PHY-387 K. Solutions for problem set \#9.

Problem 1(a):
Eqs. (3) follow from Maxwell's curl equations,

$$
\begin{equation*}
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}=-\mu_{0} \frac{\partial \mathbf{H}}{\partial t}, \quad \nabla \times \mathbf{H}=\frac{\partial \mathbf{D}}{\partial t}, \tag{S.1}
\end{equation*}
$$

assuming zero conduction current \mathbf{J}_{c}. For a wave where all fields depend on \mathbf{x} and t as $\exp (i \mathbf{k} \cdot \mathbf{x}-i \omega t)$, the derivatives become

$$
\begin{equation*}
\nabla \rightarrow i \mathbf{k}, \quad \frac{\partial}{\partial t} \rightarrow-i \omega \tag{S.2}
\end{equation*}
$$

so the curl equations (S.1) become

$$
\begin{equation*}
\mathbf{k} \times \mathbf{E}=+\mu_{0} \omega \mathbf{H}, \quad \mathbf{k} \times \mathbf{H}=-\omega \mathbf{D} \tag{S.3}
\end{equation*}
$$

hence eqs. (3).
As to the transversality, Maxwell divergence equations

$$
\begin{equation*}
\nabla \cdot \mathbf{B}=0, \quad \nabla \cdot \mathbf{D}=\rho_{\text {free }}=0 \tag{S.4}
\end{equation*}
$$

immediately imply

$$
\begin{equation*}
\mathbf{k} \cdot \mathbf{B}=0 \quad \Longrightarrow \quad \mathbf{k} \cdot \mathbf{H}=0 \quad \text { and } \quad \mathbf{k} \cdot \mathbf{D}=0 \tag{S.5}
\end{equation*}
$$

Alternatively, eqs. (3) bring both \mathbf{D} and \mathbf{H} vectors to the form of $\mathbf{k} \times$ some vector, so both \mathbf{H} and \mathbf{D} must be perpendicular to the wave vector \mathbf{k}.

On the other hand, the electric tension field \mathbf{E} - as opposed to the electric displacement field \mathbf{D} - is not directly related to any curl, and there is no Gauss law $\nabla \cdot \mathbf{E}=0$, only
$\nabla \cdot \mathbf{D}=0$. Consequently, the \mathbf{E} field does not have to be transverse WRT the wave vector \mathbf{k}. Instead, the \mathbf{E} vector is related to the \mathbf{D} vector by eq. (1), or equivalently

$$
\begin{equation*}
E_{i}=\left(\epsilon_{0}^{-1} \epsilon^{-1}\right)_{i j} D_{j} \tag{S.6}
\end{equation*}
$$

so unless the \mathbf{D} vector happens to be parallel to one of the principal axes ${ }^{\star}$ of the ϵ tensor, the \mathbf{E} vector has a different direction from the \mathbf{D}. Thus, while the electric displacement field \mathbf{D} must be transverse to the wave vector \mathbf{k}, the electric tension field \mathbf{E} generally has both transverse and longitudinal components.

Problem 1(b):
The motion of the electromagnetic energy is governed by the Poynting vector $\mathbf{S}=\mathbf{E} \times \mathbf{H}$; for a harmonic EM wave this vector time-averages to

$$
\begin{equation*}
\langle\mathbf{S}\rangle=\frac{1}{2} \operatorname{Re}\left(\overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{H}}^{*}\right) \tag{S.7}
\end{equation*}
$$

and its direction is the direction in which the wave's energy moves.
In light of the second eq. (3),

$$
\begin{equation*}
\overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{H}}^{*}=\frac{1}{\omega \mu_{0}} \overrightarrow{\mathcal{E}} \times\left(\mathbf{k} \times \overrightarrow{\mathcal{E}}^{*}\right)=\frac{1}{\omega \mu_{0}}\left(|\overrightarrow{\mathcal{E}}|^{2} \mathbf{k}-\left(\mathbf{k} \cdot \overrightarrow{\mathcal{E}}^{*}\right) \overrightarrow{\mathcal{E}}\right) \tag{S.8}
\end{equation*}
$$

where the first term inside (\cdots) is purely longitudinal, but the second term has both longitudinal and transverse components when $\overrightarrow{\mathcal{E}} \not \perp \mathbf{k}$. Thus, the Poynting vector generally has both longitudinal and transverse components, specifically

$$
\begin{align*}
\langle\mathbf{S}\rangle_{\ell} & =\frac{k}{2 \omega \mu_{0}}\left(|\overrightarrow{\mathcal{E}}|^{2}-\mathcal{E}_{\ell}^{*} \mathcal{E}_{\ell}=\left|\overrightarrow{\mathcal{E}_{t}}\right|^{2}\right) \tag{S.9}\\
\langle\mathbf{S}\rangle_{t} & =\frac{k}{2 \omega \mu_{0}}\left(-\operatorname{Re}\left(\mathcal{E}_{\ell}^{*} \overrightarrow{\mathcal{E}}_{t}\right)\right)
\end{align*}
$$

In particular, for a linear polarization of the EM wave - meaning, a real amplitude vector

[^0]$\overrightarrow{\mathcal{E}}$ up to an overall phase, - we have
\[

$$
\begin{equation*}
\frac{\left|\langle\mathbf{S}\rangle_{t}\right|}{\langle\mathbf{S}\rangle_{\ell}}=\frac{\left|\mathcal{E}_{\ell}\right|}{\left|\overrightarrow{\mathcal{E}_{t}}\right|} . \tag{S.10}
\end{equation*}
$$

\]

Consequently, the angle between the direction of the energy's motion and the wave vector \mathbf{k} equals to the angle between the electric amplitude $\overrightarrow{\mathbf{E}}$ and the plane \perp to the wave vector \mathbf{k}.

Problem 1(c):
Let's start with the first eq. (3). In components, its LHS becomes

$$
\begin{align*}
{[-\mathbf{k} \times(\mathbf{k} \times \mathbf{E})] } & =-\epsilon_{i k \ell} k_{k} \epsilon_{\ell m j} k_{m} E_{j}=-\left(\delta_{i m} \delta_{k j}-\delta_{i j} \delta_{k m}\right) k_{k} k_{m} E_{j} \\
& =-\left(k_{i} k_{j}-\delta_{i j} \mathbf{k}^{2}\right) E_{j}=+\mathbf{k}^{2}\left(\delta_{i j}-\hat{k}_{i} \hat{k}_{j}\right) E_{j} \tag{S.11}
\end{align*}
$$

while on the RHS

$$
\begin{equation*}
\omega^{2} \mu_{0} D_{i}=\omega^{2} \mu_{0} \epsilon_{0} \epsilon_{i j} E_{j}=\frac{\omega^{2}}{c^{2}} \epsilon_{i j} E_{j} \tag{S.12}
\end{equation*}
$$

hence altogether

$$
\begin{equation*}
\frac{\omega^{2}}{c^{2}} \epsilon_{i j} E_{j}=\mathbf{k}^{2}\left(\delta_{i j}-\hat{k}_{i} \hat{k}_{j}\right) E_{j} \tag{S.13}
\end{equation*}
$$

Obviously, the electric amplitude vector $\overrightarrow{\mathcal{E}}$ must also obey this equation, thus

$$
\begin{equation*}
\left[\frac{\omega^{2}}{c^{2}} \epsilon_{i j}-\mathbf{k}^{2}\left(\delta_{i j}-\hat{k}_{i} \hat{k}_{j}\right)\right] \mathcal{E}_{j}=0 \tag{S.14}
\end{equation*}
$$

Finally, dividing this equation by ω^{2} / c^{2} and identifying $\mathbf{k}^{2} c^{2} / \omega^{2}$ as n^{2}, we obtain

$$
\begin{equation*}
\left(\epsilon_{i j}-n^{2}\left(\delta_{i j}-\hat{k}_{i} \hat{k}_{j}\right)\right) \mathcal{E}_{j}=0 \tag{4}
\end{equation*}
$$

This equation has a form of a generalized eigenvalue problem. In particular, it has a nonzero solution for the $\overrightarrow{\mathcal{E}}$ when and only when the matrix on the LHS has a zero determinant, thus n^{2} must obey

$$
\begin{equation*}
\chi\left(n^{2}\right) \stackrel{\text { def }}{=} \operatorname{det}\left(\epsilon_{i j}-n^{2}\left(\delta_{i j}-\hat{k}_{i} \hat{k}_{j}\right)\right)=0 \tag{5}
\end{equation*}
$$

Formally, this determinant is a polynomial of n^{2} of degree $=$ dimension of the matrix, which is 3 in a 3D space. But we shall see in the next part that the coefficient of $\left(n^{2}\right)^{3}$ in this
polynomial happens to vanish, so $\chi\left(n^{2}\right)$ is actually a quadratic polynomial. And in later parts we shall see that both roots n_{1}^{2} and n_{2}^{2} of this quadratic polynomial are real and positive, thus two values of the refraction index for the two independent polarizations of the wave moving in a given direction $\hat{\mathbf{k}}$.

Problem 1(d):
The three principal axis of the permittivity tensor $\epsilon_{i j}$ are \perp to each other, so let's use them for the coordinate axes $\left(x_{1}, x_{2}, x_{3}\right)$. In this coordinate system, the matrix of the permittivity tensor is diagonal,

$$
\epsilon=\left(\begin{array}{ccc}
\epsilon_{1} & 0 & 0 \tag{S.15}\\
0 & \epsilon_{2} & 0 \\
0 & 0 & \epsilon_{3}
\end{array}\right)
$$

hence the determinant in eq. (5) is

$$
\chi\left(n^{2}\right)=\operatorname{det}\left(\begin{array}{ccc}
\epsilon_{1}-n^{2}\left(1-\hat{k}_{1}^{2}\right) & n^{2} \hat{k}_{1} \hat{k}_{2} & n^{2} \hat{k}_{1} \hat{k}_{3} \tag{S.16}\\
n^{2} \hat{k}_{2} \hat{k}_{1} & \epsilon_{2}-n^{2}\left(1-\hat{k}_{2}^{2}\right) & n^{2} \hat{k}_{2} \hat{k}_{3} \\
n^{2} \hat{k}_{3} \hat{k}_{1} & n^{2} \hat{k}_{3} \hat{k}_{2} & \epsilon_{3}-n^{2}\left(1-\hat{k}_{3}^{2}\right)
\end{array}\right)
$$

Every matrix element here is a linear polynomial in n^{2}, so expanding the whole determinant into powers of n^{2}, we obtain

$$
\begin{align*}
\chi\left(n^{2}\right)= & \operatorname{det}\left(\begin{array}{ccc}
\epsilon_{1} & 0 & 0 \\
0 & \epsilon_{2} & 0 \\
0 & 0 & \epsilon_{3}
\end{array}\right) \\
& +n^{2} \times\left(\operatorname{det}\left(\begin{array}{ccc}
\epsilon_{1} & 0 & 0 \\
0 & \epsilon_{2} & 0 \\
0 & 0 & -1+\hat{k}_{3}^{2}
\end{array}\right)+\text { two similar terms }\right) \tag{S.17}\\
& +n^{4} \times\left(\operatorname{det}\left(\begin{array}{ccc}
\epsilon_{1} & 0 & 0 \\
0 & -1+\hat{k}_{2}^{2} & \hat{k}_{2} \hat{k}_{3} \\
0 & \hat{k}_{3} \hat{k}_{2} & -1+\hat{k}_{2}^{2}
\end{array}\right)+\text { two similar terms }\right) \\
& +n^{6} \times \operatorname{det}\left(\begin{array}{ccc}
-1+\hat{k}_{1}^{2} & \hat{k}_{1} \hat{k}_{2} & \hat{k}_{1} \hat{k}_{3} \\
\hat{k}_{2} \hat{k}_{1} & -1+\hat{k}_{2}^{2} & \hat{k}_{2} \hat{k}_{3} \\
\hat{k}_{3} \hat{k}_{1} & \hat{k}_{3} \hat{k}_{2} & -1+\hat{k}_{3}^{2}
\end{array}\right)
\end{align*}
$$

On the top line of this formula

$$
\operatorname{det}\left(\begin{array}{ccc}
\epsilon_{1} & 0 & 0 \tag{S.18}\\
0 & \epsilon_{2} & 0 \\
0 & 0 & \epsilon_{3}
\end{array}\right)=\epsilon_{1} \epsilon_{2} \epsilon_{3}
$$

on the second line

$$
\operatorname{det}\left(\begin{array}{ccc}
\epsilon_{1} & 0 & 0 \tag{S.19}\\
0 & \epsilon_{2} & 0 \\
0 & 0 & -1+\hat{k}_{3}^{2}
\end{array}\right)=\epsilon_{1} \epsilon_{2}\left(-1+\hat{k}_{3}^{2}\right)=-\epsilon_{1} \epsilon_{2}\left(\hat{k}_{1}^{2}+\hat{k}_{2}^{2}\right)
$$

and likewise for the two similar terms. On the third line of eq. (S.17),

$$
\begin{align*}
\operatorname{det}\left(\begin{array}{ccc}
\epsilon_{1} & 0 & 0 \\
0 & -1+\hat{k}_{2}^{2} & \hat{k}_{2} \hat{k}_{3} \\
0 & \hat{k}_{3} \hat{k}_{2} & -1+\hat{k}_{2}^{2}
\end{array}\right) & =\epsilon_{1} \times \operatorname{det}\left(\begin{array}{cc}
-1+\hat{k}_{2}^{2} & \hat{k}_{2} \hat{k}_{3} \\
\hat{k}_{3} \hat{k}_{2} & -1+\hat{k}_{3}^{3}
\end{array}\right) \tag{S.20}\\
& =\epsilon_{1} \times\left(\left(-1+\hat{k}_{2}^{2}\right)\left(-1+\hat{k}_{3}^{2}\right)-\hat{k}_{2}^{2} \hat{k}_{3}^{2}\right) \\
& =\epsilon_{1} \times\left(1-\hat{k}_{2}^{2}-\hat{k}_{3}^{2}\right)=\epsilon_{1} \times \hat{k}_{1}^{2}
\end{align*}
$$

and likewise for the two similar terms. Finally, the determinant on the last line of eq. (S.17) vanishes:

$$
\begin{align*}
\operatorname{det} & \left(\begin{array}{ccc}
-1+\hat{k}_{1}^{2} & \hat{k}_{1} \hat{k}_{2} & \hat{k}_{1} \hat{k}_{3} \\
\hat{k}_{2} \hat{k}_{1} & -1+\hat{k}_{2}^{2} & \hat{k}_{2} \hat{k}_{3} \\
\hat{k}_{3} \hat{k}_{1} & \hat{k}_{3} \hat{k}_{2} & -1+\hat{k}_{3}^{2}
\end{array}\right)= \\
= & \left(-1+\hat{k}_{1}^{2}\right)\left(-1+\hat{k}_{2}^{2}\right)\left(-1+\hat{k}_{3}\right)^{2}+2 \times \hat{k}_{1}^{2} \hat{k}_{2}^{2} \hat{k}_{3}^{3} \\
& \quad-\left(-1+\hat{k}_{1}^{2}\right) \times \hat{k}_{2}^{2} \hat{k}_{3}^{2}-\text { two similar terms } \tag{S.21}\\
= & -1+\left(\hat{k}_{1}^{2}+\hat{k}_{2}^{2}+\hat{k}_{3}^{2}\right)-\left(\hat{k}_{1}^{2} \hat{k}_{2}^{2}+\hat{k}_{1}^{2} \hat{k}_{3}^{2}+\hat{k}_{2}^{2} \hat{k}_{3}^{2}\right)+\hat{k}_{1}^{2} \hat{k}_{2}^{2} \hat{k}_{3}^{2} \\
& +2 \times \hat{k}_{1}^{2} \hat{k}_{2}^{2} \hat{k}_{3}^{3}+\left(\hat{k}_{1}^{2} \hat{k}_{2}^{2}+\hat{k}_{1}^{2} \hat{k}_{3}^{2}+\hat{k}_{2}^{2} \hat{k}_{3}^{2}\right)-3 \times \hat{k}_{1}^{2} \hat{k}_{2}^{2} \hat{k}_{3}^{3} \\
= & -1+\left(\hat{k}_{1}^{2}+\hat{k}_{2}^{2}+\hat{k}_{3}^{2}\right)=0 .
\end{align*}
$$

Altogether,

$$
\begin{align*}
\chi\left(n^{2}\right)= & \epsilon_{1} \epsilon_{2} \epsilon_{3}-n^{2} \times\left(\epsilon_{1} \epsilon_{2}\left(\hat{k}_{1}^{2}+\hat{k}_{2}^{2}\right)+\epsilon_{1} \epsilon_{3}\left(\hat{k}_{1}^{2}+\hat{k}_{3}^{2}\right)+\epsilon_{2} \epsilon_{3}\left(\hat{k}_{2}^{2}+\hat{k}_{3}^{2}\right)\right) \\
& +n^{4} \times\left(\epsilon_{1} \hat{k}_{1}^{2}+\epsilon_{2} \hat{k}_{2}^{2}+\epsilon_{3} \hat{k}_{3}^{2}\right) \\
= & \left(1=\hat{k}_{1}^{2}+\hat{k}_{2}^{2}+\hat{k}_{3}^{2}\right) \times \epsilon_{1} \epsilon_{2} \epsilon_{3} \\
& -n^{2} \times\left(\hat{k}_{1}^{2} \epsilon_{1}\left(\epsilon_{2}+\epsilon_{3}\right)+\hat{k}_{2}^{2} \epsilon_{2}\left(\epsilon_{1}+\epsilon_{3}\right)+\hat{k}_{3}^{2} \epsilon_{3}\left(\epsilon_{1}+\epsilon_{2}\right)\right) \tag{S.22}\\
& +n^{4} \times\left(\hat{k}_{1}^{2} \epsilon_{1}+\hat{k}_{2}^{2} \epsilon_{2}+\hat{k}_{3}^{2} \epsilon_{3}\right) \\
= & \hat{k}_{1}^{2} \epsilon_{1} \times\left(\epsilon_{2} \epsilon_{3}-\left(\epsilon_{2}+\epsilon_{3}\right) n^{2}+n^{4}\right)+\text { two similar terms } \\
= & \hat{k}_{1}^{2} \epsilon_{1}\left(n^{2}-\epsilon_{2}\right)\left(n^{2}-\epsilon_{3}\right)+\text { two similar terms }
\end{align*}
$$

or in a more compact form

$$
\begin{equation*}
\chi\left(n^{2}\right)=\sum_{i=1}^{3} \hat{k}_{i}^{2} \epsilon_{i} \times \prod_{j \neq i}\left(n^{2}-\epsilon_{i}\right) \tag{6}
\end{equation*}
$$

Quod erat demonstrandum.

Problem 1(e):
$\chi\left(n^{2}\right)$ is a quadratic polynomial of n^{2}, so it has at most two real roots. To bracket the locations of these roots, we note that at the 3 points - namely $n^{2}=\epsilon_{1}^{2}, n^{2}=\epsilon_{2}$, and $n^{2}=\epsilon_{3},-\chi\left(n^{2}\right)$ has alternating signs. Specifically, for $\epsilon_{1}>\epsilon_{2}>\epsilon_{3}>0$,

$$
\begin{align*}
& P\left(n^{2}=\epsilon_{1}\right)=\hat{k}_{1}^{2} \epsilon_{1}\left(\epsilon_{1}-\epsilon_{2}\right)\left(\epsilon_{1}-\epsilon_{3}\right) \geq 0 \\
& P\left(n^{2}=\epsilon_{2}\right)=\hat{k}_{2}^{2} \epsilon_{2}\left(\epsilon_{2}-\epsilon_{1}\right)\left(\epsilon_{2}-\epsilon_{2}\right) \leq 0, \tag{S.23}\\
& P\left(n^{2}=\epsilon_{3}\right)=\hat{k}_{3}^{2} \epsilon_{3}\left(\epsilon_{3}-\epsilon_{1}\right)\left(\epsilon_{3}-\epsilon_{2}\right) \geq 0,
\end{align*}
$$

where each inequality is strict when the respective \hat{k}_{i}^{2} does not vanish. Consequently, $\chi\left(n^{2}\right)$ must vanish for some value of n^{2} between ϵ_{1} and ϵ_{2} and also for another value of n^{2} between ϵ_{2} and ϵ_{3}, thus inequalities (7) for the two refraction coefficients, with all the inequalities becoming strict when all 3 of $\hat{k}_{1}^{2}, \hat{k}_{2}^{2}, \hat{k}_{3}^{2}$ are non-zero.

As to the Fresnel equation (8), it follows from

$$
\begin{equation*}
\chi\left(n^{2}\right)=\prod_{i=1}^{3}\left(n^{2}-\epsilon_{i}\right) \times \sum_{i=1}^{3} \frac{\hat{k}_{i}^{2} \epsilon_{i}}{n^{2}-\epsilon_{i}} . \tag{S.24}
\end{equation*}
$$

When the three eigenvalues $\epsilon_{1}, \epsilon_{2}, \epsilon_{3}$ are different from each other and \mathbf{k} is not parallel to any of the principal axes - thus all three $\hat{k}_{i}^{2}>0$, - all the inequalities (S.23) become strict, which means that

$$
\begin{equation*}
\prod_{i=1}^{3}\left(n^{2}-\epsilon_{i}\right) \quad \text { does not vanish for } n^{2}=n_{1}^{2} \text { or } n^{2}=n_{2}^{2} \tag{S.25}
\end{equation*}
$$

Consequently, in eq. (S.24) it's the second factor which vanishes at either root of the $\chi\left(n^{2}\right)$,

$$
\begin{equation*}
\sum_{i=1}^{3} \frac{\hat{k}_{i}^{2} \epsilon_{i}}{n^{2}-\epsilon_{i}}=0 \quad \text { for } n^{2}=n_{1}^{2} \text { or } n^{2}=n_{2}^{2} \tag{S.26}
\end{equation*}
$$

hence the Fresnel equation (8).

Problem 1(f):

A uniaxial anisotropic material with $\epsilon_{1}=\epsilon_{2} \neq \epsilon_{3}$ has a rotational symmetry around its optical axis. For such a material, using the principal axes of the ϵ tensor for the 3 coordinate axes means using the optical axis for the x_{3} axis, while the x_{1} and x_{2} axes can be any two axes we like as long as they are \perp to the x_{3} axis and to each other. In any such coordinate system, the ϵ tensor has the same diagonal matrix

$$
\epsilon=\left(\begin{array}{ccc}
\epsilon_{1} & 0 & 0 \tag{S.27}\\
0 & \epsilon_{1} & 0 \\
0 & 0 & \epsilon_{3}
\end{array}\right)
$$

Also, in any such coordinate system, the wave moving parallel to the optical axis means

$$
\begin{equation*}
\hat{k}_{1}=\hat{k}_{2}=0, \quad \hat{k}_{3}= \pm 1 \tag{S.28}
\end{equation*}
$$

Consequently, eq. (4) for the refraction index and the polarization vector becomes

$$
\left(\begin{array}{ccc}
\epsilon_{1}-n^{2} & 0 & 0 \tag{S.29}\\
0 & \epsilon_{1}-n^{2} & 0 \\
0 & 0 & \epsilon_{3}
\end{array}\right)\left(\begin{array}{l}
\mathcal{E}_{1} \\
\mathcal{E}_{2} \\
\mathcal{E}_{3}
\end{array}\right)=0
$$

This generalized eigenvalue problem has two degenerate solutions, namely

$$
n^{2}=\epsilon_{1}, \quad \overrightarrow{\mathcal{E}}=\left(\begin{array}{c}
* \tag{S.30}\\
* \\
0
\end{array}\right)
$$

In other words, the polarization vector $\overrightarrow{\mathcal{E}}$ may point in any direction perpendicular to the optical axis and hence to the wave direction $\hat{\mathbf{k}}$, and for any such polarization we have the same refraction index $n=\sqrt{\epsilon_{1}}$. Quod erat demonstrandum.

Problem 1(g):

For $\epsilon_{1}=\epsilon_{2}$, every term in the sum (6) has a factor of $\left(n^{2}-\epsilon_{1}\right)$, thus

$$
\begin{align*}
\chi\left(n^{2}\right) & =\hat{k}_{1}^{2} \epsilon_{1}\left(n^{2}-\epsilon_{1}\right)\left(n^{2}-\epsilon_{3}\right)+\hat{k}_{2}^{2} \epsilon_{1}\left(n^{2}-\epsilon_{1}\right)\left(n^{2}-\epsilon_{3}\right)+\hat{k}_{3}^{2} \epsilon_{3}\left(n^{2}-\epsilon_{1}\right)^{2} \\
& =\left(n^{2}-\epsilon_{1}\right) \times\left[\left(\hat{k}_{1}^{2}+\hat{k}_{2}^{2}\right) \epsilon_{1}\left(n^{2}-\epsilon_{3}\right)+\hat{k}_{3}^{3} \epsilon_{3}\left(n^{2}-\epsilon_{1}\right)\right] . \tag{S.31}
\end{align*}
$$

In terms of the angle θ between the wave vector and the optical axis,

$$
\begin{equation*}
\hat{k}_{3}^{2}=\cos ^{2} \theta, \quad \hat{k}_{1}^{2}+\hat{k}_{2}^{2}=\sin ^{2} \theta, \tag{S.32}
\end{equation*}
$$

hence

$$
\begin{align*}
\chi\left(n^{2}\right) & =\left(n^{2}-\epsilon_{1}\right) \times\left[\sin ^{2} \theta \epsilon_{1}\left(n^{2}-\epsilon_{2}\right)+\cos ^{2} \theta \epsilon_{3}\left(n^{2}-\epsilon_{1}\right)\right] \tag{S.33}\\
& =\left(n^{2}-\epsilon_{1}\right) \times\left[\left(\sin ^{2} \theta \epsilon_{1}+\cos ^{2} \theta \epsilon_{2}\right) n^{2}-\epsilon_{1} \epsilon_{2}\right] .
\end{align*}
$$

The two roots of this quadratic polynomial gives us the refraction indices ${ }^{2}$ of the two inde-
pendent polarizations:

$$
\begin{equation*}
n_{1}^{2}=\epsilon_{1} \tag{S.34}
\end{equation*}
$$

and

$$
\begin{equation*}
n_{2}^{2}=\frac{\epsilon_{1} \epsilon_{2}}{\sin ^{2} \theta \epsilon_{1}+\cos ^{2} \theta \epsilon_{2}}, . \tag{S.35}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\frac{1}{n_{2}^{2}}=\frac{\sin ^{2} \theta}{\epsilon_{3}}+\frac{\cos ^{2} \theta}{\epsilon_{1}} \tag{9}
\end{equation*}
$$

Now consider the polarization vectors $\overrightarrow{\mathcal{E}_{1}}$ and $\overrightarrow{\mathcal{E}_{2}}$ corresponding to the waves with refraction indices n_{1} and n_{2}. Thanks to the rotational symmetry around the optical axis (which we use as the x_{3} axis), we may chose the x_{1} and x_{2} axes such that the wave vector \mathbf{k} lies in the $\left(x_{1}, x_{3}\right)$ plane. In this coordinate system

$$
\begin{equation*}
\hat{k}_{1}=\sin \theta, \quad \hat{k}_{2}=0, \hat{k}_{3}=\cos \theta \tag{S.36}
\end{equation*}
$$

so eq. (4) becomes

$$
\left(\begin{array}{ccc}
\epsilon_{1}-n^{2}\left(1-\sin ^{2} \theta\right) & 0 & n^{2} \sin \theta \cos \theta \tag{S.37}\\
0 & \epsilon_{1}-n^{2} & 0 \\
n^{2} \sin \theta \cos \theta & 0 & \epsilon_{3}-n^{2}\left(1-\cos ^{2} \theta\right)
\end{array}\right)\left(\begin{array}{l}
\mathcal{E}_{1} \\
\mathcal{E}_{2} \\
\mathcal{E}_{3}
\end{array}\right)=0
$$

The 3×3 matrix in this equation is block-diagonal: it has a 2×2 block for the x_{1} and x_{3} directions - which is the plane spanning the wave direction $\hat{\mathbf{k}}$ and the optical axis, - and a separate 1×1 block for the x_{2} direction \perp to that plane. Consequently, eq. (S.37) splits into 2 separate equations of the two blocks:

$$
\begin{array}{r}
\left(\begin{array}{rr}
\epsilon_{1}-n^{2} \cos ^{2} \theta & n^{2} \sin \theta \cos \theta \\
n^{2} \sin \theta \cos \theta & \epsilon_{3}-n^{2} \sin ^{2} \theta
\end{array}\right)\binom{\mathcal{E}_{1}}{\mathcal{E}_{3}}=0 \\
\left(\epsilon_{1}-n^{2}\right)\left(\mathcal{E}_{2}\right)=0 \tag{S.39}
\end{array}
$$

For $n^{2}=n_{1}^{2}=\epsilon_{1}$, the second equation here allows for $\mathcal{E}_{2} \neq 0$ while the first equation keeps $\mathcal{E}_{1}=\mathcal{E}_{3}=0$, so the polarization vector is $\overrightarrow{\mathcal{E}}^{(1)}=(0, \mathcal{E}, 0)$, normal to both the optical axis and the wave direction $\hat{\mathbf{k}}$. This obviously is the (\perp) polarization.

On the other hand, for the other eigenvalue $n^{2}=n_{2}^{2}$, we have eq. (S.39) requiring $\mathcal{E}_{2}=0$ while eq. (S.38) has a non-trivial solution in the (x_{1}, x_{3}) plane. Specifically, for $n^{2}=n_{2}^{2}$ as in eq. (9),

$$
\begin{align*}
\epsilon_{1}-n^{2} \cos ^{2} \theta & =n_{2}^{2}\left(\frac{\epsilon_{1}}{n_{2}^{2}}-\cos ^{2} \theta\right) \\
& =n_{2}^{2}\left(\epsilon_{1} \frac{\sin ^{2} \theta}{\epsilon_{3}}+\epsilon_{1} \frac{\cos ^{2} \theta}{\epsilon_{1}}-\cos ^{2} \theta\right) \\
& =n_{2}^{2} \times \frac{\epsilon_{1}}{\epsilon_{3}} \sin ^{2} \theta, \tag{S.40}\\
\epsilon_{3}-n^{2} \sin ^{2} \theta & =n_{2}^{2}\left(\frac{\epsilon_{3}}{n_{2}^{2}}-\sin ^{2} \theta\right) \\
& =n_{2}^{2}\left(\epsilon_{3} \frac{\sin ^{2} \theta}{\epsilon_{3}}+\epsilon_{3} \frac{\cos ^{2} \theta}{\epsilon_{1}}-\sin ^{2} \theta\right) \\
& =n_{2}^{2} \times \frac{\epsilon_{3}}{\epsilon_{1}} \cos ^{2} \theta,
\end{align*}
$$

so eq. (S.38) becomes

$$
n_{2}^{2}\left(\begin{array}{cc}
\left(\epsilon_{1} / \epsilon_{3}\right) \sin ^{2} \theta & \sin \theta \cos \theta \tag{S.41}\\
\sin \theta \cos \theta & \left(\epsilon_{3} / \epsilon_{1}\right) \cos ^{2} \theta
\end{array}\right)\binom{\mathcal{E}_{1}}{\mathcal{E}_{3}}=0
$$

which has a non-trivial solution with

$$
\begin{equation*}
\frac{\mathcal{E}_{1}}{\mathcal{E}_{3}}=-\frac{\epsilon_{3} \cos \theta}{\epsilon_{1} \sin \theta} \tag{S.42}
\end{equation*}
$$

Altogether, we have polarization vector

$$
\begin{equation*}
\overrightarrow{\mathcal{E}}^{(2)}=\frac{\mathcal{E}}{\sqrt{\epsilon_{1}^{2} \sin ^{2} \theta+\epsilon_{2}^{2} \cos ^{2} \theta}}\left(-\epsilon_{3} \cos \theta, 0,+\epsilon_{1} \sin \theta\right) . \tag{S.43}
\end{equation*}
$$

This vector lies in the same $\left(x_{1}, x_{3}\right)$ plane as the optical axis and the wave's direction $\hat{\mathbf{k}}$, so this is the in-plane polarization (\|). Quod erat demonstrandum.

Problem 1(h):

For any plane wave in a non-magnetic material

$$
\begin{equation*}
\overrightarrow{\mathcal{H}}=\frac{\mathbf{k}}{\omega \mu_{0}} \times \overrightarrow{\mathcal{E}} \tag{S.44}
\end{equation*}
$$

while the energy flows in the direction of the (time-averaged) Poynting vector

$$
\begin{equation*}
\langle\mathbf{S}\rangle=\frac{1}{2} \operatorname{Re}\left(\mathcal{E}^{*} \times \overrightarrow{\mathcal{H}}\right) \tag{S.45}
\end{equation*}
$$

For the (\perp) polarization in a uniaxial material of a wave in the direction $\hat{\mathbf{k}}=(\sin \theta, 0, \cos \theta)$, we have

$$
\begin{align*}
\overrightarrow{\mathcal{E}} & =(0, \mathcal{E}, 0) \tag{S.46}\\
\overrightarrow{\mathcal{H}} & =\frac{|\mathbf{k}| \mathcal{E}}{\omega \mu_{0}}(-\cos \theta, 0, \sin \theta) \tag{S.47}
\end{align*}
$$

and hence

$$
\begin{equation*}
\langle\mathbf{S}\rangle=\frac{|\mathbf{k}||\mathcal{E}|^{2}}{2 \omega \mu_{0}}(\sin \theta, 0, \cos \theta) \tag{S.48}
\end{equation*}
$$

so the energy flows in the same direction as the wave vector \mathbf{k}.
On the other hand, for the in-plane polarization we have

$$
\begin{align*}
\overrightarrow{\mathcal{E}} & =\frac{\mathcal{E}}{\sqrt{\epsilon_{1}^{2} \sin ^{2} \theta+\epsilon_{2}^{2} \cos ^{2} \theta}}\left(-\epsilon_{3} \cos \theta, 0,+\epsilon_{1} \sin \theta\right) \tag{S.43}\\
& =\mathcal{E}(-\cos \alpha, 0,+\sin \alpha) \tag{S.49}\\
\text { for } \quad \alpha & =\arctan \left(\frac{\epsilon_{1}}{\epsilon_{3}} \tan \alpha\right), \tag{S.50}
\end{align*}
$$

hence

$$
\begin{equation*}
\overrightarrow{\mathcal{H}}=\frac{|\mathbf{k}| \mathcal{E}}{\omega \mu_{0}}(0,-\cos (\alpha-\theta), 0) \tag{S.51}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\langle\mathbf{S}\rangle=\frac{|\mathbf{k}||\mathcal{E}|^{2} \cos (\alpha-\theta)}{2 \omega \mu_{0}}(\sin \alpha, 0, \cos \alpha) . \tag{S.52}
\end{equation*}
$$

This time, the direction of the Poynting vector is different from the wave direction \mathbf{k}. Specifically, both directions and the optical axis lie in the same (x_{1}, x_{3}) plane, but within that plane they differ by the angle

$$
\begin{equation*}
\Delta \phi=\alpha-\theta=\arctan \left(\frac{\epsilon_{1}}{\epsilon_{3}} \tan \theta\right)-\theta \tag{S.53}
\end{equation*}
$$

For your information, this angular difference disappears for $\theta=0$ or $\theta=90^{\circ}$, and reaches its maximum

$$
\begin{equation*}
\Delta \phi_{\max }=\arcsin \frac{\left|\epsilon_{3}-\epsilon_{1}\right|}{\epsilon_{3}+\epsilon_{1}} \tag{S.54}
\end{equation*}
$$

for

$$
\begin{equation*}
\theta=\arctan \left(\sqrt{\frac{\epsilon_{3}}{\epsilon_{1}}}\right) \Longrightarrow \alpha=\arctan \left(\sqrt{\frac{\epsilon_{1}}{\epsilon_{3}}}\right) \tag{S.55}
\end{equation*}
$$

However, this part of the angular calculation was not a part of your homework assignment.

Problem 2(a):
A free electron in the constant magnetic field \mathbf{B} and the electric field \mathbf{E} of the wave moves according to

$$
\begin{equation*}
m \mathbf{a}+e \mathbf{v} \times \mathbf{B}=-e \mathbf{E} \tag{S.56}
\end{equation*}
$$

For a harmonic wave $\mathbf{E}=e^{-i \omega t} \mathbf{E}^{0}$ the electron also moves harmonically, $\mathbf{x}(t)=e^{-i \omega t} \mathbf{x}^{0}$, with the amplitude such that

$$
\begin{equation*}
-\omega^{2} m \mathbf{x}^{0}-i \omega \mathbf{x}^{0} \times \mathbf{B}=-e \mathbf{E}^{0} . \tag{S.57}
\end{equation*}
$$

In components,

$$
\begin{equation*}
-m \omega^{2} x_{0}^{i}-i \omega \epsilon_{i j k} x_{0}^{j} B_{k}=-e E_{i}^{0} \tag{S.58}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\omega^{2} \delta_{i j}+i \omega \Omega \epsilon_{i j k} \hat{b}_{k}\right) x_{j}^{0}=\frac{e}{m} E_{i}^{0} \tag{S.59}
\end{equation*}
$$

where $\Omega=(e B / m)$ is the electron's cyclotron frequency in the magnetic field, and $\hat{\mathbf{b}}=\mathbf{B} /|\mathbf{B}|$
is the unit vector in the direction of the magnetic field. To solve the equation (S.58), we need the inverse of the Hermitian matrix

$$
\begin{equation*}
\mathcal{M}_{i j}=\omega^{2} \delta_{i j}+i \omega \Omega \epsilon_{i j k} \hat{b}_{k} \tag{S.60}
\end{equation*}
$$

and there are two simple methods of calculating this inverse:
First method:
Matrix \mathcal{M} and its inverse \mathcal{M}^{-1} are tensors depending on a single vector $\hat{\mathbf{b}}$, so by the rotational symmetry

$$
\begin{equation*}
\left(\mathcal{M}^{-1}\right)_{i j}=\alpha \delta_{i j}+\beta \hat{b}_{i} \hat{b}_{j}+i \gamma \epsilon_{i j k} \hat{b}_{k} \tag{S.61}
\end{equation*}
$$

for some scalars α, β, γ. To find these scalars, we simply demand that

$$
\begin{equation*}
\mathcal{M} \times \mathcal{M}^{-1}=1 \Longleftrightarrow \mathcal{M}_{i j}\left(\mathcal{M}^{-1}\right)_{j k}=\delta_{j k} \tag{S.62}
\end{equation*}
$$

The explicit calculation of the LHS here yields

$$
\begin{align*}
\mathcal{M}_{i j}\left(\mathcal{M}^{-1}\right)_{j k}= & \left(\omega^{2} \delta_{i j}+i \omega \Omega \epsilon_{i j \ell} \hat{b}_{\ell}\right) \times\left(\alpha \delta_{j k}+\beta \hat{b}_{j} \hat{b}_{k}+i \gamma \epsilon_{j k m} \hat{b}_{m}\right) \\
= & \omega^{2} \alpha \delta_{i k}+i \Omega \omega \alpha \epsilon_{i k \ell} \hat{\ell}_{\ell}+\omega^{2} \beta \hat{b}_{i} \hat{b}_{k}+i \Omega \omega \beta \times 0 \tag{S.63}\\
& +i \omega^{2} \gamma \epsilon_{i k m} \hat{b}_{m}-\Omega \omega \gamma\left(\epsilon_{i j \ell} \epsilon_{j k m} \hat{b}_{\ell} \hat{b}_{m}=\hat{b}_{i} \hat{b}_{k}-\delta_{i k}\right) \\
= & \left(\omega^{2} \alpha+\Omega \omega \gamma\right) \delta_{i k}+\left(\omega^{2} \beta-\Omega \omega \gamma\right) \hat{b}_{i} \hat{b}_{k}+i\left(\omega^{2} \gamma+\Omega \omega \alpha\right) \epsilon_{i k \ell} \hat{b}_{\ell}
\end{align*}
$$

which calls for

$$
\begin{align*}
& \omega^{2} \times \alpha+\Omega \omega \times \gamma=1 \\
& \omega^{2} \times \beta-\Omega \omega \times \gamma=0 \tag{S.64}\\
& \omega^{2} \times \gamma+\Omega \omega \times \alpha=0
\end{align*}
$$

Solving these equations, we get

$$
\begin{equation*}
\alpha=\frac{1}{\omega^{2}-\Omega^{2}}, \quad \beta=-\frac{\Omega^{2}}{\omega^{2}\left(\omega^{2}-\Omega^{2}\right)}, \quad \gamma=-\frac{\Omega}{\omega\left(\omega^{2}-\Omega^{2}\right)} \tag{S.65}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\left(\mathcal{M}^{-1}\right)_{i j}=\frac{1}{\omega^{2}\left(\omega^{2}-\Omega^{2}\right)}\left(\omega^{2} \delta_{i j}-\Omega^{2} \hat{b}_{i} \hat{b}_{j}-i \omega \Omega \epsilon_{i j k} \hat{b}_{k}\right) \tag{S.66}
\end{equation*}
$$

Second Method:
Let's use a coordinate system with the z axis pointing in the magnetic field direction, thus $\hat{\mathbf{b}}=(0,0,1)$. In this coordinate frame,

$$
\mathcal{M}=\left(\begin{array}{ccc}
\omega^{2} & +i \Omega \omega & 0 \tag{S.67}\\
-i \Omega \omega & \omega^{2} & 0 \\
0 & 0 & \omega^{2}
\end{array}\right)
$$

and the inverse of this matrix is

$$
\mathcal{M}^{-1}=\left(\begin{array}{ccc}
\frac{1}{\omega^{2}-\Omega^{2}} & -i \frac{\Omega}{\omega\left(\omega^{2}-\Omega^{2}\right)} & 0 \tag{S.68}\\
+i \frac{\Omega}{\omega\left(\omega^{2}-\Omega^{2}\right)} & \frac{1}{\omega^{2}-\Omega^{2}} & 0 \\
0 & 0 & \frac{1}{\omega^{2}}
\end{array}\right) .
$$

Using

$$
\begin{equation*}
\frac{1}{\omega^{2}}=\frac{1}{\omega^{2}-\Omega^{2}}-\frac{\Omega^{2}}{\omega^{2}\left(\omega^{2}-\Omega^{2}\right)} \tag{S.69}
\end{equation*}
$$

we can bring this matrix to the form

$$
\mathcal{M}^{-1}=\frac{1}{\omega^{2}\left(\omega^{2}-\Omega^{2}\right)}\left[\omega^{2}\left(\begin{array}{lll}
1 & 0 & 0 \tag{S.70}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)-\Omega^{2}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)-\Omega \omega\left(\begin{array}{ccc}
0 & +i & 0 \\
-i & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right]
$$

which in index notations becomes

$$
\begin{equation*}
\left(\mathcal{M}^{-1}\right)_{i j}=\frac{1}{\omega^{2}\left(\omega^{2}-\Omega^{2}\right)}\left(\omega^{2} \delta_{i j}-\Omega^{2} \hat{b}_{i} \hat{b}_{j}-i \omega \Omega \epsilon_{i j k} \hat{b}_{k}\right) . \tag{S.66}
\end{equation*}
$$

Note: although we have used a specific coordinate system to derive this formula, once we have written it down in term of the unit vector $\hat{\mathbf{b}}$ - which is the only direction the matrices \mathcal{M} and \mathcal{M}^{-1} inverse care about - eq. (S.66) becomes valid in all coordinate systems.

Back to the electron:

However we calculate the inverse matrix (S.66), it gives the solution of eq. (S.59) for the electron's motion amplitude as

$$
\begin{equation*}
x_{i}^{0}=\frac{e}{m}\left(\mathcal{M}^{-1}\right)_{i j} E_{j}^{0} \tag{S.71}
\end{equation*}
$$

and hence induced dipole moment amplitude

$$
\begin{equation*}
p_{i}^{0}=-\frac{e^{2}}{m}\left(\mathcal{M}^{-1}\right)_{i j} E_{j}^{0} \tag{S.72}
\end{equation*}
$$

For the whole plasma, this gives the polarization

$$
\begin{equation*}
P_{i}=-\frac{e^{2} n_{e}}{m}\left(\mathcal{M}^{-1}\right)_{i j} E_{j} \tag{S.73}
\end{equation*}
$$

and hence

$$
\begin{equation*}
D_{i}=\epsilon_{0} E_{i}-\frac{e^{2} n_{e}}{m}\left(\mathcal{M}^{-1}\right)_{i j} E_{j} \tag{S.74}
\end{equation*}
$$

In terms of the permittivity tensor, this means

$$
\begin{align*}
\epsilon_{i j} & =\delta_{i j}-\frac{e^{2} n_{e}}{m \epsilon_{0}}\left(\mathcal{M}^{-1}\right)_{i j} \\
& =\delta_{i j}-\frac{\omega_{p}^{2}}{\omega^{2}\left(\omega^{2}-\Omega^{2}\right)} \times\left(\omega^{2} \delta_{i j}-\Omega^{2} \hat{b}_{i} \hat{b}_{j}-i \omega \Omega \epsilon_{i j k} \hat{b}_{k}\right), \tag{S.75}
\end{align*}
$$

exactly as in eq. (7).

Problem 2(b):
In the coordinate system whose z axis points in the direction of the magnetic field, the \mathcal{M}^{-1}
matrix is spelled out in eq. (S.68). Plugging it in into the top line of eq. (S.75), we get

$$
\epsilon=\left(\begin{array}{ccc}
1-\frac{\omega_{p}^{2}}{\omega^{2}-\Omega^{2}} & +i \frac{\omega_{p}^{2} \Omega}{\omega\left(\omega^{2}-\Omega^{2}\right)} & 0 \tag{S.76}\\
-i \frac{\omega_{p}^{2} \Omega}{\omega\left(\omega^{2}-\Omega^{2}\right)} & 1-\frac{\omega_{p}^{2}}{\omega^{2}-\Omega^{2}} & 0 \\
0 & 0 & 1-\frac{\omega_{p}^{2}}{\omega^{2}}
\end{array}\right)
$$

This is an Hermitian matrix of general form

$$
\left(\begin{array}{ccc}
A & +i C & 0 \tag{S.77}\\
-i C & A & 0 \\
0 & 0 & B
\end{array}\right) \quad \text { for real } A, B, C
$$

and it is easy to see that all such matrices have two eigenvalues $e_{1,2}=A \pm C$ corresponding to complex eigenvectors $\mathbf{m}_{1,2}=\sqrt{\frac{1}{2}}(1, \mp i, 0)$, while the third eigenvalue $e_{3}=B$ corresponds to a real eigenvector $\mathbf{m}_{3}=(0,0,1)$. For the $\epsilon_{i j}$ tensor (S.76) at hand, this means

$$
\begin{align*}
& \mathbf{m}_{1,2}=\sqrt{\frac{1}{2}}(1, \mp i, 0) \\
& \mathbf{m}_{3}=(0,0,1) \quad \text { for } \epsilon_{1,2}=1-\frac{\omega_{p}^{2}}{\omega^{2}-\Omega^{2}} \pm \frac{\omega_{p}^{2} \Omega}{\omega\left(\omega^{2}-\Omega^{2}\right)}=1-\frac{\omega_{p}^{2}}{\omega(\omega \pm \Omega)} \tag{S.78}\\
& \text { for } \epsilon_{3}=1-\frac{\omega_{p}^{2}}{\omega^{2}}
\end{align*}
$$

Problem 2(c):
In vector notations, eq. (4) becomes

$$
\begin{equation*}
\stackrel{\leftrightarrow}{\epsilon} \cdot \overrightarrow{\mathcal{E}}-n^{2} \overrightarrow{\mathcal{E}}+n^{2} \hat{\mathbf{k}}(\hat{\mathbf{k}} \cdot \overrightarrow{\mathcal{E}})=0 \tag{S.79}
\end{equation*}
$$

Taking the components of each term here in a complex but orthonormal basis ($\mathbf{m}_{1}, \mathbf{m}_{2}, \mathbf{m}_{3}$), we have

$$
\begin{equation*}
[\stackrel{\leftrightarrow}{\epsilon} \cdot \overrightarrow{\mathcal{E}}]_{i}=\mathbf{m}_{i}^{*} \cdot \stackrel{\leftrightarrow}{\epsilon} \cdot \overrightarrow{\mathcal{E}}=\sum_{j}\left(\mathbf{m}_{i}^{*} \cdot \stackrel{\leftrightarrow}{\epsilon} \cdot \mathbf{m}_{j}\right)\left(\mathbf{m}_{j}^{*} \cdot \overrightarrow{\mathcal{E}}\right)=\sum_{j} \epsilon_{i j} \mathcal{E}_{j} \tag{S.80}
\end{equation*}
$$

where $\epsilon_{i j}=\left(\mathbf{m}_{i}^{*} \cdot \stackrel{\leftrightarrow}{\epsilon} \cdot \mathbf{m}_{j}\right)$ are the matrix elements of the $\stackrel{\leftrightarrow}{\epsilon}$ tensor in the complex basis at
hand,

$$
\begin{equation*}
[\hat{\mathbf{k}}(\hat{\mathbf{k}} \cdot \overrightarrow{\mathcal{E}})]_{i}=\left(\mathbf{m}_{i}^{*} \cdot \hat{\mathbf{k}}\right)(\hat{\mathbf{k}} \cdot \overrightarrow{\mathcal{E}})=\left(\mathbf{m}_{i}^{*} \cdot \hat{\mathbf{k}}\right) \sum_{j}\left(\hat{\mathbf{k}} \cdot \mathbf{m}_{j}\right)\left(\mathbf{m}_{j}^{*} \cdot \overrightarrow{\mathcal{E}}\right)=\hat{k}_{i} \sum_{j} \hat{k}_{j}^{*} \mathcal{E}_{j}, \tag{S.81}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\sum_{j}\left(\epsilon_{i j}-n^{2} \delta_{i j}+n^{2} \hat{k}_{i} \hat{k}_{j}^{*}\right) \mathcal{E}_{j}=0 \tag{13}
\end{equation*}
$$

From this point on, we may proceed exactly as in problem 1(d). To get a non-trivial solution of eq. (13) for the electric polarization vector $\overrightarrow{\mathcal{E}}$, the matrix $(\cdots)_{i j}$ must have a zero determinant, hence equation

$$
\begin{equation*}
\chi\left(n^{2}\right) \stackrel{\text { def }}{=} \operatorname{det}(\cdots)=0 \tag{S.82}
\end{equation*}
$$

for the refraction indices ${ }^{2}$ for the two polarizations of the wave moving in a given direction $\hat{\mathbf{k}}$. To calculate this determinant, we use the basis $\left(\mathbf{m}_{1}, \mathbf{m}_{2}, \mathbf{m}_{3}\right)$ made from the eigenvectors of the Hermitian tensor $\stackrel{\leftrightarrow}{\epsilon}$, hence

$$
\begin{align*}
\chi\left(n^{2}\right)= & \operatorname{det}\left(\begin{array}{ccc}
\epsilon_{1}+n^{2}\left(\left|\hat{k}_{1}\right|^{2}-1\right) & n^{2} \hat{k}_{1} \hat{k}_{2}^{*} & n^{2} \hat{k}_{1} \hat{k}_{3}^{*} \\
n^{2} \hat{k}_{2} \hat{k}_{1}^{*} & \epsilon_{2}+n^{2}\left(\left|\hat{k}_{2}\right|^{2}-1\right) & n^{2} \hat{k}_{2} \hat{k}_{3}^{*} \\
n^{2} \hat{k}_{3} \hat{k}_{1}^{*} & n^{2} \hat{k}_{3} \hat{k}_{2}^{*} & \epsilon_{3}+n^{2}\left(\left|\hat{k}_{3}\right|^{2}-1\right)
\end{array}\right) \\
= & \epsilon_{1} \epsilon_{2} \epsilon_{3}+n^{2}\left(\epsilon_{1} \epsilon_{2}\left(\left|\hat{k}_{3}\right|^{2}-1\right)+\text { two similar terms }\right) \\
& +n^{4} \epsilon_{1} \times \operatorname{det}\left(\begin{array}{ccc}
\left|\hat{k}_{2}\right|^{2}-1 & \hat{k}_{2} \hat{k}_{3}^{*} \\
\hat{k}_{3} \hat{k}_{2}^{*} & \left|\hat{k}_{3}\right|^{2}-1
\end{array}\right)+\text { two similar terms } \tag{S.83}\\
& +n^{6} \times \operatorname{det}\left(\begin{array}{ccc}
\left|\hat{k}_{1}\right|^{2}-1 & \hat{k}_{1} \hat{k}_{2}^{*} & \hat{k}_{1} \hat{k}_{3}^{*} \\
\hat{k}_{2} \hat{k}_{1}^{*} & \left|\hat{k}_{2}\right|^{2}-1 & \hat{k}_{2} \hat{k}_{3}^{*} \\
\hat{k}_{3} \hat{k}_{1}^{*} & \hat{k}_{3} \hat{k}_{2}^{*} & \left|\hat{k}_{3}\right|^{2}-1
\end{array}\right)
\end{align*}
$$

Similarly to what we had in problem 1(d), the determinant on the last line here evaluates
to zero, while the determinants on the third line evaluate to

$$
\begin{align*}
\operatorname{det}\left(\begin{array}{cc}
\left|\hat{k}_{2}\right|^{2}-1 & \hat{k}_{2} \hat{k}_{3}^{*} \\
\hat{k}_{3} \hat{k}_{2}^{*} & \left|\hat{k}_{3}\right|^{2}-1
\end{array}\right) & =\left(\left|\hat{k}_{2}\right|^{2}-1\right)\left(\left|\hat{k}_{3}\right|^{2}-1\right)-\hat{k}_{2} \hat{k}_{3}^{*} \hat{k}_{3} \hat{k}_{2}^{*} \\
& =\left|\hat{k}_{2}\right|^{2}\left|\hat{k}_{3}\right|^{2}-\left|\hat{k}_{2}\right|^{2}-\left|\hat{k}_{3}\right|^{2}+1-\left|\hat{k}_{2}\right|^{2}\left|\hat{k}_{3}\right|^{3} \\
& =1-\left|\hat{k}_{2}\right|^{2}-\left|\hat{k}_{3}\right|^{2}=\left|\hat{k}_{1}\right|^{2}, \tag{S.84}
\end{align*}
$$

and likewise for the two similar determinants. Consequently, assembling all the terms in eq. (S.83), we get exactly the same result as in problem $1(\mathrm{~d})$, except that each \hat{k}_{i}^{2} factor now becomes $\left|\hat{k}_{i}\right|^{2}=\left|\mathbf{m}_{i}^{*} \cdot \hat{\mathbf{k}}\right|^{2}$. So at the end of the calculation we get eq. (6) with the \hat{k}_{i}^{2} factors replaced with the $\left|\hat{k}_{i}\right|^{2}$, thus

$$
\begin{align*}
\chi\left(n^{2}\right) & =\sum_{i=1}^{3}\left(\left|\hat{k}_{i}\right|^{2}=\left|\mathbf{m}_{i}^{*} \cdot \hat{\mathbf{k}}\right|^{2}\right) \epsilon_{i} \times \prod_{j \neq i}\left(n^{2}-\epsilon_{j}\right) \tag{S.85}\\
& =\prod_{i=1}^{3}\left(n^{2}-\epsilon_{i}\right) \times \sum_{i=1}^{3} \frac{\left(\left|\hat{k}_{i}\right|^{2}=\left|\mathbf{m}_{i}^{*} \cdot \hat{\mathbf{k}}\right|^{2}\right) \epsilon_{i}}{n^{2}-\epsilon_{i}}
\end{align*}
$$

Finally, similarly to problem $1(\mathrm{e})$ we assume 3 different eigenvalues of the ϵ tensor, hence the quadratic polynomial on the top line of this formula does not vanish for $n^{2}=$ any of the ϵ_{i}. Instead, the roots of $\chi\left(n^{2}\right)$ follow from the zeros of the second factor on the second line of (S.85), hence the Fresnel equation

$$
\begin{equation*}
\sum_{i=1}^{3} \frac{\left(\left|\hat{k}_{i}\right|^{2}=\left|\mathbf{m}_{i}^{*} \cdot \hat{\mathbf{k}}\right|^{2}\right) \epsilon_{i}}{n^{2}-\epsilon_{i}}=0 \tag{14}
\end{equation*}
$$

Quod erat demonstrandum.

Problem 2(d):

The eigenvalues and the eigenvectors of the ϵ tensor for the plasma in a magnetic field were calculated in part (b) of this problem. In particular, in real coordinates with z axis along
the magnetic field's direction, the eigenvectors are

$$
\begin{equation*}
\mathbf{m}_{1}=\sqrt{\frac{1}{2}}(1,-i, 0), \quad \mathbf{m}_{2}=\sqrt{\frac{1}{2}}(1,+i, 0), \quad \mathbf{m}_{3}=(0,0,1) \tag{S.86}
\end{equation*}
$$

For a wave propagating in a direction making angle θ with the magnetic field, we have

$$
\begin{equation*}
\hat{\mathbf{k}}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \quad \text { for some } \phi \tag{S.87}
\end{equation*}
$$

hence

$$
\begin{equation*}
\hat{k}_{1}=\mathbf{m}_{1}^{*} \cdot \hat{\mathbf{k}}=\frac{\sin \theta}{\sqrt{2}} e^{+i \phi}, \quad \hat{k}_{2}=\mathbf{m}_{2}^{*} \cdot \hat{\mathbf{k}}=\frac{\sin \theta}{\sqrt{2}} e^{-i \phi}, \quad \hat{k}_{3}=\mathbf{m}_{3}^{*} \cdot \hat{\mathbf{k}}=\cos \theta \tag{S.88}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\left|\hat{k}_{1}\right|^{2}=\left|\hat{k}_{2}\right|^{2}=\frac{1}{2} \sin ^{2} \theta, \quad\left|\hat{k}_{3}\right|^{2}=\cos ^{2} \theta \tag{S.89}
\end{equation*}
$$

Plugging these values into the Fresnel equation (14), we arrive at

$$
\begin{equation*}
\frac{\sin ^{2} \theta}{2} \times\left(\frac{\epsilon_{1}}{n^{2}-\epsilon_{1}}+\frac{\epsilon_{2}}{n^{2}-\epsilon_{2}}\right)+\cos ^{2} \theta \times \frac{\epsilon_{3}}{n^{2}-\epsilon_{3}}=0 . \tag{S.90}
\end{equation*}
$$

Next, the eigenvalues

$$
\begin{equation*}
\epsilon_{1,2}=1-\frac{\omega_{p}^{2}}{\omega(\omega \pm \Omega)}, \quad \epsilon_{3}=1-\frac{\omega_{p}^{2}}{\omega^{2}} \tag{S.91}
\end{equation*}
$$

In the high-frequency limit $\omega(\omega-\Omega) \gg \omega_{p}$, all 3 eigenvalues are rather close to 1 . In light of eq. (7) from the problem $1(\mathrm{e})$, - or rather

$$
\begin{equation*}
\epsilon_{1} \geq n_{1}^{2} \geq \epsilon_{3} \geq n_{2}^{2} \geq \epsilon_{2} \tag{S.92}
\end{equation*}
$$

since we now have $\epsilon_{1}>\epsilon_{3}>\epsilon_{2}$, - both solutions n_{1}^{2} and n_{2}^{2} of the Fresnel equation should
also lie very close to 1 , so let's zoom on this narrow range and let

$$
\begin{equation*}
n^{2}=1-\frac{\omega_{p}^{2}}{\omega^{2}}+\frac{\omega_{p}^{2}}{\omega^{2}} \times \nu \tag{S.93}
\end{equation*}
$$

Then

$$
\begin{equation*}
n^{2}-\epsilon_{3}=\frac{\omega_{p}^{2}}{\omega^{2}} \times \nu, \quad n^{2}-\epsilon_{1,2}=\frac{\omega_{p}^{2}}{\omega^{2}} \times\left(\nu \mp \frac{\Omega}{\omega \pm \Omega}\right) \tag{S.94}
\end{equation*}
$$

and we may rescale the Fresnel equation (S.90) as

$$
\begin{equation*}
\frac{\sin ^{2} \theta}{2} \times\left(\frac{\epsilon_{1}}{\nu-\frac{\Omega}{\omega+\Omega}}+\frac{\epsilon_{2}}{\nu+\frac{\Omega}{\omega-\Omega}}\right)+\cos ^{2} \theta \times \frac{\epsilon_{3}}{\nu}=0 . \tag{S.95}
\end{equation*}
$$

Thus far, all the above calculations are exact. But now let's make use of the high-frequency limit in which all three $\epsilon_{1}, \epsilon_{2}, \epsilon_{3} \approx 1$ to replace the $\epsilon_{1,2,3}$ in the numerators of eq. (S.95) with ones, thus

$$
\begin{equation*}
\frac{\sin ^{2} \theta}{2} \times\left(\frac{1}{\nu-\frac{\Omega}{\omega+\Omega}}+\frac{1}{\nu+\frac{\Omega}{\omega-\Omega}}\right)+\cos ^{2} \theta \times \frac{1}{\nu}=0 . \tag{S.96}
\end{equation*}
$$

This is the equation we are going to solve to understand the Faraday effect in plasma at high frequencies.

Simple version: the wave frequency ω is much higher than both the plasma frequency ω_{p} and the cyclotron frequency Ω.
In this limit, we may further approximate

$$
\begin{equation*}
\frac{\Omega}{\omega \pm \Omega} \approx \frac{\Omega}{\omega} \tag{S.97}
\end{equation*}
$$

hence in eq. (S.96)

$$
\begin{equation*}
\frac{1}{\nu-\frac{\Omega}{\omega+\Omega}}+\frac{1}{\nu+\frac{\Omega}{\omega-\Omega}} \approx \frac{1}{\nu-(\Omega / \omega)}+\frac{1}{\nu+(\Omega / \omega)}=\frac{2 \nu}{\left.\nu^{2}-(\Omega / \omega)^{2}\right)} \tag{S.98}
\end{equation*}
$$

and the whole (rescaled) Fresnel equation (S.96) becomes

$$
\begin{equation*}
\frac{\nu \sin ^{2} \theta}{\nu^{2}-(\Omega / \omega)^{2}}+\frac{\cos ^{2} \theta}{\nu}=0 \tag{S.99}
\end{equation*}
$$

Bringing the LHS here to a common denominator, we get

$$
\begin{equation*}
\text { numerator }=\nu^{2} \sin ^{2} \theta+\left(\nu^{2}-(\Omega / \omega)^{2}\right) \cos ^{2} \theta=\nu^{2}-(\Omega / \omega)^{2} \cos ^{2} \theta \tag{S.100}
\end{equation*}
$$

which vanishes for

$$
\begin{equation*}
\nu= \pm \frac{\Omega \cos \theta}{\omega} \tag{S.101}
\end{equation*}
$$

Or in terms of the refraction coefficients,

$$
\begin{equation*}
n_{1,2}^{2}=1-\frac{\omega_{p}^{2}}{\omega^{2}} \pm \frac{\omega_{p}^{2} \Omega}{\omega^{3}} \times \cos \theta \tag{15}
\end{equation*}
$$

Harder version: the limit of high frequency but also strong magnetic field, so that $\omega \gg \omega_{p}$ but not necessarily $\omega \gg \Omega$. Instead, we merely assume that $\omega>\Omega$ and $\omega(\omega-\Omega) \gg \omega_{p}^{2}$ to make sure that $1-\epsilon_{2} \ll 1$ and hence $\forall i:\left(1-\epsilon_{i}\right) \ll 1$.
In this case, we need to solve eq. (S.96) without any further approximations, thus

$$
\begin{equation*}
\frac{1}{\nu-\frac{\Omega}{\omega+\Omega}}+\frac{1}{\nu+\frac{\Omega}{\omega-\Omega}}=\frac{\omega+\Omega}{\nu \omega+(\nu-1) \Omega}+\frac{\omega-\Omega}{\nu \omega-(\nu-1) \Omega}=\frac{2 \nu \omega^{2}-2(\nu-1) \Omega^{2}}{\nu^{2} \omega^{2}-(\nu-1)^{2} \Omega^{2}} \tag{S.102}
\end{equation*}
$$

hence bringing eq. (S.96) to a common denominator yields

$$
\begin{align*}
0=\text { numerator } & =\sin ^{2} \theta \times\left[\nu \omega^{2}-(\nu-1) \Omega^{2}\right] \times \nu+\cos ^{2} \theta \times\left[\nu^{2} \omega^{2}-(\nu-1)^{2} \Omega^{2}\right] \\
& =\nu^{2} \omega^{2}-(\nu-1) \Omega^{2}\left(\nu-\cos ^{2} \theta\right) \\
& =\left(\omega^{2}-\Omega^{2}\right) \times \nu^{2}+\Omega^{2}\left(1+\cos ^{2} \theta\right) \times \nu-\Omega^{2} \cos ^{2} \theta \tag{S.103}
\end{align*}
$$

Solving this quadratic equation yields

$$
\begin{equation*}
\nu_{1,2}=\frac{-\Omega^{2}\left(1+\cos ^{2} \theta\right) \pm \sqrt{4 \omega^{2} \Omega^{2} \cos ^{2} \theta+\Omega^{4} \sin ^{4} \theta}}{2\left(\omega^{2}-\Omega^{2}\right)} \tag{S.104}
\end{equation*}
$$

and hence

$$
\begin{equation*}
n_{1,2}^{2}=1-\frac{\omega_{p}^{2}}{\omega^{2}}-\frac{\omega_{p}^{2} \Omega^{2}\left(1+\cos ^{2} \theta\right)}{2 \omega^{2}\left(\omega^{2}-\Omega^{2}\right)} \pm \frac{\omega_{p}^{2} \Omega}{\omega\left(\omega^{2}-\Omega^{2}\right)} \times \sqrt{\cos ^{2} \theta+\frac{\Omega^{2}}{4 \omega^{2}} \sin ^{4} \theta} \tag{S.105}
\end{equation*}
$$

In the limit of $\omega \gg \Omega$, these solutions become (15).

FYI, the exact answer, without making any approximations at all. Although it helps to assume $\omega(\omega-\Omega)>\omega_{p}^{2}$ to make sure all 3 eigenvalues of the ϵ tensor are positive. In this general case

$$
\begin{align*}
n_{1}^{2} & =\frac{\omega^{2}-\omega_{p}^{2}}{\omega^{2}-\nu_{1} \times \omega_{p}^{2}}, \quad n_{2}^{2}=\frac{\omega^{2}-\omega_{p}^{2}}{\omega^{2}-\nu_{2} \times \omega_{p}^{2}} \tag{S.106}\\
\text { for } \nu_{1,2} & =\frac{\lambda}{1-\lambda^{2}}\left(-\frac{\lambda\left(1+\cos ^{2} \theta\right)}{2} \pm \sqrt{\cos ^{2} \theta+\frac{1}{4} \lambda^{2} \sin ^{4} \theta}\right) \tag{S.107}\\
\text { where } \lambda & =\frac{\Omega \omega}{\omega^{2}-\omega_{p}^{2}} \tag{S.108}
\end{align*}
$$

[^0]: * A real symmetric 2 -index tensor can be viewed as a real symmetric matrix. The directions of this matrix's eigenvectors are called the principal axes of the tensor.

