
Inductance and Magnetic Energy

Self Inductance

Consider a loop or coil of wire carrying a current I. There may be an iron core inside

the coil or some other magnetic materials near it, but let’s assume that all the magnetic

materials involved are linear (B = µµ0H). In that case, at any point r inside or near the

coil the magnetic field B(r) created by the current I in the coil would be proportional to the

current, B(r) = f(r)I. Now consider the flux Φ of this magnetic field through the coil itself.

By linearity,

Φ = L× I (1)

for some coefficient L which depends on the coil’s geometry and the magnetic material inside

or near the coil, but not on the current I. This coefficient L is called the self-inductance of

the coil, which is often shortened to the coil’s inductance or inductivity.

Now let the current through the coil vary with time. As long as this variance is not too

rapid, we may use the quasi-static approximation to calculate the magnetic field inside the

coil and hence the magnetic flux through the coil, thus

Φ(t) = L× I(t). (2)

The time-dependence of this magnetic flux induced an EMF in the coil, namely

E = −dΦ

dt
= −L× dI

dt
(3)

where the minus sign stems from the Lenz rule: the induced EMF resists changing the current

flowing through the coil.
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As an example of this Lenz rule in action, consider the following circuit

When the switch is closed, the light bulb and the coil receive the same voltage from the

battery, but since the Ohmic resistance of the coil is much less than the resistance of the

bulb, the current through the coil is much stronger than the current through the bulb. In

fact, the current through the bulb is rather weak, so the bulb barely light up and stays

rather dim. But when the switch is suddenly thrown open, the current which used to flow

through the coil cannot stop right away — the coil’s self-inductance prevents this according

to eq. (3). Instead, this strong current has to flow through the bulb — which makes it flush

bright. However, this flash lasts only a short time, as the current through the coil and the

bulb decays rather fast.

Let’s calculate the time scale and the manner of this decay. For simplicity let’s treat the

light bulb as a resistor of a constant resistance Rb. The current through the resulting RL

circuit follows from the EMF in the coil by the Ohm’s Law,

E = IRc + IRb = IR (4)

where Rc is the Ohmic resistance of the coil and R = Rb + Rc is the net resistance of the

RL circuit. At the same time, the EMF follows from the time derivative of the same current

according to eq. (3), hence

dI

dt
= −E

L
= −RI

L
. (5)

Solving this differential equation with the initial condition I(t = 0) = I0 gives us exponential
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decay

I(t) = I0 × exp(−t/τ) (6)

with the time constant

τ =
L

R
(7)

For example, in the demo shown in the freshmen E&M class, the big coil has self-inductance

about L ≈ 2 H while the light bulb has resistance about R ≈ 100 Ω, hence a rather short

the time constant τ ≈ 0.02 seconds.

BTW, the H in L = 2 H stands for Henry, the MKSA unit of inductance named after

American scientist Joseph Henry (1797–1878),

1 H× 1 A = 1 W (Weber) = 1 T× 1 m2 = 1 V× 1 s, (8)

hence in eq. (7)

1 H

1 Ω
=

1 V · s/A
1 V/A

= 1 s. (9)

In Gaussian units, the inductance is defined with an extra factor of c in eq. (1),

Φ = c× L× I (10)

to compensate for the 1/c factor in the Induction Law so that eq. (3) looks similarly in both

unit systems,

E = −1

c

dΦ

dt
= −L× dI

dt
. (11)

The Gaussian unit if mutual inductance or self-inductance does not have a proper name, but

by dimensional analysis it’s equivalent to s2/cm:

1 (Gaussian unit of inductance) =
statV

(Fr/s)/s
=

s2

Fr/statV
=

s2

cm
. (12)

Now let’s calculate the self-inductances of some example coils. For our first example,

consider a long thin solenoid without an iron core. As we have learned 3 weeks ago, the
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magnetic field inside such a solenoid is approximately uniform

B = µ0(N/ℓ)I ẑ (13)

where ℓ is the solenoid’s length and N is the number of turns, while the magnetic field

outside the solenoid is negligibly small, B ≈ 0. Consequently, the magnetic flux through

each turn of the solenoid is

Φ1 = B ×A = µ0(N/ℓ)I × πr2 (14)

where r is the solenoid’s radius, and the net flux through the coil is

Φ = N × Φi = N × πr2 × µ0(N/ℓ)I. (15)

Identifying this flux as Φ = L× I, we find the solenoid’s self-inductance to be

L = µ0 ×N2 × πr2

ℓ
. (16)

For example, take an N = 1000 turn solenoid of length ℓ = 1 foot ≈ 0.30 m and diameter

2r = 1 inch (so that πr2 ≈ 5.0 cm2); the self inductance of this solenoid is

L = (4π · 10−7 H/m)× 10002 × (5.0 · 10−4 m2)/(0.30 m) ≈ 2.1 · 10−3 H. (17)

Next, consider a similar solenoid coil but give it an iron core of magnetic permeability

µ ≫ 1. By Ampere’s Law, this core does not change the H field inside the solenoid — it

remains the same H = (N/ℓ)I as in a core-less solenoid — but it increases the B field by

the factor of µ, thus

Binside = µµ0(N/ℓ)I ẑ. (18)

Consequently, the magnetic flux through the solenoid also increases by the factor of µ to

Φ = N(πr2)× B = N(πr2)× µµ0(N/ℓ)× I, (19)

which means that the solenoid with an iron core has µ times greater self-inductance than
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the core-less solenoid,

L = µµ0 ×N2 × (πr2/ℓ). (20)

For example, the same 1000 turn solenoid of 1 foot length and 1 inch diameter as in the

previous example but with a µ = 950 iron core has self inductance L ≈ 2.0 Henry.

For our last example, consider a toroidal coil with an iron core. By Ampere’s Law, the

magnetic field inside such a coil — and in particular inside the core — is

B = µµ0H = µµ0
NI

2πs
φ̂ , (21)

while the magnetic field outside the core is negligibly smaller, hence the magnetic flux

through the coil is

Φ = N ×
∫∫

B d2A = µµ0N
2 × I ×

∫∫

d2A

2πs
(22)

where the are integral is over the core’s cross-section. Consequently, the self-inductance of

the toroidal coil is

L = µµ0N
2 ×

∫∫

core′s cross

section

d2A

2πs
. (23)

In particular, for a thin toroid shaped like a bicycle tire (rather than thick like a bagel) we

may approximate s in the denominator as a constant — the mean radius R of the toroid —

so the integral becomes simply (the core’s cross-section A)/2πR, hence self-inductance

L ≈ µµ0 ×N2 × A

2πR
, (24)

similar to the solenoid of length ℓ = 2πR.
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Mutual Inductance and Transformers

Consider two wire coils, with or without iron cores. Or more generally, two wire loops of

any geometries, perhaps with some magnetic materials inside or around the loops, but let’s

assume all such magnetic materials are linear (so inside them B = µµ0H). Anyhow, when a

current I1 runs through the coil#1, it creates a magnetic field B1(r) inside and around that

coil, including also the space inside the other coil#2. Altogether, the current I1 in the first

coil creates a magnetic flux Φ2 in the second coil. By linearity of the magnetic equations, the

magnetic field B1(r) at any point r is proportional to the current I1, so its flux Φ2 through

the second coil is also proportional to the I1, thus

Φ2 = M21 × I1 (25)

for some current-independent coefficient M21 which depends on the two coils’ geometries and

on the magnetic materials present inside and around them. This coefficient M21 is called the

mutual inductance of the two coils.

Similar to the self-inductance of a coil, the mutual inductance of two coils means that

a time-dependent current in one coil induces EMF in the other coil. Indeed, let the current

I1(t) in the first coil vary with time, but slowly enough to use the quasi-static approximation

to the magnetic field B1(r, t) it creates. In that case, the flux of this field through the second

coil is

Φ2(t) = M21 × I1(t), (26)

and the time-dependence of this leads to EMF in the second coil

E2 = −dΦ2

dt
= −M21 ×

dI1
dt

. (27)

For example, the AC current I1(t) = I
(0)
1 × cos(ωt) through the first coil induces the AC

voltage

E2 = M21 × I
(0)
1 × ω sin(ωt) (28)

in the second coil. These formulae are very important for the transformers.
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Indeed, consider a typical transformer made of two coils wound around the same iron

core. The primary coil is connected to an AC power source (such as a wall outlet)

V1(t) = V1 × sin(ωt) (29)

while the secondary coil is connected to some resistive load, as shown on the following

diagram:

∼
R

V1 V2 (30)

There are AC currents I1(t) and I2(t) flowing through the respective coils, and the mutual

inductions M21 and M12 of the two coils — as well as their self-inductions L1 and L2 — give

rise to the EMFs in both coils. Specifically,

E1(t) = −L1 ×
dI1
dt

− M12 ×
dI2
dt

, E2(t) = −L2 ×
dI2
dt

− M21 ×
dI1
dt

. (31)

For simplicity, let’s assume that the load’s resistance R is so large that the current I2 through

the load and the secondary coil is negligibly small compared to the current I1 through the

primary coil, so that eqs. (31) become simply to

E1(t) ≈ −L1
dI1
dt

, E2(t) ≈ −M21 ×
dI1
dt

. (32)

Moreover, in the context of the circuit (30), E2(t) is the AC voltage V2(t) on the load, while

E1(t) cancels the voltage V1(t) supplied by the wall outlet. Or rather,

V1(t) = E1(t) − Rcoil × I1(t) (33)

where Rcoil is the Ohmic resistance of the primary coil. In practice, this resistance is rather
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small, so we may approximate V1(t) = E1(t), hence

V1(t) ≈ −L1
dI1
dt

, V2(t) ≈ −M21 ×
dI1
dt

. (34)

In particular, for V1(t) = V
(0)
1 × sin(ωt) these relations give us I1(t) = I

(0)
1 × cos(ωt) and

V2(t) = V
(0)
2 × sin(ωt) with amplitudes

V
(0)
1 = ωL1 × I

(0)
1 =⇒ I

(0)
1 =

V
(0)
1

ωL1
(35)

and

V
(0)
2 = ωM21 × I

(0)
1 =

M21

L1
× V

(0)
1 . (36)

Thus, we see that the voltage V2 on the secondary coil follows the voltage V1 on the primary

coil in a step-up or step-down ratio

V2
V1

=
M21

L1
(37)

which depends on the mutual inductance of the two coils. In a good transformer, this ratio

is simply the ratio of the turn numbers of the two coils,

M21

L1
=

N2

N1
, (38)

and that’s how we get the well-known transformer rule

V2
V1

=
N2

N1
. (39)

To see where the relation (38) comes from, consider a transformer made of two coils

wound around the same toroidal iron core. In this transformer, the magnetic fluxes through

the coil are completely dominated by the flux going through the iron core, and since the
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primary coil winds N1 times around that core while the secondary coil winds N2 times, we

have

Φ1 = N1 × Φcore while Φ2 = N2 × Φcore . (40)

Consequently, regardless of how the flux through the core is created, the fluxes through the

two coils are in a fixed ratio

Φ2

Φ1
=

N2

N1
. (41)

In particular, when the flux through the core is due to a current I1 through the primary coil,

we get

Φ2 = M21 × I1
Φ1 = L1 × I1

=
N2

N1
=⇒ M21

L1
=

N2

N1
, (42)

as promised in eq. (38). In the same way, when the flux through the core is due to a current

I2 through the secondary coil, we get

Φ1 = M12 × I2
Φ2 = L2 × I2

=
N1

N2
=⇒ M12

L2
=

N1

N2
, (43)

Let’s use these ratios to get the mutual inductances M21 and M12 of the two transformer

coils. Earlier in these notes we have calculated the self-inductance of a coil would around a

thin toroidal iron core; applying this formula for each coil of the transformer, we get

L1 = N2
1 × µµ0

A

2πR
and L2 = N2

2 × µµ0
A

2πR
, (44)

and therefore

M21 =
N2

N1
× L1 = N2N1µµ0

A

2πR
,

M12 =
N1

N2
× L2 = N1N2µµ0

A

2πR
.

(45)

Note the symmetry of the mutual inductions between the two transformer coils, M12 =

M21. This is an example of much more general symmetry theorem: for any two wire
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loops or coils, of whatever geometry, in presence or absence of any magnetic materials of

whatever shapes, as long as all such magnetic materials are linear,

M21 = M21 . (46)

Let me prove this theorem for the coils without iron cores or any other magnetic materials

involved. In this case, the magnetic field due to current in the coil#1 obtains from the

Biot–Savart–Laplace formula, or in terms of the vector potential,

A1(r) =
µ0I1
4π

∮

coil#1

dr1
|r− r1|

. (47)

The magnetic flux Φ2 through the coil#2 obtains from this vector potential as

Φ2 =

∫∫

a surface spanning coil#2

B1 · d2a =

∮

coil#2 itself

A1(r2) · dr2 (48)

where the second equality follows by the Stokes theorem. Consequently,

Φ2 =

∮

coil#2

dr2 ·







µ0I1
4π

∮

coil#1

dr1
|r1 − r2|






=

µ0I1
4π

∮ ∮

r1∈coil#1
r2∈coil#2

dr1 · dr2
|r1 − r2|

, (49)

which means that the mutual inductance M21 of the two coils is

M21 =
µ0
4π

∮ ∮

r1∈coil#1
r2∈coil#2

dr1 · dr2
|r1 − r2|

. (50)

This formula is manifestly symmetric between the two coils, thus M21 = M12, quod erat

demonstrandum.

To illustrate the usefulness of this symmetry theorem, consider two coaxial solenoidal

coils, one inside the other. Specifically, let the first coil be both shorter and narrower than

the second coil, and let’s put the first coil in the middle of the hollow space inside the second

coil. There is no iron or other ferromagnetic materials in this two-coil system.
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For simplicity, let’s assume that the outer coil’s length is much larger than its diameter.

In this case, calculating the mutual inductance M12 is rather easy: The current I2 in the

second (outer) coil creates a uniform magnetic field

B2 =
µ0N2I2

ℓ2
ẑ (51)

inside that coil — and in particular, inside the inner coil. Consequently, the flux of this field

through the inner coil#1 is

Φ1 = B2 × πr21N1 =
µ0N2I2

ℓ2
× πr21N1 = µ0N1N2 ×

πr21
ℓ2

× I2 . (52)

In terms of the mutual inductance, this means

M12 = µ0N1N2 ×
πr21
ℓ2

. (53)

On the other hand, the direct calculation of the M21 mutual inductance is much harder.

Indeed, the magnetic field of the current I1 in the first coil is approximately uniform inside

that coil, but become rather complicated near its poles; and since the poles of the first coil

are inside the second coil, calculating the net magnetic flux through the second coil becomes

quite a challenge. Fortunately, the symmetry theorem allows us to avoid this hard calculation

and simply use

M21 = M12 = µ0N1N2 ×
πr21
ℓ2

. (54)

Another useful theorem puts an upper limit on mutual induction of any two coils:

M12 = M21 ≤
√

L1L2 . (55)

I am not going to prove this theorem in class. Instead, let me simply mention the dimen-

sionless ratio

k12 =
M12√
L1L2

≤ 1 (56)

called the magnetic coupling coefficient of the two coils. A good transformer should have

k12 ≈ 1. On the other hand, for two unrelated coils used independently from each other the

coupling coefficient should be as small as possible.
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LC Circuit

Consider an LC circuit comprised of an inductor and a capacitor:

The switch starts in the left position to allow the capacitor to charge. At time t0 = 0, the

switch moves to the right position, and the capacitor discharges through the inductor. As

we shall see in a moment, in this LC circuit the current and the voltage oscillate rather than

decay.

For simplicity, let’s assume negligible ohmic resistance of the inductor and the rest of

the wires. Consequently, the voltage across the inductor is the same as the EMF induced by

the time dependence of the current through it, thus

V (t) = E(t) = −L× dI(t)

dt
. (57)

But the same current I(t) also flows through the capacitor, and the voltage across the

capacitor is also the same as across the inductor, hence

I(t) =
dQ(t)

dt
= C × dV (t)

dt
. (58)

Combining equations (57) and (58), we get

V (t) = −L
d

dt

(

I = C
dV

dt

)

= −LC × d2V

dt2
, (59)

or equivalently

d2V

dt2
= −ω2V (t) (60)
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ω =
1√
LC

. (61)

Eq. (60) is the harmonic oscillator equation, and its solution is a harmonically oscillating

voltage with some amplitude A and initial phase φ0,

V (t) = A× cos(ωt+ φ0). (62)

Consequently, the current (58) through the LC circuit also oscillates harmonically with the

amplitude ACω and the phase φ0 + 90◦,

I(t) = CA× d

dt
cos(ωt+φ0) = −CAω× sin(ωt+φ0) = CAω× cos(ωt+φ0+90◦). (63)

The amplitudes and the initial phases of the voltage and current oscillations follow from the

initial conditions: Before the switch is thrown, the capacitor is charged to the initial voltage

V0 (the same as the battery’s voltage), and there is no current through the inductor. Since

neither inductor’s current nor capacitor’s voltage can be instantly changed, it follows that

at the time t0 = 0 when the LC circuit forms, we have

@t = 0 : V = V0 and I = 0, (64)

hence φ0 = 0 and A = V0, thus

V (t) = V0 × cos(ωt),

I(t) = −V0Cω × sin(ωt).
(65)
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Magnetic Energy

Consider what happens when one tries to increase the current I(t) flowing through an

inductor coil. The coil’s self-inductance F leads to EMF

Ecoil = −L
dI

dt
(66)

which resists changing the current and performs negative work

dWcoil = Ecoil × dQ = −L
dI

dt
× I dt = −L× I × dI.

Note that this negative work is independent of the time it takes to change the current! This

negative work has to be overcome by the positive work of the battery,

dWbattery = −dWcoil = +LI dI, (67)

hence for a finite change of the current,

Wnet =

I2
∫

I1

LI dI =
L

2

(

I22 − I21 ). (68)

This work is stored as the magnetic energy of the inductor coil,

Umag =
LI2

2
, (69)

which may be later used up to power some circuit for a short time, for example the light

bulb in the example on the previous page.

Indeed, let’s show that the net energy dissipated by the Ohmic resistance R in the RL

circuit while the current is exponentially decaying is precisely the magnetic energy (69)
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stored in the inductor: The dissipated power is

P (t) = R× I2(t) = R× I20 × exp(−2t/τ), (70)

hence net dissipated energy

Wnet =

∞
∫

0

P (t) dt =

∞
∫

0

RI20 exp(−2t/τ) dt = RI20 × τ

2
(71)

where R× τ = L according to eq. (7), thus

Wnet =
LI20
2

, (72)

— which is precisely the initial energy stored in the inductor according to eq. (69).

For another example, consider the electric and the magnetic energies in an LC circuit.

The voltage and the current in such a circuit oscillate as

V (t) = V0 × cos(ωt),

I(t) = −V0Cω × sin(ωt),
(65)

hence the electric and the magnetic energies evolve with time as

Uel(t) = 1
2CV 2(t) = 1

2CV 2
0 × cos2(ωt), (73)

Umag(t) = 1
2LI

2(t) = 1
2L(V0Cω)2 × sin2(ωt). (74)

Furthermore, since ω2 = 1/LC, the maximal magnetic energy of the inductor is

Umax
mag = 1

2L(V0Cω)2 = 1
2CV 2

0 × LCω2 = Umax
el × 1, (75)

the same as the maximal electric energy of the capacitor. Consequently, the net electric +

magnetic energy of the LC oscillator remains constant,

Unet = Uel + Umag = 1
2CV 2

0 × cos2(ωt) + 1
2CV 2

0 × sin2(ωt) = 1
2CV 2

0 = const, (76)

similar to the net potential + kinetic energy of a mechanical harmonic oscillator.
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⋆ ⋆ ⋆

Next, let’s relate the magnetic energy 1
2LI

2 of an inductor coil to the magnetic field in

the inductor. For a coil of most general geometry,

U =
LI2

2
=

I

2
× Φcoil =

I

2
×

∮

coil

A · d~ℓ. (77)

We may generalize this formula from a coil made form a thin wire to a thick conductor with

some free current Jf flowing through its volume by simply changing Id~ℓ to Jf d
3Vol, thus

U =
1

2

∫∫∫

A · Jf d3Vol. (78)

Moreover, by Ampere’s Law Jf = ∇×H, hence

A · Jf = A · (∇×H)

〈〈 by Leibniz rule for the ∇ · (A×H) 〉〉

= ∇ · (H×A) + H · (∇×A)

= ∇ · (H×A) + H ·B,

(79)

Consequently, the integral (78) for the magnetic energy becomes

U =
1

2

∫∫∫

V

H ·B d3Vol +
1

2

∫∫∫

V

∇ · (H×A) d3Vol

=
1

2

∫∫∫

V

H ·B d3Vol +
1

2

∫∫

S

(H×A) · d2a,
(80)

where V is some volume which includes all the current-carrying conductors, and S is the

complete surface of that volume, whatever it is. We can take the volume V to be as large

as we want, so let’s make it a ball of very large radius R. In the limit R → ∞, the surface
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integral in eq. (80) vanishes; indeed, very far from all the currents,

A ∝ 1

R2
, H ∝ 1

R3
, Area(S) = 4πR2, (81)

hence

∫∫

S

(H×A) · d2a ∝ 1

R3
−−→
R→0

0. (82)

In the same R → ∞ limit, the volume integral over V becomes the integral over the whole

space, thus

Umagnetic =
1

2

∫∫∫

whole
space

H ·B d3Vol. (83)

Example: toroidal coil.

Earlier in these notes we have calculated the self-inductance of a toroidal coil with an iron

core as

L =
µµ0N

2A

2πR
, (84)

so the net magnetic energy stored in this coil is

U =
LI2

2
=

µµ0N
2A

2πR
× I2

2
(85)

where I is the current through the coil. The magnetic fields H and B created by this coil

are negligibly small outside the iron toroid, while inside the toroid

H ≈ NI

2πR
φ̂ , B = µµ0H, =⇒ H ·B ≈ µµ0

(

NI

2πR

)2

. (86)
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The energy (83) of these magnetic fields is therefore

Umagnetic =
1

2

∫∫∫

whole
space

H ·B d3Vol ≈ 1

2

∫∫∫

toroid

H ·B d3Vol

≈ 1

2

(

approx. constant H ·B
)

×
(

volume of the toroid
)

=
1

2
× µµ0

(

NI

2πR

)2

× 2πRA

=
I2

2
× µν0N

2A

2πR
,

(87)

in perfect agreement with eq. (85) for the magnetic energy of the coil.

This example is rather similar to the electric energy stored in a capacitor: we can

calculate it as simply

Ucapacitor =
CV 2

2
=

Q2

2C
, (88)

or we may calculate the electric tension and displacement fields E andD inside the capacitor,

and then obtain their energy as

Uelectric =
1

2

∫∫∫

whole
space

E ·D d3Vol, (89)

we would get the same net energy either way.

Note the remarkable similarity between the electric energy (89) and the magnetic en-

ergy (83). Microscopically — or in vacuum — these energies become

Uelectric =
ǫ0
2

∫∫∫

whole
space

E2 d3Vol, Umagnetic =
1

2µ0

∫∫∫

whole
space

B2 d3Vol (90)

in MKSA units, or

Uelectric =
1

8π

∫∫∫

whole
space

E2 d3Vol, Umagnetic =
1

8π

∫∫∫

whole
space

B2 d3Vol (91)

in Gaussian units. The similarity between these energies reflect similar behavior of the

18



electric and magnetic fields in vacuum, the only difference being the way the E/B fields couple

to the electric charges and currents. Indeed, had the Nature provided us with both electric

and magnetic charges and currents, the similarity between the electric and the magnetic

fields would be complete!
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