
PHY–387 K. Solutions for problem set #7.

Problem 1(a):

For the sake of definiteness, lets assume the toroid lies in the horizontal plane, with its center

at the coordinate origin, and that the current in the coil flows up on the inner side of the

toroid and down on the outer side. Then the magnetic field inside the coil is

H =
IN

2πs
nφ ≈ IN

2πR
nφ (S.1)

while the magnetic field outside the coil is negligibly small. (For an infinitely dense coil it

would be exactly zero.) At the same time, the electric field of the point charge at the center

is

E =
Q

4πǫ0

nr

r2
, (S.2)

so within the coil where r ≈ R and nr ≈ ns (the direction horizontally away from the z

axis), we have

E ≈ Q

4πǫ0R2
ns . (S.3)

Consequently, the Poynting vector is

S = E×H ≈ INQ

8π2ǫ0R3
(ns × nφ) =

INQ

8π2ǫ0R3
nz (S.4)

inside the coil, while outside the coil S = 0.

The Poynting vector — or rather (1/c2)S — is the momentum density of the EM fields.

For the system at hand, this momentum density is uniform inside the coil and zero outside

it, hence the net EM momentum is simply

Pnet =
1

c2
S[inside]× toroid’s volume = ǫ0µ0 ×

INQ

8π2ǫ0R3
× 2πRA =

µ0INQA

4πR2
, (S.5)

or in vector notations

Pnet =
µ0INQA

4πR2
nz . (S.6)

Note the direction of this momentum: Up along the symmetry axis of the toroid.
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Problem 1(b):

Let’s make the toroid’s cross-section A = 1 cm2 and large radius R = 10 cm, while the

coil wounds N = 1000 turns around the toroid. With this geometry, the wire has length

L ∼ 35 m, while its diameter should be smaller that 2πR/N , about 0.63 mm. Assuming

copper wire of diameter 0.5 mm, we have its ohmic resistance about 3 Ω. If we try to run

the I = 10 A current through this wire, it would generate 300 Watt’s of heat, which would

make it a fire danger. To keep the heat generation down to a much safer 3 Watts, let’s take

I = 1 A.

As to the static charge Q at the center of the toroid, the electric field near its surface

should not exceed the dielectric strength of the air — about 3 ·106 V/m — or else the charge

would leak out via sparks. Emulating a ‘point’ charge with e metal ball of radius r = 3 cm,

we are limited to

Q

4πǫ0r2
≤ Emax =⇒ Q ≤ 0.3 µC, (S.7)

so to be safe let’s take Q = 0.1 µC.

Plugging all these data into eq. (S.6), we find the EM momentum to be only P =

10−13 Ns. By everyday standards, this is a very small momentum, even a 1 mg ant lazily

crawling at 1 cm/s has momentum p = 10−8 Ns, five orders of magnitude larger then the

EM fields’ momentum in our example! A better comparison to the EM momentum (S.7)

would be a smaller and slower creature, such as a 0.4 microgram amoeba crawling at 250

microns per second.

For another comparison, the LHC accelerates protons up to energy 6.5 TeV (per proton)

so each proton has momentum 6.5 TeV/c, or in conventional units, 3.5 · 10−15 Ns. Thus, the

EM field in our example has a s much mechanical momentum as 28 LHC protons.

Problem 1(c):

The electric field induced by the time-changing magnetic field is governed by the equations

∇ · Einduced = 0, ∇× Einduced = −∂B

∂t
(S.8)
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which are mathematically similar to

∇ ·B = 0, ∇×B = µ0J. (S.9)

Consequently, the solutions to these equations are also mathematically similar, namely the

Biot–Savart–Laplace–like formula for the Einduced where −∂B/∂t plays the role of the electric

current,

Einduced(x) = − 1

4π

∫∫∫

d3y
∂B

∂t
× x− y

|x− y|3 . (S.10)

In particular, the electric field induced at the center of the toroid is mathematically similar

to the magnetic field in the center of a circular current loop,

Einduced(center) = − nz

2R

dΦ

dt
(S.11)

where Φ is the magnetic flux in the toroid,

Φ = A×B =
µ0INA

2πR
. (S.12)

The electric field (S.11) pushes the charge Q with the force

F = QEinduced(center) = −Qµ0NA

4πR2

dI

dt
nz , (S.13)

and the net impulse of this force while the current changes by ∆I is

∆p =

∫

F dt = −Qµ0NA

4πR2
∆I nz . (S.14)

In particular, for the current which drops from the original current I down to zero, the

impulse is

∆p = +
QIµ0NA

4πR2
nz . (S.15)

Comparing this formula to eq. (S.6), we immediately see that the net impulse on the charge

Q is precisely the EM momentum the system had before we turned off the current.
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Problem 2(b):

Since the problem is based on the Jackson’s textbook, in these solutions I follow the textbook

notations rather than notations of my own notes. In particular, i is the incidence angle, r is

the reflections angle, the electric amplitudes of the incident, the refracted, and the reflected

waves are respectively E0, E
′
0, and E′′

0 , and likewise ǫ, µ, and n are for the incident wave’s

side while ǫ′, µ′, and n′ are for the other side.

First of all, the wave impedance in a medium that’s both dielectric and magnetic is

Z =

√

µµ0
ǫǫ0

=

√

µ

ǫ
× Z0 =

µ

n
× Z0 . (S.16)

With this relation in mind, the expression
√

µǫ′/µ′ǫ in eqs. (7.42) is simply the impedance

ratio Z/Z ′. Consequently, eqs. (7.42) for the waves of normal incidence become

E′
0

E0
=

2

(Z/Z ′) + 1
=

2Z ′

Z + Z ′
, (7.42.a)

E′′
0

E0
=

(Z/Z ′)− 1

(Z/Z ′) + 1
=

Z − Z ′

Z + Z ′
. (7.42.b)

Note that these transmission and reflection coefficients depends only on the wave impedances

of the two media and do not care for the refraction indices n and n′. In particular, if the two

media happen to have equal impedances Z ′ = Z there would be no reflection at all, even if

the refraction indices of the two media are different, n′ 6= n. For example, suppose ǫ = µ = 1

while ǫ′ = µ′ = 2, then Z ′ = Z = Z0 and hence no reflection despite n = 1 while n′ = 2.

For the waves which strike the boundary at non-zero incidence angle i we have more

complicated formulae (7.39) and (7.41), depending on the polarization. Nevertheless, we can

re-express them in terms of the impedance ratio Z ′/Z instead of the refraction indices and

the µ′/µ; however, we would also need the cosine ratio

cos(r)

cos(i)
(S.17)

which implicitly depends on the refraction indices. Indeed, the expression
√

n′2 − n2 sin2(i)
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in eqs. (7.39) and (7.41) is nothing but

√

n′2 − n2 sin2(i) =

√

n′2 − n′2 sin2(r) = n′ cos(r). (S.18)

Consequently, eqs. (7.39) for the waves polarized ⊥ to the plane of incidence become

E′
0

E0
=

2n cos(i)

n cos(i) + (µ/µ′)× n′ cos(r)
=

2(n/µ) cos(i)

(n/µ) cos(i) + (n′/µ′) cos(r)

=
2(Z0/Z) cos(i)

(Z0/Z) cos(i) + (Z0/Z ′) cos(r)
=

2Z ′ cos(i)

Z ′ cos(i) + Z cos(r)

=
2Z ′/ cos(r)

(Z ′/ cos(r)) + (Z/ cos(i))

(7.39.a)

and likewise

E′′
0

E0
=

(Z ′/ cos(r)) − (Z/ cos(i))

(Z ′/ cos(r)) + (Z/ cos(i))
. (7.39.b)

Again, the reflection and the refraction of the EM waves is governed by the impedance ratio

of the two media, except that for the wave crossing the boundary at non-zero angles i and

r, — and polarized ⊥ to the plane of incidence — the effective impedances are

Zeff =
Z

cos(i)
and Z ′

eff =
Z ′

cos(r)
(S.19)

instead of Z and Z ′ themselves. If these effective impedances happen to match for some

incident angle i, there would be no reflection despite different refraction indices. However,

this is possible only for magnetic materials with

µ′

µ
>

ǫ′

ǫ
>

µ

µ′
or

µ′

µ
<

ǫ′

ǫ
<

µ

µ′
, (S.20)

and that’s why I did not mention this possibility in class.
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Finally, consider the EM waves polarized within the plane of incidence. In this case,

eqs. (7.41) become

E′
0

E0
=

2nn′ cos(i)

(µ/µ′)× n′2 cos(i) + nn′ cos(r)
=

2(n/µ) cos(i)

(n′/µ′) cos(i) + (n/µ) cos(r)

=
2(Z0/Z) cos(i)

(Z0/Z ′) cos(i) + (Z0/Z) cos(r)
=

2Z ′ cos(i)

Z cos(i) + Z ′ cos(r)

=
Z ′

Z
× 2Z cos(i)

Z cos(i) + Z ′ cos(r)

(7.41.a)

and likewise

E′′
0

E0
=

Z cos(i) − Z ′ cos(r)

Z cos(i) + Z ′ cos(r)
. (S.21)

Again, reflection and refraction coefficients follow from the ratio of effective impedances, but

for the wave polarized within the incidence plane, the effective impedances are

Zeff = Z cos(i) and Z ′
eff = Z ′ cos(r) (S.22)

instead of (S.19). At the Brewster angle ib, these effective impedances happen to match,

Zeff = Z ′
eff , and there is no reflection. (Of the wave polarized within the incidence plane.)

The general formula for the Brewster angle is

sin2(ib) =
(ǫ′/ǫ)− (µ′/µ)

(ǫ′/ǫ)− (ǫ/ǫ′)
, (S.23)

and for magnetic media we generally have ib + rb 6= 90◦. Only in the non-magnetic media

eq. (S.23) reduces to the simple geometric condition for the Brewster angle, In non-magnetic

media, this formula reduces to

sin2(ib) =
ǫ′

ǫ′ + ǫ
=

n′2

n′2 + n2
=⇒ sin2(rb) =

n2

n′2 + n2
= 1 − sin2(ib)

=⇒ ib + rb = 90◦.

(S.24)
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Problem 3(a):

Let’s use a rotated coordinate system

x′ = m1 · x, y′ = y, z′ = n1 · x, (S.25)

where z′ runs along the incident wave beam while x′ and y′ run across the beam. In these

coordinates, eq. (3) for the electric field factorizes to

E1(x, t) = E0 e1 exp(−iωt) ∗ exp(+ik0z̃) ∗ 1(ỹ) ∗ exp
(

− x̃2

2a2

)

, (S.26)

so we may Fourier transform each factor by itself:

∫

dx′ exp(−ix′kx′)× exp

(

− x′2

2a2

)

=
√
2πa exp

(

−1
2ak

2
x′

)

, (S.27)

∫

dy′ exp(−iy′ky′)× 1(y′) = 2πδ(ky′), (S.28)
∫

dz′ exp(−iz′kz′)× exp(+ik0z
′) = 2πδ(kz′ − k0), (S.29)

hence altogether

Ẽ(k, t) =

∫∫∫

d3x exp(−ik · x) ∗ E(x, t)

= E0 e1 exp(−iωt) ∗
√
2πa exp

(

−1
2ak

2
x′

)

∗ 2πδ(ky′) ∗ 2πδ(kz′ − k0)

= (2π)5/2a E0 e1 exp(−iωt) ∗ exp
(

−1
2a

2(m1 · k)2
)

∗ δ(ky)δ(n1 · k− k0),

(S.30)

in perfect agreement with eq. (6).

Next, under total internal reflection the incident plane wave turns into the reflected

wave with amplitude ~E3 = ~E1 × exp(iφ) — where the phase φ depends on the direction of

the incident wave — while the wave vector is reflected:

k1 = (kx, ky, kz) → k3 = (+kx,+ky,−kz) [in the original coordinates (x, y, z)], (S.31)

and the polarization vector is reflected in a similar manner. For the not-quite-plane waves,

we may use the superposition principle for their Fourier transforms, for which the incident
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and the reflected waves are related just like the plane waves on the k by k manner, thus

Ẽ3(k, t) = eiφ Ẽrefl
1 (krefl, t). (S.32)

In particular, for the incident wave (6), the reflected wave is

Ẽ(k, t) = eiφ ∗ (2π)5/2a E0 e3 exp(−iωt) ∗ exp
(

−1
2a

2(m1 · krefl)2
)

∗ δ(krefly )δ(n1 · krefl − k0),

(S.33)

where

m1 · krefl = cosα(kreflx = kx) − sinα(kreflz = −kz) = m3 · k,

krefly = ky ,

n1 · krefl = sinα(kreflx = kx) + cosα(kreflz = −kz) = n3 · k,

(S.34)

thus

Ẽ(k, t) = eiφ ∗ (2π)5/2a E0 e3 exp(−iωt)∗exp
(

−1
2a

2(m3 ·k)2
)

∗δ(ky)∗δ(n3 ·k−k0), (S.35)

exactly as in eq. (7). Quod erat demonstrandum.

Problem 3(b):

To Fourier transform the reflected wave (7) back to the coordinate space, we again introduce

the rotated coordinates, but now in the directions across or along the reflected beam rather

than the incident beam, thus

x′′ = x ·m3 , y′′ = y, z′′ = x · n3 . (S.36)

In these coordinates, eq. (7) for the reflected beam factorizes to

Ẽ(k, t) = eiφ ∗ (2π)5/2a E0 e3 exp(−iωt) ∗ exp
(

−1
2a

2k2x′′

)

∗ δ(ky′′) ∗ δ(kz′′ − k0), (S.37)

so we may immediately Fourier transform the ky′′ and the kz′′ components of k to the

coordinate space:

∫

dky′′

2π
exp(+iky′′y′′)× (2π)δ(ky′′) = 1 [for any y], (S.38)
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∫

dkz′′

2π
exp(+ikz′′z

′′)× (2π)δ(ky′′ − k0) = exp(ik0z
′′) = exp(ik0n3 · x), (S.39)

hence

E(x, t) =

∫

d3k

(2π)3
exp(+ik · x) ∗ Ẽ(k, t)

= E0 e3 exp(−iωt+ ik0z
′′)

∫

a dkx′′√
2π

exp(ikx′′x′′) ∗ exp
(

−1
2a

2k2x′′

)

∗ exp(iφ).
(S.40)

This formula becomes the top line of eq. (9) once we identify the remaining integration

variable kx′′ with the k⊥ in eq. (9).

Note that we cannot pull out the eiφ factor out of the integral in eq. (S.40) because it

depends on the angle of incidence α, or equivalently on the angle of reflection γ = α. For

the not-quite-plane wave in eq. (S.40), the wave vector of the reflected wave is

k = kx′′m3 + ky′′(0, 1, 0) + kz′′n3 = kx′′m3 + k0n3 , (S.41)

so it’s direction depends on the integration variable kx′′, and that’s what makes the eiφ factor

depend on the kx′′.

Fortunately, the direction of the reflected wave varies within a rather small angle. Indeed,

due to the Gaussian factor exp(−1
2a

2k2x′′) inside the integral (S.40), the integral is dominated

by

|kx′′| ≤ O(1/a) ≪ k0 , (S.42)

so in this effective integration range we may approximate the angle of reflection as

γ = arctan
kx
−kz

= γ0 + arctan
kx′′

k0
≈ γ0 +

kx′′

k0
, (S.43)

where the second term is a small correction to the first. Consequently, we may approximate
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the direction-dependent phase φ of the total internal reflection as

φ(γ) ≈ φ(γ0) +
dφ

dγ
× kx′′

k0
, (S.44)

or equivalently

φ(kx′′) ≈ φ(α0) +
kx′′

k0
× dφ

dα
. (S.45)

Or in terms of D defined as in eq. (10),

φ(kx′′) ≈ φ(α0) − D × kx′′ . (S.46)

Now let’s plug this formula into the remaining Fourier integral in eq. (S.40):

∫

a dkx′′√
2π

exp(ikx′′x′′)× exp
(

−1
2a

2k2x′′

)

∗ exp(iφ)

= eiφ(α0)

∫

a dkx′′√
2π

exp
(

−1
2a

2k2x′′ + ix′′kx′′ − iDkx′′

)

= eiφ(α0) exp

(

−(x′′ −D)2

2a2

)

,

(S.47)

hence

E(x′′, y′′, z′′, t) = eiφ(α0)E0 e3 exp(−iωt + ik0z
′′) ∗ exp

(

−(x′′ −D)2

2a2

)

, (S.48)

or in vector notations

E(x, t) = eiφ(α0)E0 e3 exp
(

ik0n3 · x− iωt
)

∗ exp
(

−(m3 · x−D)2

2a2

)

, (S.49)

exactly as on the bottom line of eq. (9). In other words, the reflected beam is shifted through

distance D in the direction m3 that’s perpendicular too the beam. And the shift distance

D is exactly as in eq. (10), cf. eqs. (S.45) and (S.46). Quod erat demonstrandum.
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Problem 2(c):

The phase shift φ(α) of the totally-reflected wave is calculated in my notes on refraction and

reflection, with the answers given in eqs. (69) and (70) on the last page. Specifically, for the

wave polarized normally to the plane of incidence

φ⊥(α) = −2 arctan





√

sin2 α − (n2/n1)2

cosα



 , (S.50)

while for the wave polarized parallel to the plane of incidence

φ‖(α) = −2 arctan





√

sin2 α − (n2/n1)2

(n2/n1)2 cosα



 . (S.51)

To calculate the Goos–Hänchen displacement D of the reflected waves, all we need is to take

the derivatives of these phase shifts WRT to the angle of incidence α.

To simplify the algebra, let’s rephrase eqs. (S.50) and (S.51) as

φ⊥ = −2 arctan
(
√

g(α)
)

, φ‖ = −2 arctan
(

(n1/n2)
2
√

g(α)
)

, (S.52)

where

g(α) =
sin2 α − (n2/n1)

2

cos2 α
. (S.53)

Taking the derivatives, we find

dg

dα
=

2 sinα cosα

cos2 α
+

2 sinα(sin2 α − (n2/n1)
2)

cos3 α
= 2(1− (n2/n1)

2)
sinα

cos3 α
. (S.54)

−dφ⊥
dg

= +2× 1

1 + (
√
g)2

× 1

2
√
g

=
1√

g(1 + g)

=
cosα

√

sin2 α − (n2/n1)2
× cos2 α

1 − (n2/n1)2
, (S.55)
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−
dφ‖

dg
= +2× (n1/n2)

2

1 + (n1/n2)4g
× 1

2
√
g

=
cosα

√

sin2 α − (n2/n1)2
× (n2/n1)

2 cos2 α

(n2/n1)4 cos2 α + sin2 α − (n2/n1)2

=
cosα

√

sin2 α − (n2/n1)2
× cos2 α

1 − (n2/n1)2
× 1

(1 + (n1/n2)2) sin
2 α + 1

= −dφ⊥
dg

× 1

(1 + (n1/n2)2) sin
2 α + 1

, (S.56)

and consequently

D⊥ = −1

k

dφ⊥
dg

× dg

dα
=

2

k
× sinα

√

sin2 α − (n2/n1)2
, (S.57)

exactly as in eq. (11), and

D‖ = −1

k

dφ‖

dg
× dg

dα
= D⊥ × 1

(1 + (n1/n2)2) sin
2 α + 1

, (S.58)

exactly as in eq. (12). Quod erat demonstrandum.
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