C=\epsilon \epsilon_{0} \times \frac{x w}{d}+\epsilon_{0} \times \frac{(L-x) w}{d} \tag{S.22}
\end{equation*}
$$

Pulling the dielectric in through length δx changes the capacitance by

$$
\begin{equation*}
\delta C=(\epsilon-1) \epsilon_{0} \frac{w}{d} \times \delta x \tag{S.23}
\end{equation*}
$$

and according to eq. (S.21) this takes mechanical work upon the capacitor

$$
\begin{equation*}
W_{\mathrm{mech}}=-\frac{V^{2}}{2} \times \frac{(\epsilon-1) \epsilon_{0} w}{d} \times \delta x \tag{S.24}
\end{equation*}
$$

The mechanical work done by the capacitor obtains by sign reversal, and equating this work to $F \times \delta x$, we find the force F pulling the dielectric inside the capacitor,

$$
\begin{equation*}
F=+\frac{V^{2}}{2} \times \frac{(\epsilon-1) \epsilon_{0} w}{d} \tag{S.25}
\end{equation*}
$$

Finally, let's turn the capacitor plates vertically and immerse them part-way into transformer oil. The oil is a dielectric, so the force (S.25) pulls it into the space between the plates, and that's what raises the oil level between the plates compared to its level outside. The
height h through which the oil is raised follows from balancing the pulling force F against the weight of extra oil between the plates,

$$
\begin{equation*}
F=g \rho w d h \tag{S.26}
\end{equation*}
$$

and hence

$$
\begin{equation*}
h=\frac{F}{g \rho w d}=(\epsilon-1) \epsilon_{0} \frac{V^{2}}{2 g \rho d^{2}} . \tag{4}
\end{equation*}
$$

Note that the plates' width w cancels out from this formula.
For a numeric example, take transformer oil with dielectric constant $\epsilon=1.34$ and mass density $882 \mathrm{~kg} / \mathrm{m}^{3}$, make the gap between the plates 1.00 mm wide, and charge the capacitor to $V=3 \underline{000}$ Volts, then the oil in the gap will rise to $h=4.6 \mathrm{~mm}$.

Problem 4:

Let's start with the quasistatic magnetic field of the wire. At the moment the wire hangs along the z axis, we have

$$
\begin{equation*}
\mathbf{B}(s, \phi, z)=\frac{\mu_{0} I}{2 \pi s} \mathbf{n}_{\phi}, \tag{S.27}
\end{equation*}
$$

or in Cartesian coordinates

$$
\begin{equation*}
\mathbf{B}(x, y, z)=\frac{\mu_{0} I}{2 \pi} \frac{(-y,+x, 0)}{x^{2}+y^{2}} . \tag{S.28}
\end{equation*}
$$

For the sake of definiteness, let the wire move in the x direction,

$$
\begin{equation*}
x_{\text {wire }}(t)=v t, \quad y_{\text {wire }}(t)=0 \tag{S.29}
\end{equation*}
$$

so the quasistatic magnetic field moving with the wire is

$$
\begin{equation*}
\mathbf{B}(x, y, z, t)=\frac{\mu_{0} I}{2 \pi} \frac{(-y, x-v t, 0)}{(x-v t)^{2}+y^{2}} \tag{S.30}
\end{equation*}
$$

The electric field induced by this time-dependent magnetic field obeys the Induction Law

$$
\begin{equation*}
\nabla \times \mathbf{E}=-\frac{\partial}{\partial t} \mathbf{B} \tag{S.31}
\end{equation*}
$$

but instead of solving this equation directly for the field (S.30), it's easier to find the time-
dependent vector potential $\mathbf{A}(\mathbf{x}, t)$ and then use

$$
\begin{equation*}
\mathbf{E}=-\frac{\partial}{\partial t} \mathbf{A}-\nabla \Phi \tag{S.32}
\end{equation*}
$$

Moreover, in the Coulomb gauge $\nabla \cdot \mathbf{A}=0$ for the potential, the $\Phi(\mathbf{x}, t)$ here is the instantaneous Coulomb potential of the electric charges in the system. But the system at hand has no electric charges, in the Coulomb gauge $\Phi(\mathbf{x}, t) \equiv 0$, hence

$$
\begin{equation*}
\mathbf{E}=-\frac{\partial}{\partial t} \mathbf{A} \tag{S.33}
\end{equation*}
$$

Quasistatically, the Coulomb-gauge vector potential for a current in a wire obtains as

$$
\begin{equation*}
\mathbf{A}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \int_{\text {wire }} \frac{I d \mathbf{y}}{|\mathbf{x}-\mathbf{y}|} \tag{S.34}
\end{equation*}
$$

For the wire hanging along the z axis, this integral evaluates to

$$
\begin{equation*}
\mathbf{A}(s, \phi, z)=\frac{\mu_{0} I}{2 \pi} \mathbf{n}_{z}(\text { const }-\log s) \tag{S.35}
\end{equation*}
$$

or in Cartesian coordinates

$$
\begin{equation*}
\mathbf{A}(x, y, z)=\frac{\mu_{0} I}{4 \pi} \mathbf{n}_{z}\left(\text { const }-\log \left(x^{2}+y^{2}\right)\right) \tag{S.36}
\end{equation*}
$$

Consequently, for a moving wire

$$
\begin{equation*}
\mathbf{A}(x, y, z, t)=\frac{\mu_{0} I}{4 \pi} \mathbf{n}_{z}\left(\text { const }-\log \left((x-v t)^{2}+y^{2}\right)\right) \tag{S.37}
\end{equation*}
$$

and it is easy to check that

$$
\begin{equation*}
\nabla \cdot \mathbf{A}=0, \quad \nabla \times \mathbf{A}=\mathbf{B}[\text { from eq. }(\mathrm{S} .30)] \tag{S.38}
\end{equation*}
$$

Therefore, the induced electric field is

$$
\begin{align*}
\mathbf{E}(x, y, z, t) & =-\frac{\partial \mathbf{A}}{\partial t}=+\frac{\mu_{0} I}{4 \pi} \mathbf{n}_{z}\left(\frac{\partial \log \left((x-v t)^{2}+y^{2}\right)}{\partial t}\right) \\
& =\frac{\mu_{0} I}{4 \pi} \frac{-2 v(x-v t)}{(x-v t)^{2}+y^{2}} \mathbf{n}_{z} \tag{S.39}\\
& =-\mathbf{v} \times \mathbf{B}(x, y, z, t)
\end{align*}
$$

PS: In fact, for any magnet or electromagnet moving as a rigid body, the induced electric field is

$$
\begin{equation*}
\mathbf{E}(\mathbf{x}, t)=-\mathbf{v} \times \mathbf{B}(\mathbf{x}, t) \tag{S.40}
\end{equation*}
$$

Indeed, the magnetic field of a magnet moving as a rigid body moves with the magnet, thus

$$
\begin{equation*}
\mathbf{B}(\mathbf{x}, t)=\mathbf{B}_{0}(\mathbf{x}-\mathbf{v} t) \tag{S.41}
\end{equation*}
$$

Consequently, the time-derivative of this field at a fixed location \mathbf{x} is related to its space derivatives as

$$
\begin{equation*}
\frac{\partial \mathbf{B}}{\partial t}=-(\mathbf{v} \cdot \nabla) \mathbf{B} . \tag{S.42}
\end{equation*}
$$

Furthermore, by the double cross product formula

$$
\begin{equation*}
\nabla \times(\mathbf{v} \times \mathbf{B})=(\nabla \cdot \mathbf{B}) \mathbf{v}-(\mathbf{v} \cdot \nabla) \mathbf{B}=0-(\mathbf{v} \cdot \nabla) \mathbf{B} \tag{S.43}
\end{equation*}
$$

where the second equality stems from $\nabla \cdot \mathbf{B}=0$, hence

$$
\begin{equation*}
\frac{\partial \mathbf{B}}{\partial t}=-(\mathbf{v} \cdot \nabla) \mathbf{B}=+\nabla \times(\mathbf{v} \times \mathbf{B}) \tag{S.44}
\end{equation*}
$$

Consequently, according to Faraday's Induction Law

$$
\begin{equation*}
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}=-\nabla \times(\mathbf{v} \times \mathbf{B}) \tag{S.45}
\end{equation*}
$$

hence

$$
\begin{equation*}
\nabla \times(\mathbf{E}+\mathbf{v} \times \mathbf{B})=0 \tag{S.46}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\mathbf{E}+\mathbf{v} \times \mathbf{B}=-\nabla \Phi \tag{S.47}
\end{equation*}
$$

for some scalar potential Φ. In the absence of electric charges we may set $\Phi(\mathbf{x}, t) \equiv 0$, and therefore

$$
\begin{equation*}
\mathbf{E}(\mathbf{x}, t)=-\mathbf{v} \times \mathbf{B}(\mathbf{x}, t) \tag{S.48}
\end{equation*}
$$

Quod erat demonstrandum.

