SPHERICAL WAVES

When a wave travels far enough from its source, it starts spreading in all directions while

its energy flow density S diminishes with distance as 1/r2,

S(r,0,¢) — F(6, qs)r% + 0(13) (1)

r—00 T

for some general angular power distribution

dP

s = F0.0) (2)

The fields in such a wave — the E(x,t) and H(x,t) in an electromagnetic wave, or the

over-density dp(x,t) in a sound wave, or whatever — generally look like

r

w00 = S (00 + 0 (1), Q

Waves like these are called divergent spherical waves because their wave-fronts are spheres

spreading out from the center as r = vppaset + const.

In these notes, we shall learn about the the divergent spherical waves that are exact
solutions of the wave equation(s). For simplicity, we shall start with the scalar waves before
turning to the electromagnetic waves. Eventually, we shall see that the electric and the
magnetic multipoles for ¢ = 1,2,3,... emit spherical EM waves of specific types, and we

shall spell out those waves in both far-, near-, and intermediate-distance zones.



Spherical Scalar Waves

Let’s start with the waves of a complex scalar field ¢(x,t), and focus on the harmonic

waves of a fixed frequency w, thus ¥ (x,t) = ¥(x)e~*" for 1)(x) obeying the 3D wave equation
(V2 + E)g(x) = 0. (4)

The scalar analog of the Poynting vector — the flow density of the wave’s energy — is
S = Im(y*V¢) = [¢f* V phase(y)), (5)

so a divergent scalar wave of a general form

eikr 1
indeed has a radially spreading energy flow
2
S(r,0,¢) = 7‘“97:;5” (kn + Vphase(f) + O (%))
(6)
kIf(0,¢)|? 1
)
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The real problem is finding the exact solutions of the wave equation (4) in the spherical wave
form (3).
The simplest solution is the spherically symmetric wave

ezkr

Y(ronly) = fo (8)
for f(0,¢) = fo = const. Indeed, for this wave
I 1 d*

1 ,
Z (=K ikry k2 )
- (=h7e™) W(r)

9)
But for all other f(6,¢) # const, the exact solutions have not only the leading O(1/r) term
but also the subleading O(1/72), O(1/r3), etc., terms.

VQw(ronly) = W+; - = ;W(T¢(T)) — o (eikr) _



To find all such subleading terms, let’s use the separation-of-variables method to solve

the wave equation, 7.e. look for the solutions in the form

U(r,0,9) = f(0,¢) x g(r). (10)

In spherical coordinates, the Laplace operator has form

# 20 1.
v2 - 9 29 L
BT 7’2L (11)

where

A~

L = —ixxV (12)

is the differential operator WRT the angular coordinates ¢ and ¢. You can find its exact form
in any quantum-mechanics textbook where AL is the orbital angular momentum operator in
the coordinate basis. For the wave of the form (10),

/

2g

(V1)) = (L)) x5 + + fxg' + [x ==+ fxkg, (13
hence
9 £o 2.1 /

which should vanish for a solution of the wave equation. And since the first term on the
RHS depends only on the angular coordinates (6, ¢) while the second term depends only on

the radial coordinate r, both terms must be constants, thus

L2f(0.0) = Cx f(0,9), (15)
rig"(r) + 2rg'(r) + Krg(r) = Cxg(r), (16)

for the same constant C.



The spectrum of the L2 operator should be familiar to all of your from the undergraduate
quantum-mechanics class: eq. (15) has solutions f(6,¢) that are periodic in ¢ and non-

singular at the poles # = 0, 7 only for
C = (({+1), integer {=0,1,2,3,.... (17)

And for each such ¢, there are (2¢ 4 1) independent solutions called the spherical harmonics

f(0,0) =Yr,,(0,0), labeled by another integer m running from —¢ to +/.

As to the radial equation (16), for C' = ¢(¢ + 1) it becomes spherical Bessel equation

g'0) + 2oy — D o) 1 k20) = 0 (18)

whose 2 independent solutions are the spherical Bessel functions j;(kr) and ng(kr), thus
g(r) = Aje(kr) + Bng(kr). (19)

The spherical Bessel functions are related to the ordinary (cylindrical) Bessel functions with

half-integer indices

J4+% (z) Nu% (z)

Je(x) = N ne(r) = —

More interestingly, the spherical Bessel functions are related to the elementary functions as

(20)

je(x), ng(x) = sin(x) x Polynomial(1/z) + cos(z) x Polynomial(1/x). (21)
Specifically,

jolw) = 5, (22)

nola) = ———. (23)

i(z) = sin(z) — x cos(x) | (24)



cos(z) + wsin(x)

) =~ IR (25)
— 2?)sin(z) — 3z cos(z
pla) = BoT)InE) = Sreosta), (26)
— 22) cos(x) — 3zsin(z
o) = B or(e) = dasinGa) o

Asymptotically,
‘ xt (20 — 1)
forz —0: jx) = m, ne(x) =~ T (30)
. N eﬂ . EE
while for z — 0o :  jy(z) = sm(:vxiz)’ ny(xr) ~ —COS(xx ) (31)

In particular, the regular spherical Bessel function jy(kr) is the unique solution of the radial
equation that is regular at the coordinate origin. Therefore, the standing wave modes of the

scalar field in a spherical cavity have general form

1/’(73 07 ¢) = (COHSt) X ]g(/{ﬂ“) X n,m(ea ¢) (32)

for discrete values of k for which jy(kR) = 0 or j,(kR) = 0, depending on the Dirichlet v.

Neumann boundary conditions at the cavity’s boundary.

But for a divergent spherical wave, a singularity at the origin is OK because the wave
is must be generated by some compact oscillator at the origin. On the other hand, at long
distances from the center the spherical wave should travel outward rather than inward, or
stand in place. Consequently, its radial profile should be the complex combination of the

two real Bessel functions (for each ¢), namely the Hankel function

bi(e) = gia) + o) = —it=o)' (3 i)g(em).

z dx T




Or rather,

ge(kr) = i hy(kr), (33)

which at long distances kr > 1 behave as

;0 eXp(tikr — £3) - exp(tikr) (34)

k
ge(kr) — . .

Consequently, the divergent spherical wave solutions of the scalar wave equation have form

6+ikr

U(r,0,0) = Ak x go(kr) x Yy ;m(0,¢) —— AX

r—00

X Yom(0,9). (35)

Or rather, all the divergent spherical waves of a given wave number k are linear combi-

nations of specific (¢, m) wave modes (35),

oo +/L

W(r0,0) =" Apmk x go(kr) X Yim(6,6) (36)

/=0 m=—¢

for some coefficients Ay ,,. At large distances, all such waves have form

e—i—ikr 1
6:0.6) — “—x (10,00 + 0 () (37)
for
oo +L
F0,0) =D Apgn X Yim(0,9). (38)
=0 m=—/

Consequently, given the asymptotic angular function f(6, ¢), we may reconstruct all the Ay,

coefficients of the series (36) as
Ai = G P96.0) §(6,0) x ¥,,,(6.9). (39)

Finally, for future reference, let me spell out the radial profiles of the divergent spherical
waves for the low £ =0,1, 2, 3:
e—i—ikr
kr '

go(kr) = (40)



aikry = 2 (1 + Z) (41)

kr kr
eJrikT 3 3
kr) = 14— - —= 42
92( T) Lr ( + kr (k’T‘)Q) ) ( )
etikr 6i 15 15
kr) = 1+ — — — . 43
g3 (kr) kr ( R (kr)2 (kr)3) (43)
Note: these radial profiles are exact and valid for all kr: large, small, or intermediate.
Spherical Electromagnetic Waves
Each component of the EM fields E(x) and H(x) obeys the wave equation
E
V2 4+ k2 =0, 44
) (a1

so each component E; or H; can be expanded into divergent spherical waves along the lines
of eq. (36). The difficulty here is coordinating the expansions of these 6 components to

maintain the Maxwell equations

V-E = 0, (M1)
V-H = 0, (M2)
V xE = +ikZH, (M3)
VxH = _Z—ZokE (M4)

Fortunately, some of these equations automatically follow from each other and the wave

eqs. (44). Indeed, given any magnetic field H(x) which obeys
V-H =0 and (V2+k)H = 0, (45)

then this magnetic field and the electric field

E(x) = %V x H(x) (46)

obey all the Maxwell equations: (M2) and (M4) by assumption; (M1) follows from E being



a curl; and (M3) follows as

_ % _ % 2
VXE = “0VxVH = k(V(V H) VH>
{( by assumptions )) (47)
A 9 .
_ 7(0 s H) — ikZoH.

Likewise, given any electric field E(x) which obeys
V-E =0 and (V2+E)E = 0, (48)
then this electric field and the magnetic field

H(x) = z'klZo V x E(x) (49)

obey all the Maxwell equations (M1) through (M4).

Thus, from the mathematical point of view, our problem reduces to finding divergent
spherical waves of a single vector field V(x) — which can be either H(x) or E(x) — that
obeys

V-V =0 and (V2+EHV = 0. (50)

Suppose we have such a vector field V(x), then the scalar field

b(x) = x-V(x) (51)
obeys the wave equation. Indeed,
Vi =x-V =g;V;) = (Via)V; + 2(V;z:)(V;Vi) + 2:(V?V)
= 0 + 26;V,;Vi + 2:(V*V;) (52)
= 2V-V + x-V?V,
hence

(V24 E)(x-V) = 2V-V + x- (V2 +E)V = 0 + 0. (53)

Consequently, 1/(x) can be expanded into divergent spherical waves along the lines of eq. (36),



thus
00 +/

x-V(r,0,0) => > A x go(kr) x Yim(0,¢) (54)

(=0 m=—¢
for some coeflicients Ay ,,,, where go(kr) = i Lhy(kr), exactly as in eq. (34).

Since the electromagnetic waves have two vector fields obeying the conditions (50), we
may apply eq. (54) to both of them. Thus, the most general divergent spherical EM wave

should have
00 +/4

kx - E(x) =Y Y Ey x ge(kr) x Yym(0,9),
=0 m=—/ (55)

oo +4L
kx-H(x) = Z Z Hp o X go(kr) x Yo m(8, ¢),
{=0 m=—¢

for some coefficients Ey,, and Hy,,. In a moment, we shall see that Eyo = 0 and Hpp —
the EM waves have no £ = 0 modes, — while all the remaining coefficients Ey,, and Hy,,
are independent. Consequently, each of these coefficients gives rise to a particular mode of

a divergent spherical wave. Specifically:

e Transverse magnetic waves TM, ,, with

Eim
x-E(x) = ZT X ge(kr) X Yo m(0, ),

0.

(56)

»
=
a3

1

These TM waves are generated by the oscillating electric multipole moments with the

appropriate ¢ and m.

e Transverse electric waves TE,,,, with

x-E(x) = 0,
(57)

X H() = TH (k) x Yin(6.6)

These TE waves are generated by the oscillating magnetic multipole moment with the

appropriate ¢ and m.



No MoNOPOLE WAVES

Before we study the TM and TE waves in detail, let’s find why neither type of waves
has the ¢ = 0 ‘monopole’ mode. So let V(x) be the electric field E(x) or the magnetic field
H(x); either way it must obey

(VZ4EHV = 0 and V-V = 0. (58)

Let’s Fourier transform this wave in all 3 space dimensions,

:///d?’xeiqxwx), /// & 4 etiaxy(q). (59)

In terms of the V(q), the wave equation (58) becomes
(K —=¢*)V(a) =0, (60)

so V(q) must have form

V(a) = f(ng) *d(lq| - k) (61)
for some vector-valued function f of the direction n, of q. Furthermore, the zero-divergence

equation (58) translates to
q-V(qg =0 = n,-f(n,) = 0. (62)

Mathematically, this makes f a vector field on the sphere spanned by the n, that’s everywhere
tangent to the sphere. And there is a topological theorem that says that all such fields must
have zeroes or singularities (or both) somewhere on the sphere. In particular, the spherically

symmetric solutions of the f(n,) do not exist!

On the other hand, the would-be ¢ = 0 TMg g or TEg g modes should involve the Yy (6, ¢)
spherical harmonic that completely uniform in all directions, so these £ = 0 modes should
be spherically symmetric. But alas, such spherically symmetric EM waves are topologically

impossible, so the £ = 0 do not exist. Quod erat demonstrandum.

10



TRANSVERSE MAGNETIC WAVES

Consider a TM wave with x - H = 0 while x - E is a partial wave with specific values of

¢ and m. Besides x - H = 0, the magnetic field of this wave also obeys

L-H= —i(xxV)-H= —ix-(VxH)
k

_ 7 < E (( by Maxwell eq. (M4))) (63)
= Ep % g0lkr) X Vi (6,).
0

Note that the operator L acts only on the angular dependence of (whatever it acts upon).
Moreover, when acting on the spherical harmonics Y7 ,,(6,¢), the L preserves ¢ but may

change m. Specifically,

[A/ZYv&m<97 (b) = mY’&m(& (b)a

L (64)
(L:I: = Lx + iLy)n,m(ea gb) = (COGH) X }/E,mil(ea ¢)

Consequently, if we want
L-H=LH +iL,H + il H, (65)

(where Hy = H, & iH,) to be proportional to a specific ¥y ,,(6, ¢), we need all 3 terms in
eq. (65) to be proportional to the same Yy, (6, ¢), hence

H.(r,0,¢9) = ax gi(kr)Y.(0,9),
Hy(r,0,9) = Bxge(kr)Yemi1(0,9), (66)
H_(r,0,¢) = v x ge(kr)Ypm-1(0. ),

for some coefficients a, §, 7.

To determine these coefficients we use eq. (63) as well as the requirement x - H = 0 for

all x and hence
ax Y (0, ¢)xcos 0 + 38X Vg 11(0,¢) xsin e~ + 3yx ¥y, 1(6, ) xsin 0™ = 0 (67)

for all § and ¢. A simple solution for the this constraint is H(x) = Lu(x) for some scalar

field ¥ (x) because x - L = 0 and hence x - H = x - I:@/) = 0 for any scalar ¢). But to make

11



sure the components of the H field depend on (r,0, ¢) as in eq. (66), we take

H(Tv 07 gb) = Cx gg(k”f‘) * f‘}/f,m(ev gb)

for some overall constant C. And the value of that constant follows from eq. (63):

1

and also = ——— By % gu(kr) * Vi (6,6).
0

hence
1

= X FEp.
C = vz, < B

Altogether, we may summarize the magnetic field of the TM,, wave as

R Eim
H(o = o0 where 6(r,0,0) =~ 5o+ (k)  Yin (0, ).

00+1)

As to the electric field,

7 A
E(x) = ZTOVXH(X) = 29V x iL)(x),
where
(inﬁ)i = (VX (XXV))Z. = ijivj' — ijjvi
= ZEiVQ + V; — Vil‘jVj — 2V,
0
= :L’¢V2 - Vi(l—FiL’jVj :1—'—7’5),
and hence

12
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To understand the source emitting a TM wave, let’s consider its EM fields — especially

the electric field (74) — in the near zone of kr < 1. In this zone,

: (20 —1)1 201" 1
he(kr) =~ ing(kr) = —ZW = g(kr) = (kfﬂ ) X s (75)
hence
—it 20D Epp  Yim(0,9)
VN T Zok X T e (76)
and
R —it (20— Epp LYy (0, 0)
H=M~ =0z X (77)
At the same time,
Yom(0, ) 9\ Yom(0,9) Yom(0,9)
244, _ 2 _ ;
\ AN =0, <1+ E) i1 = —¢ AN (78)
hence eq. (74) becomes
Z
E(x) ~ +?Oew(x): —V(x) (79)
for
2 =D By Yim(6,0)
d(x) = —E?w(x) R s (80)

Note: this near-zone electric field looks precisely like the field of an electric 2¢-pole moment!

Back in January, I have defined the spherical components of the electric multipole tensors

4
MG, = \/QEiI///dgyp(y) X LY 0y, 6y), (81)

hence the potential generated by the static multipole moments was

4m Yvﬁ m 1'7 (bx
— . 82
(x) 47T€() Z my\ 20 + 1 rbtl (82)

For the harmonically oscillating multipole moments ./\/ljlm x e~ the near-zone electric

as

field should oscillate with a similar amplitude E = —V® for exactly the same ®(x) as in the

13



expansion (82), although the medium-zone and the far-zone electric fields would be quite

different.

Thus, the physical meaning of eq. (80) is that an oscillating electric multipole generates
a spherically divergent TM wave with the same (¢,m) as the multipole. As to the wave’s

amplitude, eq. (80) gives us
(20— 1)1 By Aﬁglx [im (83)
(+1) k2 dre 20417

()i K
20— D)I/Ar(20+1) €0

hence

x MG, (84)

{m —
* * *

Now consider the far-zone fields of the same TM wave. For kr > 1, the magnetic

field (71) becomes

EZ,m eikr
*
£(€ + 1)Z()/€ T

E R
H(r,0,0) = ———" sgy(kr)« LYy m(0,0) — —

while the electric field obtains from the Maxwell equation (M4) as

7
E:fvaH. (86)

Furthermore, for the far-zone magnetic field (85), Velhm = ¢t ikn, while space derivative of

all other factors carry an extra factor of 1/r, thus

eik‘r . eik‘r . 1
V x < o LY? (0, gb)) = - (ik;n x LYy, (0,0) + O (;)) , (87)
and therefore
Ey etkr .
E(r,0,¢) — +5— *n(0,0) x LYy 1,(0,¢). (88)

Wtk
In particular, in any local region of space far from the center, the spherical EM wave has
1
E = —Zyn x H, H = +Z—n><E, (89)
0

exactly as for a plane wave traveling in the direction n. Consequently, similar to a plane

14



wave, the divergent spherical wave has Poynting vector

Z
S = lRe(ExHY) = 70|H|2n, (90)

D[ —

which for the magnetic field (85) becomes

n

(LY (0, 6) % 5 (91)

_ ‘Ef,m|2
270 C2(0 + 1)2k2

Thus, the wave’s energy indeed flows radially outwards while the flow density diminishes as

1/r2.

According to eq. (91), the wave power radiated in a particular direction (6, @) is

ar | Epm|? A
m = 2Z0£2(£ni 1)2]{:2 X |LY€7m(97 ¢)|2 (92)

The angular dependence of this power follows from

L Yo (0, 0)° = |L.Yem(0,0))* + SLiYem(0,0)° + 3L-Yym(0,0)
= MYy (0,0)F + (0 —m)(L+1+m)|Ypi1(0,0) (93)
+ S(+m)(l+1—m)|Yymo1(0,9).

For example, for £ = 1 and m = 0 (linear dipole in z direction)

. 3
£ Y@, 0)F = - x sin®0 (94)

™

while for £ = 1 and m = £1 (circular dipole in xy plane)

N 3 1+ cos?6
LY, 2 - 2T 7
As to the net wave power radiated in all 47 direction, eq. (92) leads to
P = Bl #m(e 6) |LY2m(6, 6) (96)
27 EQ(E + 1)2k2 ’ ’ ’ ’

15



where

# PQILY|? = # 20 (LYy,)" - (LY,

(( by Hermiticity of the L = —ix x V operator ))

- o, Ly,
(97)
- # PPQY), = (0 +1)Y,,,
= ((L+1) # d*Q|Yym|?
= (({+1)x1,
hence
E 2
Pay = i (98)

2Z0L(0+ 1)k~
Or in terms the multipole amplitude M?lm generating the wave — cf. eq. (84), — the net

power becomes

. 1 ¢+ DEF2ME
= X )
T U )20k (20— )N A2l 1 D e 99)
k2€+2‘Mel ‘2
= Oy X —;’m
where
(¢+1) 1
Cy = . 100
7 T8ne = DnEir (100)
In particular,
1 1 1
C —, Oy = —, (3 = 101
T or P T 20 T 0450m (10D
Also,
1 2
0€p
so we may rewrite eq. (99) as
Paet = CoZow’k* x |M, |, (103)

As a cross-check, let’s compare this formula to what we have learned a few lectures ago

16



for the electric dipole and the electric quadrupole radiation, cf. [ny noted. Relating the dipole
moment vector and the quadrupole moment tensor to the spherical tensors M‘Elm for ¢ =1,2

according to

1 2
S IMELP = Ip

- 12 2 t (104)
> Ml = Fu(QQ),
m
we bring eq. (103) to the form
Pdipole _ ﬁw2k2 « |p|2 (105)
net 127 ’
Z 2
drupol 0 274
P el = oWk x gtr(QTQ), (106)

which is precisely what we had earlier in class.

TRANSVERSE ELECTRIC WAVES

The TE waves work very similarly to the TM waves, except that the electric and the
magnetic field swap their roles. Indeed, consider a TE spherical wave with x - E = 0 while
x - H(x) is a partial wave with specific values ¢ and m. Besides the x - E condition, the

electric field of this wave also obeys

L-E = —i(xxV)-E = —ix-(VxE)
= kZyx-H (by the Maxwell eq. (M3))) (107)

= ZOHZ,m * gg(k}’f’) * Yv&m(ev ¢)

As in the TM case, the solution to this equation as well as x - E = 0 is
E(r,0,0) = Cxge(kr) * LYy (6, 0) (108)

for some constant coefficient C', whose values obtains from

A

L-E = Cxgp(kr) = IA,2Yg7m(«9, ) = Cxge(kr)«l(l +1)Yr,,(0, )
and also = ZoHyp * ge(kr) * Yy (6, ¢),

(109)

17
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hence

Zy
C = Hy o, . 110
oy e (110)
Altogether, this gives us
. ZoHpm,
E(x) = Li(x) for wo;a¢)::g&%fn*gakm*y@mwﬂw, (111)
while
—i 1 .
H(x) = e V xE([x) = k—Z()(V x L)y (x)
(112)

= k_—ZZ (xv2 -V (1 —|—7’%)) Y(x).

To understand the source of a TE wave, let’s look at the EM fields — especially the
magnetic field (112) — in the near zone kr < 1. In this zone

it(20 — N 1
ge(kr) — (kHl ) X s (113)
hence
“20-1) ZoHpm  Yem(0,0)
1/}<T797¢) — g(ﬁ—l—l) * Ll+1 * i1 ) (114)
where
Yom(0,9)
2 &m ) o
and
0 }/Z,m(ev gb) }/(7m(0, gb)
P (1ee2) (Tl g (Y0 ”

Consequently, in the near zone kr < 1 the magnetic field (112) of the TE wave becomes
a gradient field, specifically

(117)

H(r,0.0) — —V (’”@f—l)” Him n,mw,as))

(g_i_ 1) * k£+2 * 7,£+1

Apart from the (implicit) time dependence e~™?, this gradient field looks exactly like the

magnetostatic field of a magnetic 2f-pole. Indeed, in terms of the spherical components

18



M?l;g of such a 2%-pole tensor, its magnetic field is

mag

_ £m }/Z,m(eagb)
H(r,0,¢9) = V( 47r(£+1)* s )

(118)

For an oscillating rather than stationary magnetic multipole M?};g*e*i“t, the magnetic field
would oscillate with an amplitude that looks just like (118) in the near zone, although in
the intermediate and the far zones it would look quite different. Thus, comparing eqs. (117)
and (118), we may identify the near-zone TEy,, wave with the near-zone radiation emitted
by an oscillating magnetic multipole M?;g % e~ Consequently, we may go beyond the
near zone and identify the TE ,, divergent spherical wave — at all distances from the origin,

short, long, or intermediate — with the wave emitted by the oscillating magnetic 2¢-pole.

As to the amplitude of the TE wave emitted by a specific M?l;g multipole, it also follows
from the comparison of egs. (117) and (118):

-1 Hem _ M oe (119)
((+1) = k2 /il + 1)
hence
—i)t 1 1
Hy,y — SO x K MS (120)

X
’ (20— 1) 4m(20 + 1)

Similar to the TM waves, in the far zone kr > 1 of a TE wave the EM fields locally look

like the fields or a plane wave that happens to travel in the radial direction n,

1
E = —Zyn x H, H = +onx E, (121)
0

To see how this works, let’s go back to eq. (111) for the electric field and take the far-zone

19



limit

6+ikr
k 122
alir) — (122)
hence
ZoHy,, e*r o .
E(r,0 — ’ LYy (60, 0). 123
(7", 7¢) +£<€+1)]€* ” * Z,m( 7¢) ( )
As to the magnetic field H, it follows from the Maxwell eq. (M3),
—1
H = — E 124
700 (124)
where in the far zone V. = ikn + O(1/r). Consequently,
1
H=~ +—nxE (125)
2o
and hence the other eq. (121).
The Poynting vector of a locally-plane-like wave (121) is
S = L1Re(E*xH) = yn (126)
2 27
which for a far-zone TE wave (123) becomes
ZO |H£ m|2 - o I
S = — % 5——— % |LYy,,(0 — . 127
2]{:2 * £2(£+ 1)2 *| &m( 7¢)‘ * TQ ( )

Similar for the TM wave, the energy of the TE wave spreads out radially so the flow density
diminishes as 1/72, so the relevant feature of this energy is the power emitted into a particular
direction,

AP Zy  |Hyml?

—_— = I 2
dQ Yo 20+ 1)2 * LYy (0, 0)°. (128)

Note that the direction dependence of this power is exactly the same as for the TM wave
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with similar ¢ and m, namely
m? x Y6, )
ap 1 2
- = (const) x [ +5(0 =m)(l +14+m) x [Yymi1(0,0)]° |- (129)
+3( = m)(L+1=m) X [Yyn1(6, )

For example, a linear magnetic dipole pointing in z direction corresponds to ¢ = 1, m = 0,

hence

dP .9
2q & v 6. (130)

Finally, the net power of a divergent spherical TE wave is

P = 20y Heml® # PQILY; 2 (131)
2k2 7 2(0+1)2 ’

where the integral over the directions evaluates to ¢(¢ + 1), cf. eq. (97), hence

Zo | Hp
2k2 7 0L+ 1)

Pt = (132)

Or in terms of the magnetic multipole amplitude that generates the TE wave — cf. eq. (120),
— the net power is

2
Puet = Cypx Zok* 2 x |M2e

l,m

: (133)

where

def (£+1) 1
O = S Y mis @i

(134)

exactly as in the similar eq. (103) for the radiation of the electric multipole. For example, a

magnetic dipole oscillator — for which

2 2
D [MIET = |mf, (135)
m
emits net power
dipol Zok*|m|?
P = = —, (136)

exactly as in my jny notes on multipole radiation].
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INTERMEDIATE ZONE

In the intermediate zone of kr ~ 1 — also known as the induction zone — we may no

longer approximate the radial profile gy(kr) as either e?*" /(kr) or (coeff)/(kr)**1. Instead,

we heed we need to know

eJrikr

ge(kr) = i hy(kr) = e Polynomial of degree ¢ in é

in all its details. For low ¢ = 1,2, 3,

eJrikT i
qi(kr) = kr (1 + H)’

+ikr 3i 3
g2(kr) = ¢ (14——2— ),

kr
e—i—ikr

mibr) = (14 - g -

while for higher ¢, they can be obtained as

. /¢ ;
—i d +ix
ge(x) = ot (—Z —) .

T dx T

Given such radial profiles, the TMy ,,, wave has fields

B Epm X
H(r,0,¢) = W) % * go(kr) * LY} 1, (0, ¢),
Ewﬁﬁ):Z%Vme&@,

while the TEy ,, wave has fields

ZoHy

B(r,0,6) = Jr 1y * 9elkr) * L2 (0, )
Hma@::é%vXEma@.

(137)

(138)

(139)

(140)

Or if you know the multipole source of the wave in a tensor form, you may replace the

spherical harmonics Y7, (6, #) — or rather than their combinations with the amplitudes
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Eyy, or Hy,, with tensor products

l
D BenYim(n) — B iy omi
& () (141)
Z H£7mn7m(n) — Hi1,4.47i[n7:1 PRI ni[ ,
m

for the appropriate it symmetric traceless tensors Ez(f) i, or H Z(f)

seenyle”
Sometimes it’s convenient to separate the intermediate-zone EM fields into their longitu-
dinal (radial) and transverse (angular) components. For a TM wave, the magnetic field (139)

is purely transverse while the electric field has both longitudinal and transverse components.

Specifically,
1) 720 »
E, = n E = TOH-(VXH) = —T—ISL-H
= B )+ E2Y0,, (n) (142)
00+ 1)kr o
kr
= Ef,m * gﬂ}({:r ) n7m(n)>
while
2 i .
E, = —nx(nxE) = —z?nx(nx(VxH)) = Enx(nx(VxL))w (143)
for
Ur0.6) = 5g s ulhr) Vin(0,9). (144)
Y ((0+1) T
The differential operator in eq. (143) includes
[n X (V X I:)L = njV,-Lj — njVjL,- (145)
where
. dij — nin;
n;ViL; = Vi(nij) — (Vinj)Lj = Vin-L=0) — Y v L;
L; n L; ' (146)
N _Z(n.f,:()):__l
T T T
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while

so altogether

njVjLi =

A

0

nx (vxi) =

In the context of eq. (143), this means

Eq

—i (1 0
'?(2*5
. . EE,m
IS

Altogether, the TMy ,,, wave has fields

E, =

0,

= +E

{m

{m

. Eé,m

e+

0+ 1)%
ge(kr)

)nxfnp

m*<%+§g

ar

Li7

1 0\»
T+ )L

ge(kr) *n x I:Yam(n).

% go(kr) % LYy 0 (),

kr

{

1

—+

* Yym(n),

0

O(kr)

) ge(kr) *n x f,}/'&m(n).

(147)

(148)

(149)

(150)
(151)

(152)

(153)

As to the TE waves, we get similar formulae after swapping the electric and the magnetic

fields with each other, or rather

ETE

thus the TE ,, wave has fields

0,

ZOHE,m

MY

FHp g 222

Z()HTM7

« go(kr) * LY 1 (m),

o(kr)

. H&m

—1

((0+1)

kr

{

*

1

o+

Yem(n),
0

O(kr)
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(154)

(155)
(156)

(157)
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PARTIAL WAVE ANALYSIS OF SCATTERING
Partial Scalar Waves

Consider scattering of a scalar wave 1(x) off some spherically symmetric obstacle. In
quantum mechanics, this obstacle is usually a short-ranged central potential V'(r), although
it can also be a reflective — or partially reflective — sphere with non-trivial boundary
conditions. In any case, far away from the obstacle the scalar field 1) (x) obeys the free wave

equation, thus

(V2 + k) y(x) — 0, (159)

r—00

and we are looking for solutions of the form

exp(ikr)

¢(X) = wincident(x) + ¢scattered(x) m exp(ikz) + f(@) (160)

Note: by the spherical symmetry of the scattering object, the direction of the incident
plane wave does not matter, so without loss of generality we make that direction the z axis.
Likewise, the scattering amplitude f(n) depends only on the angle between the incident

wave and the direction n of the scattering, thus in the spherical coordinates f(6) rather than
f(8,9).

To understand the physical meaning of the scattering solution (160), consider a Gaussian

wave packet
dk

V2mok

where ¥ (x) is as in eq. (160) and 0k is very small. Consequently, at large r we get

U(x,t) = ef(kfko)2/25k‘2 % wk(x)eiiw(k)t (161)

Vine(X,1) —— exp(ikoz — iwot) x exp(—(z — vt)?/a?), (162)
elot) — SEZIN o) sp(—r = ut ), (69
where a — i (164)

and v — fl—:. (165)

Thus, the incident wave packet moves steadily forward at the group velocity v, the scattered

wave does not exist at early times ¢ < —a/v, while at late times t > 4wv/a it spreads out in
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all directions. At late times, the incident wave packet and the scattered wave packet move

at the same speed but in different directions, so they stop overlapping for

a/v
t> ——— = Zipe — % = Ut — vtcosfh > a. (166)
1 —cosf

Consequently, at large distances — and hence late times — we may ignore the interference
between the incident and the scattered waves but calculate their energy flow densities Sipc

and Sg. as if they were independent waves. Thus,

k| f(6)|?
S ks s HIOP .
r
and hence the scattering cross-section
2q = FOF. (168)

Going back to the scalar wave equation and its scattering solutions, let’s use the spherical

symmetry of the equation to separate the variables in spherical coordinates,
U(r,0,0) = > Com\/Am(20 + 1)Yy (6, 6) X (1), (169)
lm

Moreover, thanks to the axial symmetry of the scattering solutions (160), — ¢ should depend
on r and ¢ but not ¢, all the Cy,, with m # 0 must vanish. As to the m = 0 modes,
Yi0(0,9) = /(204 1)/4m Py(cos ), hence

o0

Y(r,0) = Cy(20+ 1)Py(cos ) x y(r) (170)

=0
where Py(z) are the Legendre polynomials. The radial functions (r) in the sum (170) obey

the radial wave equations

0(0+1)

st) + 2o = L o) + ey = (P

— 0. (171)
the scatterer r—$00

Consequently, outside the scatterer the radial waves become linear combinations of the spher-
ical Bessel functions jy(kr) and ng(kr), and if the perturbation potential or boundary con-

dition (on the surface of some reflecting sphere) are real, then for each ¢ we should have a
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real linear combination
Ye(r) = cosdy X je(kr) — sindy x ng(kr) (172)

for some angle &, called the phase shift. The reason for this name is the asymptotic behavior
of the radial solution at large r, — meaning both r > Rgcatterer and kr > 1. For kr > 1,
the spherical Bessel functions asymptote to

cos(kr — (%)

sin (kr — (%)
k > — 1
kr>>1 kr ’ ne(kr) kr>1 kr ’ (173)

Je(kr)

hence for large radii

in(kr — (% kr — 0% in(kr — (% 46
Ye(r) cosésm( r—t3) + sinéCOS( r—t3) = sin(kr — (5 + L]). (174)

r—00 kr kr kr

In this formula, d, shifts the phase of the asymptotic sine wave from the no-scattering

asymptotic behavior

¢£ree(r) = jy(kr) @ all r {( because w;ree(r) should stay finite for r — 0))
sin (kr — (%) (175)
kr>1 kr '

Next, let’s assemble the partial waves for different ¢’s into the sum

o0

Z (20 + 1) Py(cos @) x y(r)
(176)

o0

Z (20 + 1) Py(cos 9) x (cos d¢ X Je(kr) — sindy x TLg(k"I“))
=0

and choose the coefficients Cy such that the net wave has asymptotic behavior (160) at large

distances. The key to this choice is the following Lemma:

+1

/e““ﬂC Py(c)de = 2i%j4(kr). (177)
1

Since the Legendre polynomial form a complete orthogonal basis of functions of ¢ € [—1, +1]
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normalized to

+1
2
JaeP@Po) = 3 b (178)
-1
the Lemma (177) leads to
20+ 1 Vi

. + Jorc! "

eikre — ze: 5 Py(c) x/dc’Pg(c') x etkre. — zﬁ:(%—i—l)zlzﬂ(l{:'r’) x Py(c). (179)
-1

Identifying ¢ in this formula with cos 6, we see that the incident wave decomposes into the

spherical waves as

oo
Yine = exp(ikz) = exp(ikrcosb) Z 20 4 1)i’jo(kr) x Py(cos®). (180)
=0

At the same time, the scattered wave is purely divergent: its asymptotic behavior is

0 ) )
Use(r,0) = 0 x etk without an e~ term, (181)
r
so for each partial wave we should have
€+ikr
Uit(r) —— Arx (182)
r—00
for some overall complex coefficient Ay, or in terms of the spherical Bessel functions
e—i—ikr
UEC(r) = Agk x i he(kr) = Agki"™ x (jo(kr) + ing(kr)) —— Arx (183)
>
Altogether, the scattered wave should have form
o0
Yse(r,0) =Y (20+ 1)i"M Ay Py(cos 0) x (hy(kr) = jo(kr) + ing(kr)), (184)
=0
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hence adding the incident wave (180) we build

P (r, 0) Z (20 4+ 1)i* Py(cos 0) x <(1 +iAp) X jo(kr) — Ap X ng(kr)).
£=0

Comparing this formula to eq. (176), we find the same general behavior provided

Cyxcosdy = itA; + 1 and Cypx (—sindy) = —Ay.

Solving these equations gives us

62i6£ -1

Cy = exp(idy), Ay = sindy X exp(idy) = 2

Coming back to the scattered wave, eq. (184) leads to

(o]
Wse(r, 0) Z (20 4 1)AgPy(cos 0) x i hy(kr)
(=0

+ikr
kr

o0
—_— (20 + 1)AyPy(cos b
kr>>1 ez—% + ¢Pu(cos 0)

e—i—zkr
= X 2(26 + 1)AyPy(cos )
r £=0
e—H'kr
= f(0
F(6) <
for the scattering amplitude
1

o
=7 Z 20+ 1)ApPy(cos ) .
=0

The coefficients Ay here should be as in eq. (187), thus

e2i§g -1

£0) => s % (204 1)Pi(cos).
(=0
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(186)

(187)

(188)
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The partial scattering cross-section follows from the amplitude (190) as

o = e, (191)

where

|f(9)|2 _ Z (exp(+2idy) — 1)(exp(—2idp) — 1)

12 X (20+41)(20'+1) Py(cos 0) Py (cos §). (192)

L

Consequently, integrating this partial cross-section over the 47 directions to obtain the total

cross-section, we obtain

Otot = #dz@ |f|2
™

= /|f|2 X 27 sin 6 df
B Z (exp(+2idy) — 1)(exp(—2idy) — 1) y (193)
B Ak?
o
X (204 1)(20 + 1) /Pg(COS )Py (cos @) 2msin 6 do
0
On the last line here
s +1 4
/Pg(cosﬁ)Pg/(cosﬁ) 2rsinfdf = 27T/Pg(COS9)Pp(COS@)dCOS@ = 2647:1 X 6pe, (194)
0 -1
hence
(2 5 ?
Otot = Z exp(2idy) — 1 6 ‘ X 4Am(20 + 1)
¢ (195)

4T &
= —22 20 4 1) sin?(0y).
(=0

Curiously, the same combination of phase shifts also govern the imaginary part of the
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forward scattering amplitude f(6 = 0). Indeed, for 8 = 0 all Py(cos0) = P(1) = 1, hence

eQ’L(S[ o 1
k

o
Z (20 + 1)
=0

oo
D (204 1) x P sinéy, (196)
=0

and therefore the imaginary part of this forward amplitude is

1 o
Im f(0 E; (204 1) x sin? 4§, . (197)

Comparing this formula to eq. (195) for the total cross-section, we immediately see that

Orot = 4; Im £(6 = 0). (198)

This relation is knows as the Optical Theorem.

SCATTERING OFF A SMALL HARD SPHERE

A hard sphere is a spherical surface which cannot be penetrated by a particle or a wave.

In quantum mechanics, its implemented by the infinite-wall potential

V(r) =

0 forr > R,
{ (199)

+o0o0 forr < R.

Consequently, the wave-function v (r, 6, ¢) obeys the un-perturbed wave equation outside the

sphere,

(V2 + E2)(r,0,¢) = 0 forr > R, (200)

but also the Dirichlet boundary conditions on the sphere’s surface

W(r,0,¢0) = 0 forr = R and any 6, ¢. (201)

Separating the variables in the spherical coordinates, we see that outside the sphere we
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have the usual

Y(r.0) =Y Cy(20+ 1)Py(cos ) x y(r) (202)
14

where the radial 1), are solutions of the free radial wave equations and hence linear combi-

nations of the spherical Bessel functions. Specifically,
Ye(r) = cosdy x je(kr) — sindy x ng(kr) (203)

for some phase shift §,, which obtains from the Dirichlet boundary condition

ve(r=R) = 0, (204)
hence
_ Ju(kR)
tand, = ne(kR) (205)

Alas, this formula is not particularly transparent, so let us explore the particularly simple

limit of a small hard sphere, R < (1/k).

In this limit,

‘ (kR) (20— 1)
kR) ~ ———— kR) ~ ———" 2
so eq. (205) for the phase shifts yields
(kR)%—H
= — . 2
B TSy TN CTA ] (207)
In particular,
kR)3 kR)®
tandy ~ —(kR), tand; ~ L g) tandy ~ L ﬁ)) : (208)

Note that for kR < 1 all the phase shifts are negative and small, and their magnitudes
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rapidly decrease with ¢. Thus, to the leading order in (kR) we may approximate
do ~ —kR, other 6, ~ 0. (209)

In this approximation, the scattering amplitude becomes

e2ido _ 1 280
) ~ ———— x P, 0 ~ — X1 ~ — 21
f(6) 5T X Py(cosf) + 0 50k X R, (210)

hence isotropic scattering cross-section

do

a9 |f|2 ~ R? in all directions, (211)

and the total scattering cross-section is
oot = 4TRZ. (212)

Note: this total scattering cross-sections is 4 times larger than the geometric cross-section
Ogeom = 7w R? of the sphere in question. However, this discrepancy does not raise a paradox

since one should not expect the geometric optics to work around objects of size R < \.

Partial Electromagnetic Waves

Now consider scattering of the electromagnetic waves from a spherically symmetric tar-
get. Again, at large distances from the target the EM field obey the free Maxwell equations,

and we are looking for solutions of the form

b B B 213
(o () oo () e

where the incident wave is a plane wave traveling in z direction, while the scattered wave is

a divergent spherical wave. For a spherically symmetric problem we separate the variables
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in spherical coordinates, hence a most general solution of the wave equation becomes a

superposition of the spherical TE and TM waves with all possible ¢ and m,

co +/
B020.6) =3 O [CERIP) « i) + LTV x (R« D00
o+l . X .
ZH0,0:0) =30 3 (OB DYin(0:0) = 1O x (Rl + i 0.0)
(214)
where the radial profiles Fy(r) obey the spherical Bessel equation,
(;—; %d% — W; 2 k;2) Fy(r) = 0, (215)

Or rather, they obey it outside of the scattering target. Consequently, outside the target, the
Fy(r) are a linear combination of spherical Bessel functions jy(kr) and ng(kr), or equivalently
of the spherical Hankel functions h, = j, + in, and its conjugate hj; = j, — in,. Physically,
the hy(kr) accounts for the divergent part of the radial wave (energy moves from the center
outward) while the hj(kr) accounts for the convergent part (energy moves from the infinity
to the center). For a perfectly reflecting target, these two components must have equal

magnitudes, thus we should have
Fy(r) = e®hy(kr) + e h*(kr) = 2cosdy x jo(kr) — 2sindy x ng(kr) (216)

for some phase shift 6,. But if the target both absorbs and scatters the incident EM power,
then the convergent component should have a larger magnitude than the divergent compo-

nent. Thus, in terms of the spherical Hankel functions

efikr 6+ikr
+ a7t x : (217)

Fy(r) o< hy(kr) + apx hy(kr) —— "1 x -
”

kr>1 kr

where ay is a complex number of magnitude |ay| < 1.

The values of the reflection coefficients oy depend on the details of the scattering target

and its surface, for example the radius and the surface impedance of an opaque sphere. By
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spherical symmetry, the oy depend on ¢ but not on m of a spherical wave. On the other hand,

the TE wave and the TM wave with the same ¢ may have different reflection coefficients

B oM (218)

I wish I had enough class-time to give you an example of calculating the reflection coeffi-

T

cients «; Eand agM for some spherically symmetric reflector. Instead, let me simply quote

Jackson’s example (from §10.4) of an opaque sphere of radius a with surface wave impedance

s

d 1 2 o
o [dz + 5+ ZZ_O: (ne(x) +ije(x)) Qs —ra
it w ige| () = ije(x))
' (219)
o g Tox i3 (ne(@) + o))
= : ] — Qz = ra.
wt et (W(x) - Uz(x))

Note: for Zs = 0 (a perfectly conducting sphere), or for Z; = 0o (a perfect insulator), or for
any other purely imaginary Zs, there is no absorption of the EM waves but only reflection,

and indeed, for all these cases eqs. (219) yield

a, " =1 = oM = exp(2i5, ) (220)

TM,TE

for some phase shifts J, . But for all other values of the sphere’s wave impedance, there

is both reflection and absorption, and egs. (219) yield

a, M <1, (221)

In particular, for a small opaque sphere with kR < 1, egs. (219) yield

2(kR)%¢H1 (41, 20+ 1 Zs
agM = 1 4 (%_(1)”)<%+1)” X [ e ( 7 )(k:R) Z O((kR)2)], (222)
20+1
ot = 1+ (2 €—2<1]{;ﬁ)(2£+1)!! 8 [gzli B <2€€+ 1)(kR) ?: * O((kR)Q)]  (229)
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and hence

2 A(kr)22 Z
g _AED)TT Zs
! ‘0‘4 ‘ - e e\ 7 ) (224)
2 4(kr)2£+2 Zo
|| AT 20
1 ’ag ’ i <Rz ) (225)
* * *

TE

Anyhow, given the complex reflection coefficients aé and ", we may decompose

the most general harmonic EM wave outside the scattering target into a superposition of

spherical TE and TM waves,

o [ Gl (hithr) + af (k) « Y, (0,0)

E(r,0,¢) ,
;mz |+ Loy ((h;f(k;r) + agTth(kr)) . I:nm(e,qs))

" | (226)

s at [ ORI (k) + afMhy(kr)) = £Y;(6,0)

ZoH(r.0,6) =) :

Hm—t | - EC By ((h;f(k;r) + a}Ehg(kr)) + 1Y), (6, cb))

for some general coefficients CEE and Cy o, M To find these coefficients for the scattering
solution (213), we start by decomposing the incident plane wave into spherical TM and TE
waves. Since the incident wave is regular at the origin, in its decomposition all the radial
profiles are also regular at the origin, which means they must be proportional to the jy(kr).
As to their angular dependence, for a scalar wave the axial symmetry of the incident wave
excluded all the modes with m # 0. For the EM wave, the analysis is more involved due to
the polarization vector Eg of the incident wave and its interplay with the L operator acting
on the spherical harmonics Yy ,,(f, ¢). Consequently, instead of restricting m to zero we end
up with a restriction to m = +1 only. Furthermore, for the circularly polarized incident

wave we have only one allowed value of m:

E
for Ey = —0(1,+i,0), only m = +1,

V2

v (227)
for Eg = —0(1,—2',0), only m = —1.

V2
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Thus,

ILH‘E%(X) _ ( i 0>ezkrcos9

7
= Z{ {Pjelkr) « L 1(6,0) + - ATV V x (ﬁ(kr)»sm,ﬂ(e,as))],
=

Z()Hlnc (x) = $LEmC (x)
00 :
= 3 AP * £Y21(6,6)  LATE x (i) £ (6,)) |
- (228)
for some coefficients A}E and AEM. Let me skip the calculation of these coefficients; it’s
spelled out in §10.3 of Jackson’s textbook. Translating Jackson’s formulae into the notations

of these notes, we have

27 (20 + 1)

ATE — ENE ATM — EN'ZZFI f N — I S
¢ 04Vet / 04Ve? ) or l £(£+1) )

(229)
hence

E"(r,0,0) = Fo )  Noi {Mm #LY041(0,0) + % ¥ x (Jelkr) « DY21 (6, ¢>>)] ,
=1

| Eo o~ ot | - 1 4 -
H"(r,0,6) = 22> Nai'T! {M(k‘r) # LY21(0,0) % £V x (Jelkr) « DY 6, aﬁ))} ,
=1

(230)

As to the scattered EM wave, it has the same (¢,m) modes as the incident wave: all
¢=1,2,3,..., but only m = 41 or only m = —1, depending on the incident wave’s helicity.
Also, the scattered wave is purely divergent, so the radial profiles of all the modes are

proportional to the hy(kr) without any contribution from the hj;(kr). Altogether, this means

0 , iB;ZFE « hy(kr) x I:Yg¢1(9, ®)
e . .
E*(r,0,¢0) = E ; Nyi . %B{M o9 ¢ (hylhr) » LY (0, ¢)) :
(231)
P iBEM s hy(kr) * LYy 410, ¢)
H*(r,0,¢) = 70 SoNdTH ) ,
L £ 2 BIEaV x (hlkr) < Y20 (6,9))
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for some complex coefficients BZTE and BL]TM . Altogether, the net incident + scattered wave

18

) Z (jg(k?“) + ZBeTE X hg(k?‘)) * f‘%,il(&‘b)
E"(r,0,9) = Ey Nyit

41 -V x ((jg(kr) + iBI X hy(kr)) * I:nil(e,qs)) ’

(je(kr) + iBEM x ho(kr)) + LY, 21(0, 0)

H"'(r,0,¢) = Nyit+! R
Z S RSV ((jg(kr) + iBFE x hy(kr)) *L}/gil(ﬁ,qﬁ))

k
(232)

At the same time, this scattering solution should have form (226) where the radial profile
of each TM or TE mode has the right ratio oz;ZFE orTM Jetween the incoming and the outgoing

waves. Thus, for each mode we should have

EoNyit (jg(kr) + iBTE x hg(k‘r)) — CF®, x (h;f(k;r) + oFE x hg(k:r)>,
(233)
EoNﬂm(jg(kr) + iBIM x hg(k:r)) — oM x (h;f(k;r) + o™ x hg(k:r)).

Using

Je(kl) = ghy(kr) + ghy(kr) (234)
and matching the coefficients of hj(kr) and h,(kr) on both sides of eqs. (233), we find all
the Cp and By coefficients in terms of the ay. Specifically,

CiE = BN, CfY) = JENAT (235)
while
TE T™
a,” —1 a; v —1
BTE _ {4 BTM _ {4 ) 9
¢ 20 t 2 (236)

38



Plugging these coefficients back into eq. (231) for the scattered wave, we arrive at

ongE —1 N
00 ot T * hz(lﬂ“) * LYe,ﬂ(@, Cb)
Bulx) = B Na™' | 7 A
t=1 £ sV (hekr) « 137210, 9))
i
(237)
alM _ 1 N
{4
EO [e%¢) , :ET x hg(k’l‘) * L}Q’il(e, (b)
Hee(x) = Z > Noi oTE _ 1 X
CU B () ¢ EYe 0 (6,0))
where Ny is as in eq. (229).
In the far zone of kr > 1, we may approximate
041 eikr
i he(kr) =~ L same for all ¢,
o (238)
. ezkr .
v x (%th(kr) « LY&ﬂ) ~ Sk x D
r
Consequently, the far-zone scattered fields (237) become
kT ol 1 . oM _ ' A
Ese = Eo— ;NE [627 * LYy +1(n) = KQT xin X LYy +1(n) |,
k ;O TM TE (239)
Ey " « -1 = a;” —1
H, = 73 ;Ng Fi EM « LY, 11(n) + 527 £1 X Ygil(n)] :
or in other words,
ikr ikr
E
Ew = Byo—+f(n), He = 2% snxf(n), (240)
Z[) r
for the scattering amplitude
- ol 1 . alM _ 1 .\
fn) = ) N ng «+ LY, 11(n) + [QT % (in) x LYy 11(n)| . (241)
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In terms of this scattering amplitude,

|Eo|* oo 1
See = —IfI"—= 242
w = ol (242)
while Sine = (| Eg|?/2Z), hence partial scattering cross-section

lo TSRy (213

— = —— = |f(n)|".

dﬂ Sjnc
To integrate this partial cross-section over the directions, we use
B (LY )" (E¥raa() = b x (64 1),

# d*Q (LY;11(n))" - (in x LYy +1(n)) = 0, (244)

#CFQ (zn X iwyil(n))* . (zn X in/7i1<n)) = 5137@ X g(é + 1)

Consequently, in the integral

# d*Q (f(n) = Zterms>*- (f(n) = iterms’) = Z z/: #dQQ(term)* -(term’) (245)

all integrals with term’ # term vanish, while the remaining integrals add up to

o 2 ot —1 : a M -1 i TE 1|2 ™
;Ngxﬁ(ﬁ—l—l)x M L WZ (20+1) <|a£ —12 oMo )
(246)
Altogether, the net scattering cross-section of EM waves is
00
OSliering = g S0+ D (1af® — 1P + [ 1), (247)
(=1
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In particular, if there is no absorption but only scattering, then
aft = exp (22’5}E), afM = exp (22’5}1\/{), (248)

for some phase shifts 5EE and 5}M, and consequently

a;lce;ttering = Z—Z Z(% +1) (sin2 (5}E) + sin? (5}M)>. (249)
/=1

On the other hand, suppose some (or all) |ay| < 1, and let’s calculate the net absorption
cross-section

net déf Pabsorbed . (250)

Jabsorption

Sincident

Let’s go back a single partial wave TE,, or TM,,, with

(E OI') (X) _ Cgm(h?(kr) + ay X hg(k”f‘)) * ]:}/Em(n)
o , ’ (251)

Coom (. : , . .
. _,m<ze+1efmr + ay x Z7471€+zk‘r) « L) 0 (n).
kr>1 kr ’

In the wave-packet analysis, the convergent wave e " appears at early times t ~ —r/c
while the divergent wave appears at later times ¢t &~ +r/c, so we may ignore the interference
between the two waves. Instead, we may treat their respective wave powers separate from

each other. Thus, for kr > 1,

Coml> —n -
Seame 0L ()
QZok r (252)
Sare & L Y @) el
220]€2 r2 ' ’
hence after integrating over the directions
b DO
conv. — 220k2 9 (253)
P 00+ 1)|Cg7m|2 ¥ lagl?
div 220k2 YA

The difference between the convergent and the divergent powers is absorbed by the scattering
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target, thus

(0 +1)|Crml?

P, =
abs QZ()]{Z2

# (1= o). (254)

Next, consider a superposition of several (or infinitely many) spherical TM or TE waves
with different (¢, m). The interference between these waves causes complicated angular
dependence of the convergent and divergent wave powers. But thanks to egs. (15), one we
integrate over the directions, all the interference terms cancel out, and the net convergent

and divergent powers (253) simply add up,

f+ 1 |Cg |2
net m
o= >0 Y A el

{m TETM (255)
)|Crm?
Pnet — | m 2
{m TETM
and likewise, the net absorbed power is
0(0+1) |Cg |

{om TETM

In the context of the scattering solution — the plane incident wave plus the scattered

wave — the amplitudes Cy,, are
CIE = $ENi', O = SENT, (235)

hence the net convergent power is

PO L2 G RO 257
conv 820]{?22 ( + ) ¢ X4 ( )
=1

while the net divergent power is

net ‘EO‘Q . 2 TE 2 ™™ 2
Pi = o 2 UL+ DNE x (o= + o). (258)
/=1

TE,TM

Depending on both magnitudes and phases of the reflection coefficients «, , some of

this divergent power rejoins the incident wave while the rest becomes the scattered wave.
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Finally, the difference between the net converging power and the net diverging power is the

net absorbed power, thus

net |E0‘2 . 2 TE 2 ™ 2
Pl = gm0 L+ DNE (2- ) ‘ - )ag ) ) (259)
(=1
In this formula
((+1)N7 = 2m(20+1) (260)
while
| Eol?
= in 9 2 1
sy = Sue (261)
hence
275, > 2 2
puet = Zi;““ xYe+1)x (2 - ’ TE’ - )a'}M) ) (262)
=1

12
a;fM’ ) . (263)

For a continuous medium made of many scattering bodies, both scattering and absorption

contribute to the attenuation of the incident wave,
Sine = Spexp(—no12) (264)

where n is the density of the scattering bodies, and oy is the net cross-section of intercepting

the incident wave by a single body,

Ointerception = U:ce;tterlng + O;lggorptlon
21 ™ ™ |2
- = (2£+1)() o 1) +’a£ —1))
on & 2 2 265
+ 22— o - oP)) 209
(=1
- o0
= EZ(2€+ 1)(2 — Rea/® ReaTM>
(=1
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Note: it is this interception cross-section that is related to the forward scattering amplitude

by the optical theorem:

4 N
Ointerception = ? Im (e() : fE(H = O)) (266)

Indeed, for a circularly polarized incident wave with ey = (1,44,0)/v/2 and n = ng =
(0,0,1), we have

~ A 1 -
e)-L = e)-(tinxL) = —2L¢, (267)
hence
00 TE ™
* Ng « —1 (67 —1 A
e - fp(0 =0) = Zﬁ< fm + f%k ) L+Yi11(0 =0). (268)
(=1
In this formula,
20+1
L:F}/g +1(0 VEIL+1)Y0(0,0) = L+ 1) gy Py(cos ) (269)

where Py(cos ) becomes 1 for § = 0. Consequently,

Ny - 2w(20 + 1) 20+ 1 20+ 1
— LY, =0) = 4/ ——F—L %/ 1 = 2
and therefore
1 [ee]
e (0 =0) = —kZ%H( +a}M—2>. (271)
Z:

Taking the imaginary part of this forward scattering amplitude, we get
1 o0
Im[e) - fz(0 =0)] = 7 Z (2041 <2 — Rea}® — Rea}M), (272)
(=1

and comparing this formula to eq. (265) for the total interception cross-section we immedi-

ately see that

AT N
Ointerception — ? Im (eO : fE(‘g = 0)) (266)

Quod erat demonstrandum.
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